CTIO
Published on CTIO (http://www.ctio.noao.edu/noao)

CTIO Home > Obsolete Material

Obsolete Material

This is an attempt to group all science and engineering obsolete pages.

Image Quality

  • Useful guide [1] to evaluate the image quality and frequent optical aberrations (information in Spanish).
  • 4M PF IMAGING:
    • See here the as-per-design image quality [2] at PF with MosaicII. This is based on diffraction encircled energy plots with the optical model in Zemax. Note the residual coma+trefoil pattern in the corners, well confirmed by the individual field aberration maps below. So far, to my knowledge, the best image achieved at PF with MosaicII (july 6th, 2000) had a fwhm of 0.54" (15sec, R filter). There are several other cases around 0.60" in long exposures.
    • Residual field aberrations in the optical design of the PFADC: coma [3], astigmatism [4], trefoil [5], there is no quadrafoil left over, some small amount of 5th order terms). For reference, MosaicII CCD array is 123mm square. These maps are built with the Zernike coefficients delivered by Zemax. The quadratic sum of the 3 main aberrations in the corners sum up to a d80 = 0.48", rather close to the diffraction encircled energy d80 = 0.53" given by Zemax (see plot above). Note that the minimum coma field point is not the field center due to the assymmetry of the ADC prism angles (1.17 and 1.37deg respectively). A 5 arcsec tilt of M1 is required to zero the coma on-axis (see result [6]). In theory, the effect of the ADC is only to produce a rotation of these patterns around the field center.
    • Ellipticity measurements [7] of Mosaic images.
    • Depth of focus [8] with Mosaic. You can deduce from this graph how well you need to focus initially and then watch out the temperature changes.
    • See the effects of not using the ADC at different wavelengths and elevations on this plot [9].
  • Infrared Side Port Imager (ISPI): spot diagrams in J band [10], H band [11], K band [12] (fields are R, 0.85R, 0.70R, 0.50R, 0.35R and 0, where R is half the diagonal of the array). Diffraction encircled energy in J band [13], H band [14], K band [15]. Through focus sequences in J band [16], H band [17], K band [18]. Plate scale is 0.31 arcsec/pixel. Boxes are 2x2 pixels. No interband refocusing. Previous optimization (RMS spot size based) yielded the spot diagrams currently on the ISPI web page and the following EE at J band [19], H band [20], K band [21].
  • IQ Status 2009 Summary [22]
  • IQ Status 2010 in Blanco 4.0-m Optical Status 2010 [23]

Blanco Seeing Statistics, 2000 and before

[As part of the move to the NOIRLab web site, this page is not to be migrated and its contents have been archived in https://www.ctio.noao.edu/cgi-bin/DocDB/ShowDocument?docid=1403 [24]]

In the following, 'Night report' refers to the number selected by the observer in the night report among the proposed categories: <0.4; 0.4-0.6; 0.6-0.8; 0.8-1.0; 1.0-1.5; 1.5-2.0; 2.0-3.0; >3.0. Actually, I use and plot the average of these respective categories: 0.4; 0.5; 0.7; 0.9; 1.25; 1.75; 2.5; 3.0. The numbers usually reflect the wavelength of interest of the instrument used (i.e. for example f/14 night reports yield a seeing estimate at about 2 microns).

  • Recent f/14 image quality statistics: histogram [25] and night by night [26] (18 nights from Dec99 to May00)
  • Recent PF image quality statistics [27] (Feb-Apr 00)
  • 4m f/8 image quality statistics [28] (corrected at zenith and 550nm, before/after active optics, 92 to 94, SPIE paper by Baldwin et al.)
  • Old Tololo image quality statistics [29] (89-91 from Suntzeff, not corrected to zenith)
  • FWHM seeing comparison [30] over 96-97-98-99 from the tower seeing monitor at Tololo. The seeing values are averaged over each calendar month (this is an arbitrary choice). Dots with a ? mean that the number of nights used to average was less than 15 during a single month, and the result isn't very reliable.
  • FWHM seeing during 1996 [31]: year median is 0.56" (stdev = 0.28"). Percentiles: 10% at 0.35" and 90% at 1.00" (8034 samples)
  • FWHM seeing during 1997 [32]: year median is 0.62" (stdev = 0.36"). Percentiles: 10% at 0.39" and 90% at 1.02" (4985 samples).
  • FWHM seeing during 1998 [33]: year median is 0.85" (stdev = 0.45"). Percentiles: 10% at 0.40" and 90% at 1.37" (7853 samples).
  • FWHM seeing during 1999 [34]: year median is 0.71" (stdev = 0.43"). Percentiles: 10% at 0.41" and 90% at 1.30" (9499 samples).

Note: all the seeing data presented above was taken with the Carnegie monitor. 9499 samples per year means an average of 26 per night, corresponding to an average of 3 hours continuous sampling per night.

Ellipticity Measurements

In February 2001, Tony Tyson and his group showed us some ellipticity maps of their Mosaic images. Ellipticity of each star is measured, as per SExtractor's definitions (see the User Manual), and plotted as vectors showing both amplitude 'e' and angle 'pa'. By definition:

e = 1 - B/A, where B and A are the semi-minor and semi-major axis lengths. So a perfectly round image has an ellipticity of 0 and e=0.1 means the major axis is 10% longer than the minor axis.

Some trends were quite unusual (see example [35]) and obviously contained precious information about image quality. In May, we obtained our first engineering images with specific telescope parameters (like ADC on/off, M1 corrections on/off, etc...) in order to study the effects methodically. We have taken more data since then at various opportunities, sometimes with the complicity of the CTIO Mosaic engineering team. Based on Dave Wittman's (Bell Labs) original programs, Dara Norman (CTIO) has built up additionnal tools to calculate the mean ellipticity vector in the field, substract it from all the stars and do combined plots showing the data before and after substraction. There has been a substantial support from both Dave and Dara to get these tools running and they are now working very efficiently and robustly. Sincere thanks to both of them. The programs and a README file explaining how to use them can be found in /ua76/boccas/4m/ellipticity/.

These ellipticity plots have allowed us to investigate deeper mostly 2 issues: the effects of the ADC in the image quality, and a method to build astigmatism lookup tables for M1. Most images are 10sec unguided R filter exposures (unless written otherwise).

 

ADC effects:

The Atmospheric Dispersion Corrector (ADC) is part of the Prime Focus Corrector (PFC). It consists of 2 rotating pairs of cemented prisms as descibed in this paper [36]. These are fairly large piece of refractive optics (40cm in diameter) that can introduce wavefront distorsion if their surfacing has residual aberrations and/or if their mounting introduce stress into the glass. We conducted tests near the zenith (so that any gravity effect is azimuthally uniform and no dispersion has to be compensated) by rotating the prisms and observing the ellipticity patterns.
* One prism rotating, one fixed:

* Both prisms rotating together maintaining the neutral 180deg angle difference:

 

Astigmatism lookup tables:

Since the active optics were implemented on the Blanco 4m telescope, we have been building the PF lookup tables with the Hartmann screen method. We have used a few times curvature sensing with EF too. Both techniques are applied on one on-axis star only, mostly because of the time needed for the data reduction with our existing software tools. The ellipticity maps have revealed in some cases that measuring one star in the center of the field is not appropriate to determine the best overall correction for the entire field. The ellipticity approach, because it does a statistical analysis of all the stars in the field in a fairly short time, yields the precise information of the optimum correction to apply to compensate astigmatism. Other aberrations at PF can not be measured (nor corrected) by this technique but astigmatism is the dominant static telescope aberration that needs to be corrected, thus the ellipticity measurements are best suited for that task.

A Mean Ellipticity Vector MEV (for the entire field) above 0.04 indicates that there is some astigmatism worth correcting. The existence of a MEV > 0.04 means:

 

  • To the observer: the focus chosen is wrong, because remember that there is no ellipticity in the best focus (astigmatism 'waist')! See this mscfocus output plot [37] for example: there was a 3.5um tweak and both best fwhm and lowest ellipticity happen at the same focus.

Example: through-focus sequence [38] of 6 images taken with steps of 75um and a forced astigmatism (M1 tweak) of 1um at 0deg (10sec, R, ADC off, corr off, zenith). One can clearly see the 90deg rotation (from horizontal to vertical in this case) of the astigmatism/ellipticity pattern when going through focus. From the ellipmap program we get:
 

Image Focus e pa fwhm
obj019 15875 0.07 7 2.71
obj018 15800 0.04 2 2.21
obj017 15725 0.02 106 2.18
obj016 15650 0.10 84 1.91
obj020 15575 0.08 91 2.71
obj021 15500 0.15 87 2.52

 

The image with least astigmatism is the 3rd one (obj017) but it is the 4th image (obj016) that has the best fwhm. Based on the pattern of the plots, it seems like there would be an intermediate focus (about 15760) between the 2nd and 3rd images where the ellipticity would be lower in average (i.e. rounder images). Thus in this case we would conclude that the best fwhm focus (15650) is different from the 'roundest' focus (15760). Furthermore, an 'mscfocus' analysis of the focus sequence corresponding to these 6 images yields a best focus of 15704 at 1.83".

  • To the CTIO staff: as long as the frame was taken at the best focus, there is astigmatism in that particular direction of the sky and the lookup table doesn't correct it, so it needs some improvement!

 

 M.B., 30 Sept 01

Guía Óptica

Guia óptica práctica para evaluar imagenes

En construcción todavía

Esta breve información explica como reconocer los típicos problemas encontrados al telescopio con la calidad de imagen. Debería ser de ayuda para el operador de telescopio que quiere analisar la situación y actuar consecuentemente y rapidamente, si es que el observador no entiende o reconoce el mismo el problema. De forma general, es necesario quedar atento a cualquier 'queja' del observador para asegurarse que el telescopio entrega su mejor potencial y que el observador sabe como enfocar el telescopio y mantener buen foco toda la noche. Recuerden que un 50% de los casos de imagenes malas o 'más-o-menos' se debe a un foco de mala calidad!

 

EVALUACIÓN DE LA IMAGEN Y DIAGNÓSTICO DE ABERRACIONES

Lo más importante y la primera acción que deben tomar cuando se presenta una imagen rara, es hacer una secuencia de foco (debe extenderse bastante y simetricamente de ambos lados de foco) para:

    • 1/// asegurarse que estan realmente en el foco óptimo;
    • 2/// saber como se ve la imagen por ambos lados del foco óptimo.

Para analizar la secuencia de foco, se debe utilisar la funcción 'imexam' de IRAF y graficar los perfiles (r) para ver el mejor fwhm y los contours [39] (e) para ver la redondez de la imagen. El mejor perfil debe coincidir con el mejor contour, sino hay que examinar otra estrella (puede ser que el objeto selecionado fue una galaxia). Aqui va un ejemplo de secuencia de contours, y la secuencia de perfiles [40] asociados, asi que un gráfico de fwhm versus focus [41] (es la funcción 'mscfocus' de 'mscred'en IRAF). En este caso la imagen #5 es claramente la mejor.

Cuando se ha realizado esta secuencia, hacerse las siguientes preguntas:

  • COMA? la típica imagen comática se parece a un cometa: un punto más brillante de donde sale una cola triangular que se abre. La dirección de la cola es identica en ambos lados del foco óptimo, sólo cambia el tamaño del 'cometa' que se va agrandando mientras uno se aleja de foco. Aún en foco óptimo, puede ser muy dificil ver una imagen redonda. Dependiendo de los sistemas ópticos, la coma puede ser aberración residual del diseño, llamada coma de campo (en cual caso la cola del cometa apunta hacia a fuera del eje óptico, en cualquier punto del campo), o provenir de un desalineamiento (en cual caso la dirección de la cola es más o menos constante en todo el campo) y se llama coma de desalineamiento. Pues la dirección constante de la cola de la coma les dice si se trata de un problema óptico, es decir un desalineamiento.

 

  • ELONGACIÓN?? una imagen elongada puede ser causada esencialmente por 2 problemas que se deben identificar en el siguiente orden:

    • 1/// asegurarse que están en foco óptimo. Como se veia la elongación por ambos lados de foco? Si la elongación rota de 90 grados cuando uno pasa por foco, se trata de astigmatismo (ver esta secuencia [42] de foco de Mosaico con pasos de 75um, que muestra un típico astigmatismo binodal -se forman 2 centros en la elongación-). El foco óptimo de una imagen astigmática es redondo, sólo que es más dificil de encontrarlo porque la profundidad de campo (zona por ambos lados de foco donde no se deteriora mucho la imagen) es reducida;
    • 2/// si no se vío el típico patrón del astigmatismo, puede ser un problema de guiaje de mala calidad: en este caso basta con apagar el guiaje y tomar una exposición corta. Si la imagen se pone redonda, confirma que el guiaje no funcciona bien. Si la imagen sigue elongada en exposición corta y sin guiaje, pués es más complicado... Asegurese que no es una coma 'aplanada' que le da la impresión de una elongación (linear) pura.

 

  • TREFOIL? aberración triangular que aparece tipicamente cuando el soporte de 3 puntos de un espejo no funcciona bien y llega a aplicar 3 fuerzas a traves del espejo. Cuando el primario del 4m pierde el aire, se nota inmediatamente una imagen triangular.

 

  • QUADRAFOIL? aberración más escasa en nuestros sistemas. No tiene patrón muy visible.

 

  • ABERRACIÓN ESFÉRICA? dificil de reconocer. Una forma de ver y medir esta aberración es medir el tamaño de la obstrucción central de dos imagenes muy fuera de foco (la imagen debe tener unos 100 pixeles de diámetro al menos), cada una a la misma distancia del foco óptimo pero por ambos lados (una in-focus, otra out-of-focus). Si la obstrucción central no tiene el mismo tamaño en ambas imagenes, significa que el sistema óptico sufre de aberración esférica.

 

Resumen:
  • PF: las aberraciones se miden con la pantalla de Hartmann. Astigmatismo, trefoil y quadrafoil se corrigen normalmente con los lookup tables o en forma opcional con un 'tweak' del espejo primario que consiste en 'doblarlo' con fuerzas bien aplicadas en las bolsas de aire que lo soportan. Coma proviene de un desalineamiento entre los ejes del primario y del Pfadc, y se corrige con un tilt del primario (o eventualmente un tilt del Pfadc), lo que requiere mas cuidado. Existe coma residual (de diseño, o sea no se puede corregir) en las esquinas del campo de mosaico que se nota unos 200um fuera de foco.

 

  • F/8 y F/14: las aberraciones se miden con Iman (que es una pantalla de Hartmann miniatura). Astigmatismo, trefoil y quadrafoil pueden provenir de ambos espejos (por ejemplo ausencia de vacio en la celda del segundario se traduce inmediatamente por astigmatismo). Los focos Ritchey-Chretien (RC) como el f/8 del 4m y el f/8 del 1.5m, son diseñados para no tener coma. Pués si se ve coma, es necesariamente signo de un desalineamiento entre los ejes ópticos de cada espejo. Todos los otros focos Cassegrain de los telescopios de CTIO son clásicos, es decir tienen coma de campo (zero coma en el eje óptico y coma creciendo en amplitud mientras más lejos del centro del campo). Coma de campo es notoria en el 1.5m f/13.5 en las esquinas de un 2kCCD donde el Fwhm de la imagen es tipicamente 40% peor que en el centro.

 

  • Telescopios chicos: se corrige esencialmente la coma por intermedio de cambios de tilt al primario o al segundario. Astigmatismo puede aparecer como resultado de un alineamiento no perfecto (en algunos casos se cancela la coma al hacer un tilt del espejo pero no está bien centrado pués queda astigmatismo). Esas correcciones son delicadas y se hacen generalmente con pantalla de Hartmann.

 

  • Flexiones: los telescopios son máquinas pesadas que pueden tener flexion cuando se mueven, lo que causará una perdida de alineamiento óptimo o un stress en las ópticas (es muy dificil sujetar un espejo de 15 toneladas sin que se mueva en su celda y sin ponerle stress tampoco). Por esa razón, tenemos las tablas de corrección (lookup tables) que se encargan de compensar automaticamente estos defectos que son generalmenete reproducibles de una noche a la otra. Las tablas de corrección del primario compensan astigmatismo, trefoil y quadrafoil (generados por stress del espejo primario en su celda). La tabla de corrección del segundario (NO está en uso aún) compensa la coma generada por flexión del PFcage o movimiento del espejo en su celda lo que causa un desalineamiento con el primario.

 

  • Iman: cuando Iman funcciona bien, es una herramienta poderosa para afinar la calidad de una imagen. Para los observadores que siguen el mismo objeto toda la noche y necesitan absolutamenmte una muy buena resolución, es recomendable hacer andar el Iman en una estrella cerca (5 grados max) del objeto, y eventualmente corregir aberraciones detectadas. Cada corrección (del primario o del segundario) deberá ser actualizada cada hora como máximo para volver a considerar la nueva posición del telescopio.

Les ruego siempre avisarme cuando detectan una de estas aberraciones, aunque no les parezca significativa, ya que su observación será útil para diagnóstico más fino. GRACIAS.

 

TAMAÑO DE UNA IMAGEN
  • El perfil de la intensidad de la luz de una estrella en el plano focal de un telescopio, es decir el gráfico que muestra la cantidad de cuentas versus pixeles (la opción 'r' de imexam en Iraf), es generalmente asociado a una forma Gausiana (la especie de campana bien conocida). Es común caracterizar la calidad de la imagen con el FWHM (Full Width at Half Maximum) que es el ancho a la mitad de la altura. En el gráfico del perfil, se saca el 50% del máximo de cuentas para ver a que ancho corresponde en pixeles, luego se convierte en segundos de arco con la escala de placa (plate scale).

 

  • El FWHM de un perfil Gausiano corresponde, por casualidad, casi al 50% de la energía recibida (el 50% Encircled Energy, notado EE50, también llamado diámetro a 50%, notado d50). Pués se escribe:

d50 = EE50 = FWHM

  • A veces se prefiere hablar del 80% de la energia (lo que es más exigente), notado EE80 o d80, que se calcula con la relación:

d80 = EE80 = 1.48 FWHM

  • El tamaño de una imagen puede ser aproximado por la suma quadrática del tamaño de cada contribución: el telescopio en sí es capaz de entregar teoricamente una imagen de fwhm Dt = xx", las aberraciones detectadas por desalineamiento son de fwhm Dcoma = xx", Dastig = xx", Dtref = xx",... En total la imagen tiene un fwhm óptico Do de:

Do^2 = Dt^2 + Dcoma^2 + Dastig^2 + Dtref^2

  • En la realidad, es un poco más complicado evaluar el fwhm total, ya que se agregan otros componentes. Por ejemplo: el seeing atmosférico medido por el Dimm es de fwhm Dsa, el seeing del espejo De (si el espejo no está a temperatura ambiente), el seeing de cúpula Dc (si la cúpula no está a la misma temperatura que el exterior). La ecuación clásica (según Racine) es:

D^5/3 = Do^5/3 + Dsa^5/3.secz + Ae^5/3.DTe^2 + Ac^5/3.DTc^2

donde z es la distancia zenital, DTe es la diferencia de temperatura entre el espejo Te y la cúpula Tc, Ae es un coeficiente que vale 0.4 si Te>Tc y 0.13 si Te es menor que Tc, DTc es la diferencia de temperatura entre la cúpula y el exterior, y Ac es un coeficiente que vale 0.1.

 

FORMULAS DE CONVERSION
  • Dependencia del fwhm con la distancia cenital Z:

FWHM_Z1 = FWHM_Z2 x (cosZ2/cosZ1)^0.6

FWHM_0deg = FWHM_10deg x 0.991

FWHM_0deg = FWHM_20deg x 0.963

FWHM_0deg = FWHM_30deg x 0.917

FWHM_0deg = FWHM_40deg x 0.852

FWHM_0deg = FWHM_50deg x 0.767

FWHM_0deg = FWHM_60deg x 0.660

FWHM_0deg = FWHM_cenit, se usa para comparar con los valores del Dimm.

  • Dependencia del fwhm con longitud de onda (l1 y l2):

FWHM(l1) = FWHM(l2) x (l1/l2)^-0.2

FWHM_V = FWHM_U x 0.919

FWHM_V = FWHM_B x 0.947

FWHM_V = FWHM_Bj x 0.954

FWHM_V = FWHM_R x 1.034

FWHM_V = FWHM_I x 1.078

FWHM_V = FWHM_Z x 1.113

Para comparar el FWHM del telescopio con el Dimm, hay que corregir por la distancia cenital Y la longitud de onda.

  • Relación magnitud (M) con iluminación (B) entre 2 objetos:

M2-M1 = 2.5 log B1/B2

o en forma equivalente: B1/B2 = 10^((M1-M2)/2.5)

Una diferencia de magnitud de +1 representa 2.5 veces más luz. 2 magnitudes representan 6.3 veces más luz, 5 magnitudes son 100 veces más luz,...

 

Maxime Boccas, 3 febrero 2001, revised 18 june 01

 

Optical Status 2010

Blanco 4.0-m Optical Status 2010

 

F/8 Focus

  • F/8 Image Quality [43]
  • Skymaps:  f8_list.in.030909.txt [44]    f8_list.in.280410.txt [45]    f8_list.in.300310.txt [46]

 

Prime Focus

  • PF Image Quality [47]
  • Skymaps        
pf_shap.in.11Mar05.txt [48] pf_shap.in.12feb02.txt [49]  f_shap.in.130809.txt [50]
pf_shap.in.230410_lut-offset0deg.txt [51] pf_shap.in.230410_lut-offset180deg.txt [52]
                       
  • Flexure and Coma [53]

 

Report [54]

 

PFADC (obsolete)

OBSOLETE!  DECam does not have an ADC
Prime Focus Atmospheric Dispersion Compensator


 

Empirical and theoretical modeling of the PFADC Corrector on the Blanco 4m Telescope

T. E. Ingerson
(1997)

Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatories
Cerro Tololo Interamerican Observatory, Casilla 603, La Serena, Chile

The National Optical Astronomy Observatories are operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.

Abstract:
A new set of corrector optics incorporating atmospheric dispersion compensation is now in routine use at the prime focus of the 4m Victor M. Blanco telescope at CTIO. This corrector is described and direct photographic measurements of the optical field angle distortion (OFAD) coefficients are compared with the values predicted from the optical design. The results are used to quantify the baseline behavior of this corrector and then extended to provide predictions of the telescope's performance with the new optics under conditions which have not been directly measured.

Introduction

When the 4m Blanco telescope at CTIO was designed in the late 1960's, it is doubtful that the designers anticipated that it would ever be used at prime focus with any detector other than photographic plates. Wide field imaging was to be done with a camera using a pair of non-achromatic triplet correctors, optimized for use in red and blue light.

The telescope has changed greatly since then, as have other large telescopes constructed during the same era. Imaging is now done almost exclusively with CCDs. Image quality has been significantly improved by careful control of environmental variables and upgrading the optics where feasible (Baldwin et al. (1996)).

A new corrector, the Prime Focus Atmospheric Dispersion Compensator (PFADC) has been installed to take advantage of the telescope's improved imaging capability. The PFADC provides high-quality, wide-field achromatic imaging at prime focus and incorporates atmospheric dispersion compensation (ADC). It is used mainly with a CCD imager and a fiber-fed, multi-object spectrograph known as Argus. Direct photography is still supported, though this option is now little used.

In principle, everything there is to know about a system like this can be computed directly from the optical design. However, there are at least 70 independent variables involved in the design and fabrication of this set of optics, such as spacing, radii, tilts, decenterings and refractive indices. Sufficient error in any one of these is capable of rendering the system's image quality unacceptable.

Each of the parameters can be measured, though always with some uncertainty. The corrector cannot be tested as a unit except on the telescope where the only variables which can be accurately measured are the image size and the optical field angle distortion (OFAD). Photographic plates are the classical and still the most appropriate method of directly measuring the OFAD. The large detector area, flatness, continuous nature of the detecting medium and high dimensional stability of plates makes them ideal for the job. Monolithic CCDs of the requisite size, flatness and number of pixels still lie in the future.

The OFAD coefficients for the old CTIO prime focus UBK-7 triplets were determined experimentally using plates by Cudworth & Rees (1991) and Guo et al. (1993). A similar photographic determination of the OFAD for the PFADC has been made recently by Guo et al. (1996).

Photographic measurements are not sufficient to fully characterize the optics. At CTIO, several instruments with differing optical configurations are used at prime focus and some of the elements of the PFADC are moveable. It is impractical to directly measure the OFAD under all possible permutations. What we have done here is to carefully compare the empirically determined OFAD under a single known set of conditions to the predicted performance under the same conditions and quantify a baseline behavior.

Monte Carlo simulations permit us to show that the observed performance of the optics is within the range which would be expected to occur as a result of normal manufacturing tolerances. This gives us confidence that we understand the corrector and allows us to make useful predictions as to how it can be expected to work in other configurations. The analysis represents a synthesis of theory and measurement and results in a better characterization of the corrector's behavior than would have been possible using the information provided by either computer modeling or direct measurement alone.

The results presented here are intrinsically interesting and not merely to potential users of this corrector. We certainly have benefitted from the exercise. Even the answer to such an apparently mundane question as "What happens when a filter is changed?" can be more interesting and significant than one might think. This kind of sub-arcsecond absolute astrometry will also be necessary for modeling a second ADC corrector now under construction. It will be used with "Hydra-CTIO" (Bardeen 1991), a new multiple object fiber-fed spectrograph now being constructed at NOAO-Tucson.

For the moment, our extrapolations of the PFADC's behavior only involve changes of the optical parameters which deal with the effect of changing filters and the corrector back focal distance. We do not yet have enough information to allow us to do comparisons of direct measurement with theoretical models of the ADC function. This is a different and more complex problem which we hope to study in the near future.

 

Optical Design

The PFADC was designed by Richard Bingham at University College London under contract to CTIO. It is important to emphasize that the values shown in Table 1 are those of the nominal design, but of the system as built and measured. The theoretical performance of the final configuration is essentially identical to that of the original design.

Table1: Optical Design of PFADC for PFCCD on 4M Blanco Telescope  

Surface Radius of Curvature Axial Separation Material Clear Dia.
1 21369.00 9991.8 Air 4000
2 2920.60 25.0 LLF1T 400
3 1466.49 39.3 PSK3T 392
4 -12682.9  2.9 Air 385
5 303.97 25.0 PSK1T 356
6 289.60 31.3 LLF1T 339
7 298.62 122.9 Air 321
8 748.58 15.0 BK7T 273
9 244.89 328.2 Air 255
10 294.17 27.8 BK5T 213
11 1715.95 91.9 Air 209
12
∞
     
All parameters as measured. All dimensions in mm.
Hyperbolic primary: conic constant=-1.09863
Surface 3 cemented with .1mm RTV: Inclined at 1.17 degrees
Surface 6 cemented with .1mm RTV: Inclined at 1.37 degrees
91.9mm in space 11 includes 4mm filter and 6mm window
"T" suffix glasses are adjusted fro melt variations
Both doublets are free to rotate over 360°

This corrector is a descendant of the triplets originally provided with the Blanco telescope (Wynne, 1968). Addition of a fourth element provides broadband color correction and significantly improves image quality. The basic optical configuration is similar to a 4-element design first described by Wynne (1967) for the Hale 5m. Though the 1967 design is for a classical Cassegrain optical system, Wynne (1987) later showed that it could be adapted for use on a Ritchey-Chretièn telescope.

Wynne and Worswick (1988) then demonstrated that an ADC version could be built by putting a pair of rotating, curved, zero-deviation, Risley-like prisms with an oiled mating surface in front of the basic 4-element configuration. Bingham (1988) soon produced a simpler design in which a pair of rotating ADC prisms with an oiled, flat, rotating contact surface served as the first element of a 4-element corrector. This reduced the number of elements from 8 to 7. Glass-air interfaces were decreased from 10 to 8.

While designing the PFADC for CTIO and a similar corrector for the WHT, Bingham was able to further improve the design by replacing both of the front two elements of the 4-element configuration with doublets having shapes similar to those in the corresponding elements of the basic 4-element corrector. Each doublet is made of glasses (LLF1 and PSK3) which have almost the same indices of refraction but different dispersions. The cemented surfaces of the doublets are slightly inclined, so both act like zero-deviation prisms with a small dispersive power. When the axes of the prisms are 180° out of phase, their dispersions cancel and the system has essentially the same image quality as the basic 4-element design. The final optical system contains 6 pieces of glass and 8 glass-air interfaces. The rotating surfaces are not in contact.

Both doublets can rotate independently over 360°, allowing an artificial dispersion of variable magnitude to be added in any direction. This permits the corrector to compensate for atmospheric distortion with very little image degradation at any azimuth and at zenith angles to 70°. The optical design provides excellent unvignetted images at all wavelengths from 3400A to past 10000A over 48 arcmin field. There is little image shift with ADC. Chromatic effects are small. The quality of imaging at all air masses is primarily seeing-limited.

The four surfaces on the two singlets have been coated with broad-band anti-reflection coatings having high transmission from 3500- 10000A. The four surfaces of the doublets were coated with MgF2 instead of the broad-band coatings. Use of these new coatings was felt to involve too much risk because their long-term characteristics were not well known. So far they appear to be stable and robust.

Transmission of the corrector including coatings and glasses is 85% or higher at all wavelengths from 3700A to 8700A, falling to 75% at 3650A and 10000A and 54% at 3500A. Excellent BVRI photometry can be done using the PFADC. The short wavelength transmission limit makes photometric calibrations somewhat more difficult in U, though good results have been obtained in this band.

The original design specification called for image quality of .25'' full width half maximum (fwhm) in the center of the field and .5'' fwhm at the edge. The corrector meets this specification. However, the images produced by ADC correctors tend to have irregular profiles which often makes fwhm a misleading representation of image size. In the rest of this paper, we will refer to image size by specifying the diameter of a circle in which 70% of the incident energy is contained (D70). This is a somewhat more stringent specification for image quality than the original. For various reasons, we believe that D70 provides as accurate a quantification of the useful image quality of the instrument as can be provided by a single number. For the purpose of theoretical OFAD modeling, the images are considered to lie at the centroid of the spot diagram.

Instrumental Configurations

The PFADC was planned with a CCD imager as the default instrument. The design assumed that a 4mm BK7 filter would normally be placed within the back focal space (distance 11 in Table 1 [55]) in front of a 6mm window of fused silica. With the corrector as built, theory predicts the best imaging with the focal plane of the detector 91.9mm behind the rear face of the nominal corrector. Under these conditions, the focal plane is very nearly flat and the system is achromatic. So long as the surfaces of the window and filter are flat, their precise locations within the back focal distance have almost no effect on the optical behavior of the system.

Argus places its fiber tips directly in the image plane. As a result, there is 10mm less refractive material in the system than the design calls for, which causes an image shift and a small amount of chromatism. To maintain the same optical distance between corrector and detector, the Argus fibers must be placed closer (88.6mm at 4400A) to the rear surface of the nominal corrector. Over the entire field, more than 90% of the transmitted light at all wavelengths from 3500A to 10000A falls into a .7 arcsecond circle when the system is focussed through a B filter. This image quality is sufficient to do efficient broadband spectroscopy through Argus' 1.86'' diameter fibers.

The nominal thickness of the filters used in the Prime Focus Camera is 2mm. For best imaging with 2mm filters, the film surface should be 89.3mm from the nominal corrector. The filters normally used for photography have different thicknesses and compositions. The image quality is much better than was achievable with the old triplet correctors.

In all three cases, the instruments have been mounted with back focal distances which are nearly optimum for the respective configurations in the nominal design. The actual "as built'' and measured distances (+/-.1mm) between the rear of the corrector and detector plane are 91.6mm, 88.5mm and 89.2mm respectively for the PFCCD, Argus and the PF Camera.

 

 

OFAD Modeling

In an astrograph, the spherical sky is presumed to be projected onto a flat plate perpendicular to the beam of the astrograph. In this ideal case, the distance r0 from the optical axis to a point on a plate is given by  r0=f tan(A), where f is the focal length of the astrograph and A the angular distance from the optical axis to the same point.

Correctors such as the PFADC deviate from this model via radial pincushion distortion, called optical field angle distortion (OFAD), which varies as a function of the distance from the optical axis. We will represent distortion using the model in Chiu's 1976 paper

r = f tan(A)[1+d3 tan2(A) +d5 tan4(A)]

Here, r is the measured distance from the center of the field to the image in the detector plane. Distortion is modeled via the third and fifth order dimensionless distortion coefficients d3 and d5.

The inverted model

r0 = r b3 r3 +b5 r5

is usually preferred for analyzing plates, along with the image scale S, usually expressed in arcsec/mm. The two models are equivalent for our purpose and easily interchangeable via the simple relations

f = 206265/S,   d3 = -b3f2 and d5 = (3b32 -b5) f4

 

Measured and Predicted OFAD

In Table 2, results of theoretical analysis of the OFAD for the "as built'' PF camera using Zemax tm are presented along with the values empirically determined by Guo et al.(1996) from plates taken in 1995. In both cases, the two ADC doublets were set in a "neutral'' position with their dispersive axes opposed in the north-south direction. UBVRI bands in the observations are approximated respectively by the conventional wavelengths of 3600A, 4400A, 5500A, 7000A and 9000A.

Table 2: Theoretical and Experimental OFAD Coefficients for the PF Camera

Source Band f.l. d3 d5 Comments
Guo U 11465.4 360.0 775000 Measured
Guo B 11467.3 360.2 695000 Measured
Guo V 11467.8 357.6 687000 Measured
Zemax U 11461.9 360.2 880000 Predicted
Zemax B 11464.2 357.4 840000 Predicted
Zemax V 11465.6 354.7 820000 Predicted
Zemax R 11466.2 352.4 810000 Predicted
Zemax I 11466.9 350.7 800000 Predicted
d3 and d5 are dimensionless
Images have been refocussed for each passband
All values are from 2mm BK7 filters

The photographic exposures were made through UG-5, GG385 and GG485 filters with thicknesses of 2.73mm, 1.96mm and 1.84mm respectively. The focal lengths in Table 2 have been corrected to the values they would have had if the filters had all been 2mm thick and made of BK7.

These two sets of models predict star positions with an rms difference between theoretical and empirical positions of less than 13µ over the field in all three colors. Nowhere does the predicted position of a star image differ from its measured location by more than 17µ (.31 arcsec). Still, the measured focal lengths of the system are slightly greater than the theoretical values. The rms difference between measured and predicted positions can be reduced to 4µ by adjusting the focal lengths of the system to be 1.8mm greater than predicted. As we will show, an adjustment of this order is what might be expected as a result of manufacturing tolerances.

Theory and experiment agree that there is a gradual increase in f with increasing wavelength while d3 and d5 decrease. Most of this variation of the OFAD is caused by secondary chromatism coming from color dependencies in the image distortion. Moving away from the optical axis, the blue images at first fall slightly closer to the center than those in the red so the focal lengths are lower in the blue. Farther out in the field, the shorter wavelength images begin to be displaced more because of larger values of d3 and d5, passing the longer wavelength images near the edge. The U images are as much as .36'' from the I images in parts of the field. This shift is the reason the broad band images often required by Argus are somewhat larger than the narrower band images generally used for CCD exposures. With Argus and the PF Camera, there is a small additional shift of image position with color resulting from primary chromatism caused by the incorrect filter thickness.

Details of the Photographic Measurements

The photographic calibrations used here are based on eight plates of two fields, all taken on the night of February 23/24, 1995. These fields are called LP543 and M68 by Guo et al. The measured OFAD coefficients in Table 2 [56] are averages in which equal weight is given to all plates.

The focal lengths measured from the LP543 plates are approximately 3mm longer than those derived from the M68 series while the focal length determined from plates taken in the same color of the same field differed by less than a millimeter. This difference is difficult to explain since the images were taken in uninterrupted sequence during the same night. The air mass at which the LP543 plates were exposed is somewhat higher than for those of M68 so an error may have been made in correcting for atmospheric refraction.

The errors can be put into perspective by observing that the models determined for each plate predict measured image positions on that particular plate with an rms precision of 1.5-2micron. The measured values of the OFAD fluctuate between plates within the same series by approximately 3-4micron of position uncertainty, roughly the same as the difference between the theoretical and experimental models one a correction has been applied to the focal length. The rms position difference caused by the 3mm focal length difference between the LP543 and M68 plates is 14micron . This means that uncertainty in focal length is the principal source of error in our knowledge of the corrector's behavior. The experimental focal lengths in Table 2 [56] are an average of the two plate sets.

 

 

Predicted Behavior of the Corrector

The values for the paraxial focal lengths predicted by Zemax at all wavelengths were taken to be the "f'' terms in the predicted OFAD. Values for d3 and d5 were then obtained by fitting the OFAD model to the positions given by Zemax for the centroids of a number of images distributed uniformly throughout the field. This procedure yields models which predict Zemax's theoretical image locations with an rms error of less than 4µ in U and 2µ in all other colors.

As previously mentioned, the parameters given in Table 2 [56]are not those of the corrector as it was designed, but come from measurements made after construction. To estimate the effect of any error in these measurements, Monte Carlo (MC) calculations were done during which the mechanical and optical parameters of the system were varied at random within the tolerances which were maintained during manufacture and final assembly. Every MC iteration creates a new, slightly different optical system which represents the way the corrector might have been put together. Each MC design was modeled in the same way as the nominal configuration, optimizing the image quality by refocussing after each iteration.

Image quality after a MC perturbation always remained within or very near to the design specifications, i.e. with the monochromatic D70 not exceeding .25'' in the center and .50'' at the edge. The image center moved by as much as several hundred µs as a result of tilts introduced by the Monte Carlo process, but after recentering, a new OFAD model could always be found which was able to predict the new theoretical positions to an rms precision of 6µ or less. The system focal length varied from the nominal value by an average of +/-5mm from after each Monte Carlo calculation. The MC perturbations changed d5 by an average of 30,000 units. Increases of d5 were seen more often than decreases. Changes in d5 were usually accompanied by changes of d3 in the opposite sense.

 

 

Estimation of the Most Probable Values for the OFAD

Theory should accurately predict the shape of the distortion curve, yet the measured values of d5 were consistently approximately 100,000 units smaller than expected. According to the Monte Carlo calculations, d5 is unlikely to have decreased as a result of manufacturing.

A difference of 100,000 in values of d5 causes a maximum difference in image positions of 17micron (.3 arcsec) at the edge of the field. When the theoretical and empirical models are adjusted to coincide as well as possible, larger values of theoretical d5 produce the best fit with slightly lower, compensating values of f and d3, reducing the residual errors to about rms 4micron, roughly the same as the intrinsic errors of the measuring process. Thus, the difference between the experimental and theoretical values of d5 is not significant here and can be safely ignored for the present, but it is unclear why this discrepancy exists. The most likely explanation is that it is some kind of systematic difference in how positions are predicted with a computer and measured photographically.

The MC calculations indicate that due to fabrication tolerances, the measured focal length might vary by be as much as 5mm from the predicted values. As previously mentioned, the best agreement occurs when the focal lengths are shortened by 1.8mm. The fact that a correction of this degree is sufficient to minimize the difference between experiment and theory strongly suggests that the corrector was assembled within specifications.

Adjusting the focal length by reduces the rms difference between the predicted and measured image positions to less than 4micron (.08 arcsec), which is comprable to the experimental error in the positions predicted by the measured OFAD. Once this adjustment has been made, the measured and predicted values tabulated for the OFAD of the PF camera in Table 2 [56] are essentially indistinguishable.

This focal length adjustment can be put into further perspective by noting that the theoretical focal length agrees almost perfectly with the plate scale derived from the M68 plates while it differs by 3mm from the scale on the LP543 plates. This provides some support to the supposition that the M68 scale is more likely to be correct and that an error may have been made correcting for refraction on the LP543 plates.

Summarizing, the theoretical OFAD coefficients are probably the more reliable, certainly for determining how d3 and d5 vary with wavelength. The photographic modeling gives us assurance that the true image scale is within the expected range. However the errors in fabrication appear to have been smaller than those made in the measurement of the OFAD. The theoretical values appear to be the best predictors we have of the corrector's behavior until we can obtain another, more accurate measurement of the paraxial focal length.

Table 3: OFAD Coefficients for Nominal PFCCD

Band f.l (mm) d3 d5
U 11466.5 359.5 900000
B 11468.3 355.9 875000
V 11469.3 353.8 840000
R 11469.8 351.3 830000
I 11470.3 350.2 810000
With 4mm filter and 6mm window
d3 and d5 are dimensionless
Errors are mainly in focal length: see text

Zemax can now be used to calculate the OFAD to use for the PFCCD and Argus. The OFAD for the nominal PFCCD with a 4mm BK7 filter and 6mm fused silica window are given in Table 3. Argus should be focused through a blue filter and the B band OFAD used, i.e. f=11466.5mm, d3 = 357.9 and d5 =835000.

The focal lengths for the nominal PFCCD are approximately 1.5mm longer than for the PF Camera while d3 and d5 are negligibly different. The focal length difference is because the PFCCD is .3mm from the nominal position while the PF Camera is within .1mm of the best location. It is also interesting to note that there is a slightly greater variation of focal length with color for the PF camera. As previously mentioned, this comes from a small amount of chromatic aberration in Argus and the photographic camera caused by the incorrect thickness of the filters.

 

Image Quality

Recent measurements indicate that .70'' fwhm images have been observed with the PFADC in the center of the field under very good conditions of seeing. These images are undersampled because the CCD currently used has a scale of .43"/mm. At present we are unable to determine if the actual image size is smaller than this reported value.

This observation implies that with perfect seeing the PFADC is probably capable of producing central images with D70 well under .5''. The images are clearly very good, though we are unable to measure how closely the central images approach the level of D70 < .25" that theory predicts they should.

 

Effect of Changing the Back Focal Distance

Changing a filter is generally equivalent to moving the instrument with respect to the corrector because different filters will generally have different optical thicknesses. Obviously the system has to be adjusted to compensate. One naturally reaches for the "focus" control to perform this operation.

Focusing the Blanco telescope moves the prime focus pedestal up and down. The pedestal is a rigid assembly which moves the corrector and detector as a unit. This is an inappropriate way to adjust for an error in back focal distance.

Such a movement forces a change in the back focal distance by relocating the corrector assembly with respect to the primary mirror. This refocusses the images, but does so by moving the corrector away from the optimum location. This degrades image quality and makes a significant change in the telescope's effective focal length.

This is not a serious problem with Argus nor with the Prime Focus camera. Argus is permanently mounted with its fiber tips in the correct plane. Observations with the prime focus camera are made with a set of filters which are nominally 2mm thick. Even though these filters actually vary in thickness from 1.8 to 3mm, the variation is small enough so there is no significant image degradation, though there is a noticeable change in focal length with wavelength and filter thickness.

The Prime Focus CCD (PFCCD) is another matter. Currently, the detector is permanently mounted 91.6mm behind the corrector. This is close to the optimum distance (91.9mm) assuming it has the 4mm filter and 6mm window for which the corrector was designed. However, the system as built uses a fused silica window 8.85mm thick. The window is a meniscus lens which compensates for curvature of the CCD. This lens acts as a Barlow, significantly increasing the focal length. With the nominal dimensions, this predicts an increase of 66.5mm in the focal length to 11542.9mm in V with a 5.1mm filter. The measured value of the focal length is 11531.5mm, the difference in the offset coming from the fact that we currently lack precise knowledge of all the dimensions, including the exact CCD pixel size at the working temperature. For the rest of this paper, we will consider the dewar window to be a plane quartz window 8.85mm thick with a flat detector.

The PFCCD normally uses filters which are between 5mm and 10mm thick, meaning further excess material is placed in the back focal space. This extra material moves the detector optically closer to the corrector. Compensating for these back focus errors by moving the pedestal causes image degradation and a substantial change in the effective focal length of the telescope.

In principle, the proper way to compensate for the problems introduced by changing filters would be to have two focussing mechanisms; one like the present pedestal height control to focus the telescope and a second adjustment which moves the detector with respect to the corrector to maintain the back focal distance at the optimum value. There is no mechanism like this currently on the PFCCD, nor are there any plans to install one.

Table 4 shows what happens when back focal distance is wrong and has been corrected by moving the pedestal. Image size and focal length as a function of back focus error (BFE) are listed. The table begins by showing the behavior of the main instruments as they now exist. As can be seen, Argus and the photographic camera are mounted in very nearly the optimal locations, while the PFCCD has a rather substantial BFE.

Table 4: Image Quality

Instrument BFE mm f.l. (B) mm D70(center) D70 (32" dia)
Photographic Camera 0.0 11467.0 0.20" 0.25"
Argus (Broad Band) 0.1 11466.5 0.50" 0.60"
PFCCD (5mm filter) -1.3 11476.4 0.30" 0.35"
PFCCD (10mm filter) -3.0 11489.4 0.50" 0.50"
PFCCD (Nom. +3mm) 3.0 11443.4 0.65" 0.65"
PFCCD (Nom. +2mm) 2.0 11451.1 0.50" 0.50"
PFCCD (Nom. +1mm) 1.0 11458.8 0.25" 0.30"
PFCCD (Nominal) 0.0 11466.4 0.20" 0.25"
PFCCD (Nom. -1mm) -1.0 11474.1 0.25" 0.30"
PFCCD (Nom. -2mm) -2.0 11481.7 0.35" 0.40"
PFCCD (Nom. -3mm) -3.0 11489.4 0.50" 0.50"
Focal lenghts are give fro B band.
Increase focal lenghs by 54.3mm when using meniscus CCD.
Images sizes are given to nearest .05".

 

In the second part of the table, the theoretical behavior of the PFCCD is shown with the detector at incremental locations one mm apart, beginning with the detector 3mm farther from the corrector than optimum and ending with it 3mm closer. This listing clearly shows that BFE greater than 1mm should be avoided and BFE of more than 3mm causes serious image degradation.

As can be seen in Table 4, theory predicts a linear change in effective focal length as a function of BFE at a rate of -7.67 mm of focal length change per mm change in BFE. This change could either be produced directly by physical change in BFE or by the insertion of an extra thickness of a refractive material within the back focal space. For a material of thickness T and refractive index n, this causes a back focal shift of T(1-1/n) and a change in focal length of 7.67 times this value. The variation in n with wavelength can cause significant chromatism. About .5mm of the 4.4mm focal shift with wavelength in Table 2 is caused by this effect.

This -7.67mm difference in focal length per mm of back focus change should not be confused with the classical shift in the "focus" of the telescope. The two are strictly proportional, but the pedestal only needs to move by -.86mm to cause one mm of back focus change, which in turn changes the focal length of the telescope by 7.67mm. This is probably the reason no one seems to have paid attention to this problem in the past. It is not intuitively obvious that refocussing by moving the pedestal by 1mm will cause the focal length of the telescope to change by almost 9mm. This relationship was used to calculate the effect on focal length caused by differences in the thicknesses of the filters used to measure the values in Table 2 [56].

Due to a fortuitous error, we are able to demonstrate that these predictions are accurate. Plates were first taken in 1993 to measure the OFAD. After our observations, we realized that the camera had been incorrectly mounted with a back focus of 91.5mm. The focal plane was lowered by 2.11mm before a second run in 1995. This increased the measured focal length by 15.9mm. This change is almost exactly the 16.2mm predicted for the increase by the BFE/focal length relationship, indicating that the focal length shift occurred as predicted. As expected, the change did not change the measured distortion coefficients.

The quality of the images also varies with wavelength. An estimate of the magnitude of this effect is also given in Table 4. These estimates are only approximate because image shape varies wildly, but they are nonetheless interesting. The values shown are based on theoretical analysis of the spot diagrams combined with some subjective weighting to attempt to make them reflect the real situation as well as is possible in a single number.

 

Conclusions

In summary, our results are consistent with the hypothesis that the corrector was fabricated and assembled quite well. The 2m difference between the measured and predicted focal lengths is a slight focal change caused by random manufacturing variations of the parameters of the optics within the specified tolerances. Image quality is excellent, as far as we are able to tell, with intrinsic image quality in perfect seeing of .5" or better in the center of the field.

Table 3 [57] gives the final OFAD to use for the PFCCD in the default location with the correct window and filter thicknesses. It is straightforward to extrapolate these results to determine the focal length and estimate image quality for other configurations by using the offsets from the B focal lengths in Table 4 [58] and the -7.67 mm/mm relationship between e.f.l. and BFE. These changes should not have a significant effect on d3 and d5.

The image plane of the PFCCD in its proper configuration is achromatic even though there is a 3.7mm shift in focal length from U to I. This is a manifestation of chromatic difference in distortion, not change in focal plane. No focus change with color is required if the filters are all the standard thickness and composition. In Table 2 [56] the PF Camera has a 4.4mm focal length shift over the same range, of which .5mm is a color shift in the focal plane caused by the filter and the window being thinner than the design calls for. With filters of differing thicknesses and composition the focal length shifts will be different from those shown here. The proper values are easy to compute if filter thicknesses and indices of refraction are known.

It is clear from Table 4 [58] that the image plane of the PFCCD should be moved to a better location. Installing a spacer 2.1mm thick will keep the BFE to under 1mm with any filter in current use and not cause significant image degradation, though the focal length will obviously change as filter thickness is varied. This solution to the back focus problem is reliable and easy to implement. It will significantly improve image quality and will provide a new fixed focal plane location which can be used to attempt a more precise determination of the system's focal length than we have been able to obtain so far.

Moving the detector farther from the corrector in this way will change the telescope's focal length to a value very near to the optimum for filters 7.5mm thick. There will be a very slight focal shift with color. This shift will have the opposite sign of the shift in the photographic camera because the PFCCD has too much refractive material in the beam rather than too little, as is the case from the PF camera.

 

Acknowledgments:

The author would like to thank members of the CTIO staff, especially Daniel Maturana, John Filhaber, Gabriel Pérez, Nick Suntzeff and Alistair Walker for their invaluable help in accumulating and presenting the data given here.

 

 

References

1
Baldwin, J. et al. NOAO Newsletter 45, Mar. 1996

2
Bardeen, S. et al.

3
Bingham, R.G. 1988, Proceedings of the ESO Conference on Very Large Telescopes and Their Instrumentation, ed. L.B. Robinson (Springer-Verlag, New York), 1167

4
Cudworth, K. M., & Rees, R. F. 1991, PASP, 103, 470

5
Chiu, L.-T. G. 1976, PASP, 88, 803

6
Guo, X. 1995, PhD Thesis, Yale University

7
Guo, X., Girard, T. M., van Altena, W. F., & López, C. E. 1993, AJ, 105, 2182

8
Guo, X. et al. To be published in PASP, 1996 as a companion paper to this one.

9
Wynne, C.G. 1967, Ap. J., 152, 675

10
Wynne, C.G. 1968, Ap. J., 152, 675

11
Wynne, C.G. 1987, Observatory, 107, 31

12
Wynne, C.G. and Worswick, S.P. 1998, MNRAS, 230, 457

About this document

Empirical and Theoretical Modeling of the PFADC Corrector on the Blanco 4m Telescope

The original document was generated using the LaTeX2HTML translator Version 96.1 (Feb 5, 1996) Copyright © 1993, 1994, 1995, 1996, Nikos Drakos, Computer Based Learning Unit, University of Leeds.

The command line arguments were:
latex2html pfadc_tei.tex.

The translation was initiated by t.ingerson x292 on Thu Jan 2 12:28:34 CDT 1997

Active Optics System (Mostly Obsolete)

This page is obsolete.

The Blanco Telescope is equipped with an active optics system in which variable pressure is applied to the rear surface of the primary mirror via 33 pads. This system can modify the figure of the primary to improve image quality. Normally, the the calibration of this system is verified and, if necessary, modified using ImAn every few months.

The primary mirror is supported radially by 24 lever arms articulated to push on the mirror from below and to pull on it from above. These are not normally adjustable.

Note: the primary mirror and f/8 secondary mirror active controls have been upgraded as of 2014, these documents apply to the old system.  Contact CTIO staff for up to date documentation.
 

The pages related to this one are: 

  1. Short instructions for normal use (obsolete?) [59]
  2. User's Guide for Active Optic System (obsolete?) [60]
  3. F/8 Secondary Mirror Control System (obsolete?) [61]
  4. 4m Active Primary Mirror Control System (obsolete) [62]
  5. Calibrations Positions for 4MAP lookup tables (obsolete) [63]
  6. The RCADC and Atmospheric Refraction [64]
    1. Differential Atmospheric Refraction [65]
    2. Flux captured by Hydra [66]

 

 

 

Short instructions for normal use (obsolete?)

This page is very old and much work has been done on the active optics system, including a major upgrade in 2014.  The value of the information here is uncertain.
 

Active optics System

Short instructions for normal use

 J.Baldwin, 15 October 1998

 

1.0 PRIMARY MIRROR CORRECTION FROM LOOKUP TABLE.

Corrections should normally be ON for all foci (prime, f/8).
The present table causes the primary mirror to be bent to correct for a systematic astigmatism effect which is due to problems with the primary mirror support system.

2.0 F/14 COMA CORRECTION FROM LOOKUP TABLE.

Should normally be OFF whenever f/14 is in use.

3.0 IMAGE ANALYZER.

3.1 Before start of night,

  • If the IMAN software is running, stop it by typing quit<return>
  • Reboot the IMAN PC. It is best to turn its power off and on. If there is an error message, reboot it again.
  • Once the IMAN PC is rebooted with no error messages, start the NFS link by typing: gonfs<return>. Answer "i" (ignore) to the error message about Authentication Failure.
  • Go to the cass cage and check that the power switch for the iman camera's electronics box (which is mounted on the side of the offset guider module) is set to "ON (NO TEC)".This setting disables the ThermoElectric Cooler, which is what is wanted on all but the warmest of nights. The camera power switch should be left in this setting at all times.. The power can then be switched on and off remotely from the console room.
     

3.2 Just before using IMAN

  • Turn the camera ON using the TCP menu commands

    • ACTIVE CONTROL
    • IMAGE ANALYZER
    • POWER ON CAMERA
  • Only after the camera is ON, start the IMAN software in the IMAN PC by typing

    • iman<return>
    • Software should come up in IDLE mode. If not, type s<return>
    • On startup, the gain is automatically set to 2 and the offset set to the corresponding value of 231. These are the nominal values which should be used for IMAN measurements. (Modified slightly 18Dec00 r.c.and b.g.)

 

3.3 Measuring a star.

  • Move rotator mirror to position 1or 2
  • Move guide probe to optical axis
  • Select FLAT MIRROR OUT and then PELLICLE IN (and vice versa if you are going to use the flat mirror). Now 10% of the starlight will go to the guider TV, and 90% to IMAN. The flat mirror in the guider optics will be left out of the beam for all remaining steps.
  • Select SMALL APERTURE from the IMAGE ANALYZER menu. A 13 arcsec dia. aperture will be put into the focal plane ahead of the IMAN optics, but will not affect the field of view of the guider camera.
  • Put the Shec Guider cursor at the following position: x=257, y=106 if you are using the pellicle, and x=200, y=153 if you are using the flat mirror (LAST UPDATED: 3 Feb 2001). Move the telescope to center a 11 mag star (10.5 to 11.5 should work) on the guide probe cursor. Guide the telescope either with the autoguider to keep the star at this position.
  • Ensure that the star image on the guider is in focus. Adjust the guide probe focus if it is not.
  • If you are measuring the TWEAK correction in a new part of the sky, use the RESET option in the TWEAK ADJUST command (from the PRIMARY MIRROR CONTROL menu).
  • Select STAR SEQUENCE (enter * on the keyboard). This will cause a series of three 30 second exposures to be taken and analyzed. A blue window will open on the Telescope Operator's Sun and the results will start to appear.
  • Use the CTRL-F2 keys to get rid of the blue windows which show IMAN results and messages.
  • Select OBSERVE POSITION. This will turn off camera power, move the pellicle out of the way, and move the flat mirror to the GDR position. The guider is now ready for normal use.
  • Move the guide probe out of the way of the instrument.
  • On the IMAN PC's keyboard, type quit<return> to stop the IMAN software.
  • To start another measurement later in the night, return to step 3.02.

 

4.0 TWEAKING.

  • At the end of the STAR SEQUENCE, a red box will appear on the TCP screen giving you the options of tilting the secondary, bending the primary, or quitting.
  • If you elect to tilt the secondary or bend the primary, you will then be asked whether you want to accept the recommendations made by the IMAN program. These are the "Y" and "N" entries in the Tweak? line in the IMAN output. Normally, you should not change anything unless a change is recommended ("Y").
  • If at some later time you wish to tilt the secondary to correct for the coma, measured here, use either LAST LOG ENTRY or OLD LOG ENTRY from the TILT SECONDARY or PRIMARY MIRROR CONTROL menus, as appropriate.
  • If you apply a tweak to the primary mirror, you must then make sure that the ENABLE option in the TWEAK ADJUST command has been selected (the TCS Status Display will show a flashing "TWEAK ON" message).
  • If the tweak correction was larger than 2 microns, it is worth taking another IMAN measurement and repeating the tweak if necessary.

 

5.0 ERROR RECOVERY

  • Some common IMAN error messages:

    • ERROR -- STAR IS TOO BRIGHT. Too few spots have been found and more than 1000 pixels (average of about 5 per spot) have signal levels of 4095 (CCD saturation). Find a fainter star.
    • ERROR -- STAR TOO FAINT. Too few spots have been found and less than 500 pixels are more than 150 ADU above the background. Find a brighter star.
    • ERROR -- BACKGROUND TOO BRIGHT? Too few spots have been found and the average ADU/pixel is more than half the saturation value. Find a darker sky.
    • ERROR -- FOUND TOO FEW SPOTS. Too few spots have been found and none of the 3 previous errors have been detected. take another star sequence and watch the IMAN image display monitor as the 30 second exposures are read out. Is the star way off center? Does the image turn to noise half-way through the picture?
    • ...and see "IMAN Image Analyzer" Sect. 4.7 for further exciting possible disasters.
  • Image displayed on IMAN monitor is full of garbage. A noise spike has gotten into the data stream. The reduction program probably will skip over the bad image and not include it in the average values for the aberrations. If so, and if you get two good images out of a star sequence of three images, that probably is good enough. If not, take another star sequence.
  • Images continue to be full of garbage. Stop the program on the Iman PC. Turn camera power off, then back on. Restart the IMAN PC starting at step 3.01 above.
  • During star sequence, the message in the blue box on the TCP screen freezes. You should stop and restart the TCP program... it has lost communication with the Sun. The message in the blue box initially should read "Starting file deletion, waiting for first image", but should then quite quickly change to say "image size = 0", then larger sizes as the first 30 second exposure starts to be transfered, etc. Then the box should show the reduction results as they are built up. To restart the TCP program:

    • go to the highest-level TCP menu and select "Exit TCP". The window with the TCP menu should disappear.
    • Then open the console window and type "tcp4m <return>". The window with the menu should reopen.
    • Now try running IMAN again.
    • Aperture wheel or flat mirror do not complete their motions. Try the "iman stop" command in the TCP command window, then try again to move the device. You must turn the camera power back on after using "iman stop".
    • Timeout messages while moving a device. Probably a fatal hardware failure. It's time to call for help.

User's Guide for Active Optic System (obsolete?)

Contents:
1.0 Basic Principles
    1.1 Active Optics
    1.2 The Wavefront
    1.3 Wavefront Errors
    1.4 Correcting the Errors
  2.0 Correcting the Errors
    2.1 Primary Mirror
    2.2 Secondary Mirror
    2.3 Image Analyzer
  3.0 IMAN output
  4.0 TCS Menu Items
  5.0 Instructions for Normal Use,
Active Optics (Cross Reference)
  6.0 More about tweaking
    6.1 Tweak corrections are additive
    6.2 The TWEAK ADJUST command
    6.3 Ways to enter TWEAK values
  7.0 Be careful! here's the trap
with the tweak correction!
  8.0 And the IMAN power is another trap!
  9.0 Solving Problems
(problems? what poroblems?)

This page is very old and much work has been done on the active optics system, including a major upgrade in 2014.  The value of the information here is uncertain.

J.Baldwin, 14 November 1995

Last revised: M. Boccas, 3 February 2001

1.0 BASIC PRINCIPLES

1.1 Active Optics

Active Optics systems are now in use on a number of telescopes (ESO NTT, WIYN) and are planned for all future large telescopes. They correct the shape and alignment of the telescope optics on a slow time scale (once every few minutes). This greatly simplifies getting the telescope properly tuned up to start with, and then allows the optics to be continually adjusted in order to compensate for flexure, etc. as the telescope moves around the sky. There is generally a lookup table which automatically changes the Active Optics corrections as a function of telescope position, and often also an image analyzer which uses fairly bright stars to make measurements during the night for additional fine tuning. Gemini will use an image analyzer in this mode almost all of the time.

The system on the 4m Blanco Telescope operates primarily from lookup tables which contain pre-calibrated correction values which can be interpolated to the present telescope position. There also is a provision for occasionally using an image analyzer on a bright star to fine tune (or "tweak") the corrections before observations for which high angular resolution is of special importance, but this will take enough telescope time (10 min?) that it is not expected to be the normal mode of operation.

Active Optics is not Adaptive Optics. Adaptive Optics refers to high speed corrections for seeing effects in real time. Sorry, all we offer is the boring low-speed stuff. (The f/14 secondary, now under development, offers high speed tip-tilt corrections to the image position to compensate for image motion arising from dome and atmospheric seeing and wind-shake of the telescope. This will be our first implementation of ADAPTIVE optics.)

back to top

1.2 The Wavefront

The telescope intercepts light waves coming from distant objects and brings them to a focus. A wavefront is a locus of adjacent points where the electromagnetic wave has the same phase. Except for seeing, the incoming wavefronts, before striking the primary mirror, would be perfectly flat planes perpendicular to the direction to the object being observed. After bouncing off the mirror(s), when approaching the foci, the perfect wavefronts would be spherical in order to arrive at focus in phase.

back to top

1.3 Wavefront Errors

However, there is seeing, and the telescope is not perfect, so the actual wavefronts are distorted. The distortions can be described as the amplitude A of the displacement of the wavefront, along the direction of travel, from where it should be in the perfect case. It is convenient to use a circular coordinate system oriented perpendicular to the direction of travel. Any point can be specified by radial coordinate r and angular coordinate phi.
The amplitude of the wavefront displacements, A, at that arbitrary point can then be described as a superposition of a series of terms of different radial and angular shapes; this is analogous to describing a complex sound as a sum of simple musical tones, or frequency spectrum.

The typical way to describe the wavefront errors is to use Zernike Polynomials. These are rather complicated functions, usually depending on more than one power of r, which have the nice property (among others) of being mathematically independent of each other (orthogonal). We don't do that. Instead, we follow the example of the ESO NTT (that's where we stole our software from), and describe the wavefront as:

A = c(1,1) * r * cos(phi) + c(2,2) * r2 * cos(2 phi) + ...

... + c(n,m) * rn * cos (m * phi)

 

summed over all possible values of the integers n and m. c(n,m) is a coefficient giving the amplitude of each term.

The individual terms in this series are called the "Quasi-Zernike Polynomials". The terms are not precisely orthogonal to each other, but under the real conditions in the real telescope, they are close enough.

The Active Optics System includes an image analyzer (IMAN) which measures the shape of the wavefront and then calculates a set of a few low-order quasi-Zernike functions which accurately represent the shape of the wavefront.

back to top

1.4 Correcting the Errors

There are only a limited number of alignment or bending adjustments which we can make to the telescope's mirrors. Conveniently, each of these potential errors can be related to a different Quasi-Zernike mode. These are all low-spatial-frequency modes, with small values of m and n. The higher frequency modes are caused mostly by seeing and by small-scale polishing errors on the mirror surfaces; the active optics system cannot correct these because the mirror is too stiff.

Table 1 shows the low-order errors that we can measure with the image analyzer and how they are removed (cured) using the Active Optics System.

 

Table 1: Wavefront errors

Aberration Quasi-Zernike Cure Comments
Defocus r2cos(0*pi) Refocus Easily confused with spherical
Spherical r4cos(0*pi) Bend Primary Or move focal plane, change primary-secondary spacing
Decenter r1cos(1*pi) Repoint Easily confused with telescope. astigmatism
Coma r3cos(1*pi) Translate or tilt secondary  
Astigmatism r2cos(2*pi) Bend primary Easiest way to bend mirror
Trefoil r3cos(2*pi) Bend Primary Usually print-through from hard points
Quadrafoil r4cos(4*pi) Bend primary Not expected to be significant

 

2.0 OPERATIONAL CONCEPTS

The Active Optics System has three main components: the 4m Active Primary system (4MAP), the Secondary Mirror Alignment System, and the Image Analyzer (IMAN).

2.1 Primary Mirror

The 4M Active Primary System (4MAP) is able to bend the mirror in modes which will correct for spherical aberration, astigmatism, trefoil and quadrafoil. For each aberration (but spherical aberration) and each focus, there is a lookup table containing corrections as a function of telescope position.

[[REVISION 3Feb01:]] These tables are text files which are stored in /ut02/4map/ and are called: 4mapXY.cof, where X is the aberration (2 is astigmatism, 3 is trefoil and 4 is quadrafoil) and Y is the focus (pf, f8 or f14). Thus there are 9 '.cof' files overall. In addition, there is a file called zero.cof that is a null table (ie. filled with 0) which can be used to replace whatever 4mapXY.cof to cancel/zero the corrections whenever one doesn't want to use the lookup table (note that the telescope operator is instructed to ALWAYS use the lookup tables by selecting 'Corr ON focusxx' in the TCS menu). At a specific focus, the fact that you activate the M1 corrections means that 3 lookup tables -one for astigmatism, one for trefoil and one for quadrafoil- are under use, their values being added vectorially. Usually, only the astigmatism table actually contains numbers, the trefoil and quadrafoil tables beeing filled with 0 (this is because the telescope doesn't suffer from significant trefoil or quadrafoil aberrations). When the 4MAP PC boots, it first reads these 9 files in /ut02/4map/ in order to update its default files to the latest versions. This modification (putting the 4MAP PC on the network) was made in order to allow updating remotely the lookup tables, instead of having to physically seat in front of the 4MAP PC on the mountain as in the old days. Therefore, in order to make effective a newly-entered lookup table, one has to bring the telescope to zenith, turn off the air to M1, exit the 4MAP program and start it again (the 4MAP booting message will tell actually that it updated its .cof file). Correction values are automatically interpolated from this table (which contains 49 standard positions in the sky) to whatever is the current telescope position. [[end REVISION]]

Optionally, we can also apply an additional small constant correction for each aberration. We call it the "tweak" correction. The lookup-table and tweak values are added together vectorally. The contents of the lookup table are only rarely changed (as an engineering-time activity), while the tweak values can be remeasured (using IMAN) each time the telescope is moved to a new part of the sky, if the astronomer wants to take the time. If the astronomer prefers to take the default image quality, using only the lookup tables, the tweak correction can be disabled.

back to top

 

2.2 Secondary mirror

The f/8 and f/14 secondary mirrors each have their own computer-controlled collimation system which tilts the mirror around a point near its vertex. This system permits the removal of coma, and is part of the Active Optics package. In addition, there is a system for manually translating the mirror sideways, intended as a rare daytime adjustment, to handle cases when the tilt adjustment does not have enough range.

Tests show that the collimation does not change significantly as the telescope moves around the sky during the night, but that it does occasionally change (for unknown reasons) over a period of weeks or months. The standard operating procedure therefore is to use the image analyzer on a regular once-per-week basis to check the collimation (and adjust it if necessary), but otherwise to leave it unchanged during routine operation. Any time the collimation value is changed, the new value should be entered in the Active Optics logbook and also written on the white board.

[[REVISION 3Feb01:]] A coma lookup table is now implemented to take into account loss of optimum collimation (due to flexures) when the telescopes moves around the sky. That table is called Xtbl.cof (where X is the focus, either f14 or f8) and is stored in /ut20/tcp4m/tcp/. The coma lookup table is similar to the 4MAP lookup tables of the primary mirror, except that it acts only by producing a tilt adjustment (a 'tweak') of the secondary mirror on top of the nominal tilt values determined by the collimation procedure using IMAN (stored in Last Log Entry). Once you select that option, an 'ON' label will show up next to the focus number in the central window of the TCP blue status window. The label will say 'OFF' if the coma lookup table is not active. For the time being, it should normally always be OFF. [[end REVISION]]

In addition, observers have the option of using the image analyzer to measure the collimation error at any time during their run, and then tilting the secondary to remove that error. This is the equivalent of making a tweak correction to the primary mirror, except that the new correction should be valid all over the sky. If the telescope is recollimated in this way, the new collimation value should be entered in the Active Optics logbook and also written on the white board, and should become the new default value until the next routine check is made.

back to top

2.3 Image Analyzer

The Image Analyzer (IMAN) consists of four components:

  • the IMAN OPTICS, which are part of the cass guider.
  • the IMAN CAMERA SYSTEM, which includes the CCD, the camera head and the IMANPC in the computer room.
  • the IMAN REDUCTION SYSTEM, which runs on the IMANSUN (currently CTIOt2).
  • the IMAN CONTROL SYSTEM, which is part of the TCS. This accepts commands from the telescope operator and then translates them into other commands which are issued to the optics, camera and reduction systems in the correct sequence.

IMAN is always available at f/8 and f/14. It can be used by the night assistant at any time. It writes its results into a log file. With easy-to-use TCS commands, the night assistant can take results from this log file and use them as input for changing the collimation or the tweak values. There are options to take either the results from the most recent IMAN measurement, or to search through the log file and select some earlier result, or to type in values at the terminal. The IMAN program also makes a recommendation about which tweak values need to be changed and which do not. When tweak values are taken from the log file, the TCS program allows you to either follow these recommendations (the default) or override any of them.

back to top

3.0 IMAN OUTPUT

This will be found in /ut22/iman/iman.log The results from a typical measurement will look like:

***************************************************************************

UT 00:44 08/27/95        HA -01:14; DEC -31:23            f/8             ROT 90.0
SECONDARY PRIMARY  
  coma3 spher astig triang quad d80
um d um um d um d um d arcsec
1 0.22 80 -1.57 0.64 440 0.02 367 0.17 12 0.47
1 0.28 73 -160 0.64 452 0.03 273 0.20 6 0.49
1 0.33 -71 -193 0.64 471 0.08 292 0.18 9 0.50
Average 0.09 36 -1.70 0.63 94 0.04 -64 0.18 9
Sigma 0.15   0.17 0.02   0.03   0.01  
d80 0.01   0.19 0.21   0.01   0.08  
Tweak? N N Y N N

 

  d80 (arcsec) TEL.FOCUS=172301
GDR: x=0.045 y=-0.04
npts defoc decen init coma full
1 1 218 1.34 21.17 219 0.57 0.56 0.47
2 2 218 1.24 24.00 216 0.56 0.56 0.49
3 3 217 1.71 24.57 214 0.59 0.59 0.50

The output first shows results for the three independent 30 sec measurements. Magnitudes of the aberrations are given in microns (um), and the position angles in degrees (d). The rightmost column shows the residual 80% encircled-energy diameter that the image would have after correcting for all of the fitted aberrations (this residual includes the effects of slowly changing dome seeing components, but most of the effects of atmospheric seeing have been averaged out).

The next line gives the vector average for each aberration. After that is a line giving the standard deviation (1 sigma) of the magnitude of each aberration, and then a line giving the 80% encircled image diameter (in arcsec) which would be expected from each average value.

The line labelled "Tweak?" gives a recommendation about whether or not a correction should be made for each aberration: yes (Y) ==> make a correction; no (N) ==> do not change anything. A tweak adjustment is generally recommended for aberrations producing d80 values in excess of 0.1 arcsec, unless there is large scatter in the individual measurements. However, the spherical aberration measurements tend to show huge scatter, and we currently do not recommend making a tweak adjustment for that under any circumstances.

Finally, additional information about each measurement is grouped at the bottom left of the output. "npts" is the number of spots used in the fit; "defoc" is the fitted defocus term (in microns); "decen" gives the fitted decentering term (in microns and degrees). The entries under "d80" are 80% encircled energy diameters at three different levels of correction: "init" is for no corrections; "coma" is with coma removed; "full" is with all fitted aberrations removed.

back to top

 

4.0 TCS MENU ITEMS

Commands are invoked by typing the first letter of the command, except for the STAR SEQUENCE and CAL SEQUENCE commands which are invoked with * and /, respectively.
 

ACTIVE CONTROL
IMAGE ANALYZER  
    CALIBRATION POSITION  
    LARGE APERTURE  
    SMALL APERTURE  
    OBSERVE POSITION (to power off the camera)
    POWER ON CAMERA  
    *STAR SEQUENCE  
    MORE STARS  
    / CAL SEQUENCE  
    ABORT STAR SEQUENCE  
    FLAT MIRROR (IN or OUT) (IN for GUIDER; OUT for IMAN)
 !! PELLICLE (IN or OUT) (IN for IMAN; OUT for GUIDER)
    IMAN COMMAND TO PC  
   
TILT SECONDARY  
    INIT TILT  
    RELATIVE TILT (tilt to new value)
    ABSOLUTE TILT (tilt to new value)
    LAST LOG ENTRY (tilt to last value in IMAN log file)
    OLD LOG ENTRY (select any value from IMAN log file)
    DISPLAY TILT  
!!  ON/OFF AUTO TILT (activate or not the Coma lookup table)
!!  PERFORM AUTO TILT (adjust the tilt to the value of the Coma lookup table for the current position)
!!  SET TO REFERENCE TILT (adjust to tilt stored in Last Log Entry)
   
PRIMARY MIRROR CONTROL  
    GO  
    HALT  
    RESET ERRORS  
    CORRECTIONS ON/OFF (whether or not to use the Lookup Tables for each focus)
    TWEAK ADJUST ON/OFF (options are ENABLE, DISABLE, RESET)
    SHOW TWEAK (display entries for lookup table & tweak)
    MIRROR ADJUST  
    LAST LOG ENTRY (set tweak to last value in IMAN log file)
    OLD LOG ENTRY (set tweak to any value from IMAN log file)
    KEYBOARD ENTRY (set tweak to values entered from keyboard)

 

!! shows the REVISED TEXT (3Feb01).

When the LAST LOG ENTRY or OLD LOG ENTRY commands are used from the PRIMARY MIRROR CONTROL menu, the user is asked:

USE DEFAULTS ?

If Y, the changes TO THE PRIMARY MIRROR FIGURE recommended by the IMAN program will be made. This command cannot change the Secondary Mirror's tilt.

If N, then the user is asked:

SPHER :
ASTIG :
TREFOIL :
QUAD :
Answer Y to cause the corrections to be applied.

back to top

 

5.0 SEE "Instructions for Normal Use" document [67]

This accompanying document gives current instructions for:

  • Primary Mirror Correction from Lookup Table.
  • Image Analyzer.
  • Tweaking.

back to top

 

6.0 MORE ABOUT TWEAKING

6.1 Tweak corrections are additive

The idea of the tweak correction is that if the adjustment of the optics is not quite right, you should use IMAN to measure the error and then change the adjustment by the required amount. Therefore, you want to add that change to whatever was the previous setting.

For the secondary mirror tilt, tweaking consists of applying a RELATIVE TILT correction (see Section 6.3), which is always a differential tilt correction from the mirror's present position.

In the case of the primary mirror, if the previous tweak values are not reset to zero (see below) at the time a new tweak command is sent out, the new tweak values get added (vectorially) to the old tweak values. If the lookup table is "ON", the total tweak corrections get added to the lookup table corrections. Normal use is to leave the Lookup Table "ON" (if the f/8 focus is being used; otherwise leave it OFF), but to reset the tweak values to zero (Section 6.2) before making an IMAN measurement to determine the tweak values in a new part of the sky.

back to top

6.2 The TWEAK ADJUST command (Primary Mirror Control Menu)

This command is used to enable/disable/reset the tweak corrections. When the corrections are "enabled", the TCS Status Screen shows a flashing "TWEAK ON" message and whatever values are in the tweak table are applied to the primary mirror. When the tweak is "disabled", the values in the tweak table are left unchanged, but no tweak correction is applied to the primary mirror shape and the TCS status screen says "TWEAK OFF". When "reset" is selected, the values in the tweak table are set to zero, the tweak correction is disabled, and the TCS status screen says "TWEAK OFF".

back to top


6.3 Ways to enter TWEAK Values

  • LAST LOG ENTRY, in both the Primary Mirror Control and Tilt Secondary menus. Applies last entry from the iman.log file. For the secondary mirror, a RELATIVE TILT command will be issued automatically. For the primary mirror, you will first be asked "ACCEPT DEFAULT VALUES (Y/N)?" If you answer "Y", the Y/N recommendations produced by the IMAN analysis program will be followed. If you answer "N", a table will appear showing the recommendation for each aberration and giving you the chance to override it.
     
  • OLD LOG ENTRY, in both the Primary Mirror Control and Tilt Secondary menus. Produces a window which lets you scroll through the iman.log file and pick out the entry of your choice. To scroll, use the following commands:

up arrow
down arrow
PgUp
PgDn
CTRL-Home
CTRL-End

  • Usually you will want to start with CTRL-End, and then scroll backwards to find the entry you want. To select an entry, place the cursor anywhere on the line which starts with the word "Average", and then press Return. The software will then proceed as for the LAST LOG ENTRY command. To abort without selecting a log entry, press ESC.
  • KEYBOARD ENTRY, in the Primary Mirror Control menu. This lets you enter your own values for the correction for each aberration. In fact, a blue box pops up and you get to edit the current tweak values. Use Enter and the up, down arrow keys to move between fields. To accept the entered values press Enter when the cursor is in the lower right field (quadrapole angle). The TWEAK ADJUST must be Enabled (On) before the tweak corrections will be applied; if TWEAK is OFF the adjustments will be stored in the table but not be sent to the mirror until ENABLE is selected.
     
  • RELATIVE TILT, in the Tilt Secondary Menu. Tilts the mirror relative to its present position. Always use this command when entering coma values measured by IMAN.
     
  • DON'T USE the command "absolute tilt", which applies an amplitude and direction of tilt measured relative to an arbitrary zero point. This command should only be used to restore the secondary tilt to a previous value which has been read from the output of the Display Tilt command; it is typically used to restore the default mirror tilt after a TCS crash or an operator error.

back to top

7.0 BE CAREFUL! HERE'S THE TRAP WITH THE PRIMARY MIRROR TWEAK CORRECTION!

The lookup-table and tweak corrections can be individually toggled ON and OFF using the LOOKUP TABLE and TWEAK commands in the PRIMARY MIRROR menu. After a tweak correction is enabled, it's up to the astronomer or night assistant to decide when to (and remember to) turn it off. The telescope status screen tells whether LOOKUP TABLE and TWEAK are ON or OFF. "OFF" can mean that the tweak has either been disabled or reset to zero; use the SHOW TWEAK command if you need to know which.

back to top

8.0 AND THE IMAN POWER IS ANOTHER TRAP!

The CCD camera head incorporates a Peltier electrical cooler of the same type as are used with the CCDTV. This is located *inside* the offset guider module, and generates a considerable amount of heat which can escape up the telescope's chimney, directly in the light path. The cooler is not always enabled, but when it is, leaving the IMAN power on for a long time is likely to generate bad seeing. The power is therefore remotely controlled, and should only be turned on for brief bursts when IMAN is actually in use. Use the menu command POWER ON CAMERA to turn it on; use OBSERVE POSITION to turn it off.

back to top

9.0 SOLVING PROBLEMS

9.1 Error message in blue IMAN data reduction box on TCS screen:

Check the list of error messages provided on the IMAN page.

9.2 TCS screen shows "sequence error from IMAN":

This message usually indicates a failure in the NFS link between IMANPC and IMANSUN.

  • Go to the IMANPC (it's monitor is at the far right end of the computer room, against the wall. It's keyboard is just to the left of the monitor.)
  • Look for the Green Light... there is a green LED on the front of the IMAN PC (far right end of the computer room), labelled "CCD Readout in Progress". When the camera is waiting for a new command, this light should normally be blinking every second or so.
  • The IMAN program should be running. The screen should be mostly blue, but with a red box at the top with the words "IMAN STATUS". If this program is not running, follow the IMANPC restart procedure.
  • If the IMAN program is running, but there is an error message indicating a problem with Drive E, then follow the IMANPC restart procedure.

9.3 IMANPC restart procedure

See Section 3.4 of the Iman Image Analyzer WWW page or manual.

9.4 SEQUENCE ABORT message on TCP screen

Appears in a separate small blue box if a star sequence is aborted using the ABORT STAR SEQUENCE command in the IMAN menu. Use CTRL-F2 to clear the blue box from the screen.

back to top

 

 

F/8 Secondary Mirror Control System (obsolete?)

1. Menu Commands
  2. Command Mode commands
  3. Units, etc

This page is very old and much work has been done on the active optics system, including a major upgrade in 2014.  The value of the information here is uncertain.

J.Baldwin, G. Schumacher, 14 November 1995

The f/7.8 secondary mirror is controlled by a CTIO "Smart Motor Controller". The mirror can be both focused and tilted by the operation of three computer-controlled jack screws which are spaced 120 degrees apart on the back of the mirror cell. Each screw is driven by by its own servo motor, which includes an incremental encoder. In addition, a Futaba linear encoder is mounted next to each of the jack screws, and gives an independent reading of the position of the jack screw to an accuracy of nominally 1 micron.

 

1.0 Menu Commands.

Control commands are normally issued from the "Tilt Secondary" and "Focus Secondary" menus on the TCS screen. The commands are:

TILT SECONDARY

INIT TILT
RELATIVE TILT (tilt to new value)
ABSOLUTE TILT (tilt to new value)
LAST LOG ENTRY (tilt to last value in IMAN log file)
OLD LOG ENTRY (select any value from IMAN log file)
DISPLAY TILT

FOCUS SECONDARY

INIT FOCUS (reset zero points of encoders, then return to present focus position)
MOVE TO VALUE
STEP FOCUS

back to top


2.0 Command Mode commands.

Commands for the mirror can also be typed into the TCS using the Command mode:

sec encoder

Return readings of Futaba encoders A, B1 and B2, and differences, in the order A B1 B2 (B1-A) (B2-A). Units are microns of motion at the secondary mirror. All other commands dealing with focus motions use units of microns of movement of the focal plane.

sec tilt [tilt amplitude] [tilt azimuth]

Tilt secondary to specified absolute position.

sec focus [value]

Change focus by specified DIFFERENCE from present focus.

sec afocus [value]

Change focus to specified absolute value.

sec display

Show present values of tilt and azimuth.

sec fast [value]

Set fast focus speed, in arbitrary units. Default = 120.

sec slow [value]

Set slow focus speed, in arbitrary units. Default = 50.

sec init

Moves mirror to fiducial position and rezeros encoders. Does NOT restore previous focus value (unlike the menu command).

sec reset

Zeros out all registers and hardware; leaves smart motor controller ready to receive commands.

back to top

 

3.0 Units, etc.

The three jack screws and their accomapnying Futaba encoders are labelled A, B1 and B2. A is on the South side of the secondary mirror when it is in its observing position; B1 is on the NW side and B2 is on the NE side.

Focus motions are achieved by driving all three jack screws by the same amount. Focus units are microns of travel of the focal plane, = 9.56819 times the motion at the secondary mirror (but Beware!, the command "sec encoder" returns the values at the secondary mirror). Positive focus changes move the focal plane upwards.

Tilt is produced by driving the three jack screws by differing amounts, so as to tilt the mirror about a point located 4.68 inches behind its vertex. This center of tilt was chosen because it is in the plane defined by the three rollers which provide the lateral support beween the inner mirror cell (which moves) and the outer mirror cel (which doesn't move).

Tilt units are microns of wavefront error for coma3 at the edge of the pupil (the units returned by IMAN), and the azimuth of the error. The mirror will then tilt so as to remove that amount of coma. This is to maintain consistency between values pulled from the IMAN log and values entered manually. The conversion to the actual angular tilt of the mirror is:

.0133 degrees of tilt = 1 micron of coma3.

The tilt azimuth is defined as 0 deg azimuth to the west, and then increasing as you go around to the north. Including the fact that the mirror is moved so as to remove the entered coma value, a tilt request containing a positive coma amplitude will cause the side of the secondary mirror in the specified PA to move closer to the primary mirror while at the same time the opposite side moves away from the primary mirror. Therefore, relative to the tilt=0 fiducial position:

         sec tilt 1 0 Lowers W side, raises E side
through a 0.0133 degree tilt.
  sec tilt 1 90 Lowers N side, raises S side.

The above tilt changes cause the absolute tilt (read out using the DISPLAY TILT menu command) to change by the requested amplitude but with a position angle which is the requested PA - 180 degrees. This will be added vectorially to the previous absolute tilt. For example, a relative tilt of:

sec tilt 1 90

 

will produce an absolute tilt of

               1.0 micron PA 270 if the starting point was abs. tilt = 0 0.
  1.4 micron PA 225 if the starting point was abs. tilt = 1 180

back to top

 

4m Active Primary Mirror Control System (obsolete)

Contents
  1.0 Primary Mirror control Program description
  2.0 Command description
  3.0 Program Databases
  4.0 Program Maintanance
  5.0 Position Angle conventions
  6.0 Amplitude conventions

This page is very old and much work has been done on the active optics system, including a major upgrade in 2014.  The value of the information here is uncertain.

4MAP

G.Schumacher, 14 December 1995

FOR MORE INFO: Hard-copy manual "4M Active Primary Mirror Support System Operating Manual", by G.Perez et al.
Also: Calibration Positions for 4MAP Lookup Tables [68].


1.0 PRIMARY MIRROR CONTROL PROGRAM DESCRIPTION

Controlling the primary mirror consists of applying a calculated pressure to the support pads. There are 33 pads distributed uniformly in two concentric rings: one called the outer ring, having 21 pads and the other called the inner ring, having 12 pads. In the outer ring there are also three hard points, separated at 120 degrees each, where the mirror sits when there is no pressure applied.

Associated to each pad, there is a pressure controller named MAMAC CONTROLLER, that outputs a pressure proportional to a voltage applied to it. The output pressure in turn is sensed and converted back to a voltage that is read by an analog to digital converter. Therefore, in order to control each MAMAC there is a DAC and an ADC device connected to it.

A control cycle consists then on calculating the pressure to apply to each pad, convert that pressure to a voltage, instruct the DAC to generate that voltage, and read back the voltage proportional to the output pressure sensed by the ADC. In between control cycles, the program constantly monitors each device and takes several actions on error conditions.

The control program is designed to operate in one of two modes. The first mode is called EMULATION MODE, and consists of emulating the behaviour of the old "passive" mechanical controllers. That behaviour is based on applying an equal pressure to every pad in each ring, proportional to the cosine of the zenith distance of the telescope. This pressure is called the Nominal Pressure and can be defined independently for the outer and inner ring. The second mode is called ACTIVE MODE and consists of adding different pressures to the basic Nominal ones, calculated based on known aberrations, parameterized in terms of tables of coefficients for each term of the distortion model. Switching between modes is done with the ACTIVE coefficients command.

The control program runs in one of five states: The START state, the HALT state, the ERROR state, the ADJUST state and the CHECK state.

  • The START state is entered by the GO command. The program checks that the previous state is HALT or otherwise rejects the command. Upon entering the START state, the DAC's and ADC's are tested by reading the status from each device. Then, the program checks the state of the air switch and of the zenith switch. If all conditions are met, the state is changed to ADJUST and the emulation mode is selected.
  • The HALT state is the initial state of the program, and is also entered by the HALT command or the RESET command after an error condition. The HALT command causes the pressure to be dropped by sending a zero voltage to all the MAMACS.
  • The ERROR state is entered by one or more of the following conditions:
  •  air switch off

    • lift off switches activation
    • DGH modules failures
    • MAMAC modules failures
    • TCS communications broken

An error condition causes the pressure to be dropped abruptly by activating the safety valves. A zero voltage is also written to the DAC's. In order to activate the control again, it is necessary to change to the HALT state by issuing the RESET command, followed by the GO command.

The ADJUST state is entered from the START state or from the CHECK state by an ADJ command. In this state, the pressures are calculated and then converted to voltages that are applied to the MAMACS. Before applying the new voltages a check is made to lower first all pressures that will be lower than the present ones and then raising all pressures that will be higher than the present ones. This is to avoid an intermediate situation in that the mirror might be lifted due to the total sum of pressures might be larger than the mirror weight.

The CHECK state is entered after a successfull adjust process. In this state the program continuously monitors the condition of the DGH modules and the MAMAC modules. In particular, the pressure is read back and checked against the requested one. If a pressure changes, no attempt is made to correct it, but the ERROR state is entered if the change is greater than a certain limit (presently 2 psi). The TCS link is also monitored. If no TCS command is received after 1 second has elapsed from the last one, it is assumed that the RS485 link or the TCS is broken and the pressure gets dropped by openning the safety valves.

back to top

2.0 COMMAND DESCRIPTIONS

The user interacts with the program by giving commands in a Command Window at the PC terminal. Several of the commands could also be issued from the TCP user interface. In that case, all commands should be preceded by the "box id". The id for the 4M Active Primary control PC is "4map".

act

This command turns on or off the calculation of active corrections for a given mirror position. By default, the program starts in the off state. Format:

act [on / off]

adj

This command causes the program to calculate a new set of pressures and apply them to the MAMAC controllers. This command takes as its arguments the present telescope hour angle (hours) and declination (degrees).
Format:

adj hour_angle declination
adj -1.23 -47.35

IT IS ILLEGAL AND DANGEROUS TO GIVE ADJUST COMMANDS WITH ERRONEOUS POSITION INFORMATION SINCE THE CONTROLLER WILL APPLY THE WRONG PRESSURES TO THE MIRROR.

c0, c2, c3, c4

Specify new values for the individula active corrections. c0 specifies spherical, c2 astigmatism, c3 trefoil and c4 quadrafoil.
These commands set the total value of the corresponding correction.
Format:

c0 amplitude(nm)
c0 2000
c2 amplitude(nm) PA(deg)
c2 1000 45
c3, c4 have same format as c2.

c0twk,c2twk,c3twk,c4twk

Specify values which will be added vectorially to the existing amplitude and PA of the corresponding correction. "twk" refers to the "tweak" command in the TCP. Format same as c0,c2,c3,c4.

din

This command reads the digital input port of a DGH module. The result is returned as an hex number.
Format:

din module_address
din Q

dout

This command writes to the digital output port of a DGH module. The value should be given as an hex number.
Format:

dout module_address value
dout x 2

go

This command activates the control cycle. The telescope must be at zenith with air on and the program must be in the HALT state. A test is made of all modules, and if satisfactory, the mirror gets supported with the proper pressures.

halt

This command halts the control cycle by sending a zero voltage to all the MAMACS. In this state, all periodical TCS communications ceases.

help

Lists help info on screen.

i

This command defines the DGH addresses for the inner ring pads. See the Nomenclature Diagram for the numbering scheme.
Format:

i pad_number DAC_address ADC_address
i 8 2 Y

o

This command defines the DGH addresses for the outer ring pads. See the Nomenclature Diagram for the numbering scheme.
Format:

o pad_number DAC_address ADC_address
o 8 J q

pin

This command changes the default Nominal Pressure for the inner ring. The pressure is given in units of psi.
Format:

pin [pressure]
pin 9.0

pout

This command changes the default Nominal Pressure for the outer ring. The pressure is given in units of psi.
Format:

pout [pressure]
pout 8.5

pp

This command calculates and prints the pressures on the screen. The command arguments are an hour angle and a declination. This command doesn't interfere with the normal calculations done with the adj command, so it's useful for debugging the active corrections.

pp hour_angle declination

reset

This command resets an error condition and place the program in the HALT state. This command must be given prior to go, after an error condition.status This command returns a textual description of the program status. Possible responses include:

OK CORRECTIONS ON/OFF

This message indicates that the system is active and no errors are present.

ERROR 5: HALT

This message indicates that the system is in the HALT state. To activate it, a go command must be given.

ERROR 5: MAMAC 12 BAD 2.351 0.000

This message indicates that when checking the MAMAC voltage (number 12 in this case), a difference of more than 0.5 volts was detected. This might be due to a bad DAC, a bad ADC or a bad MAMAC. To determine the offender, a specific test should be run for each module associated with that MAMAC unit (see the Nomenclature Diagram).

ERROR 5: DGH 2 NO RESPONSE

This message indicates that the specific module (2 in this case) is not responding to commands issued to it.

test

This command orders the execution of test for the DGH modules or MAMAC units. The tests are run on all modules or units. If you want to test a specific module, use the vin or vout commands. The responses are similar to the ones described under the status command.
Format:

test dgh/mamac

vin

This command reads the voltage of one DGH module or all ADC modules. The argument is the module address. If the address is '*' then read all ADC modules.
Format:

vin module_address (or *)

vout

This command outputs a voltage to one or all DAC modules. Be aware that this is an active command so if air is on, a pressure will be applied to the pads. Use with care and only if you know what you are doing. As a rule of thumb, the relation of voltage to pressure is close to 1 to 4 (i.e. 1 volt 4 psi).
Format:

vout module_address (or *) voltage
vout * 0.0

x

This command defines the DGH addresses for modules not related with the pads. This are the ones that act on the solenoid valves or receive information on the various switches.
Format:

x module_number module_address

zero

This command sets all voltages to zero. This is equivalent to vout * 0.0.

?

Lists help info on screen.

back to top

3.0 PROGRAM DATABASES

The program uses two databases for its proper functioning: a Parameters Database, called "4map.par" and a Coefficients Database, called "4map.cof". These are currently located on ctiot0, on the /ut02 disk, in the 4map directory.(8Jul04).

The Parameters Database is a collection of commands that defines the starting values for the program. Any valid command could be placed in this file, that gets executed at startup. In particular, the DGH addresses are to be found here so, if a module is changed the new address should be modified accordingly. A '*' character at the beggining of the line indicates a comment; therefore, the file is self documented.

The Coefficients Database contains the parameter values for the different aberrations, mapped around the sky. The map is made in terms of zenith distance and azimuth positions. Each line contains the values for a certain azimuth. Normally, there are 10 values per line, corresponding to zenith distances of 0°, 15°, 30°, 45° and 60°. The first 5 values corresponds to the amplitude parameter and the next 5 values corresponds to the angle parameter. The azimuth values span the range of 0° to 360°, in steps of 30°. Again, an '*' character at the beginning of the line indicates a comment. The hour angles and declinations at which the IMAN measurements for this table should be made are listed in "Calibration Positions for 4MAP Lookup Tables" [68].

back to top

4.0 PROGRAM MAINTENANCE

All the source code resides in directory \AP\SOURCE on drive C: of the control PC. The program is entirely written in C and the MICROSOFT C/C++ compiler rev 8.0 is used to produce the object modules.

The process of making a new executable is automated by using the NMAKE utility. There is a MAKEFILE that declares all the files and libraries needed. The procedure then consist of editting the necessary files and then typing the command 'NMAKE'.

back to top


5.0 POSITION ANGLE CONVENTIONS

The active force patterns are generated by using the Mamac controllers to increase or decrease the air pressure in specific air bags, as compared to the nominal air pressure required to support the mirror at a given telescope position. A positive correction to the air pressure moves the corresponding part of the mirror upwards, while a negative correction lowers the corresponding part of the mirror.
4MAP can correct abberations with the azimuthal position cos(m*phi - phi0), for the following values of m:

m abberation
0 spherical
2 astigmatism
3 triangular (trefoil)
4 quadrafoil

     

The corresponding cos(m*phi-phi0) force patterns are then superimposed on the mirror. The sinusoidal force pattern is repeated m times going around the mirror. An amplitude and a position angle must be specified in order to generate this pattern.
The position angle convention for phi0, when a positive amplitude is requested, is:

  • For phi0 = 0, the peak additional (upwards) force is always at the pad on the NORTH side of the mirror.
  • For other values of phi0, the peak is moved through an angle phi0/m, which increases from north through west for positive values of phi0.
  • For m=0 (spherical abberation), positive amplitudes cause an increased upwards force on the inner ring of supports, and a decreased force on theouter ring

back to top

6.0 AMPLITUDE CONVENTIONS

When TWEAK commands are entered through the TCP menu system, the requested amplitudes are accepted in the units measured by IMAN, and are then scaled by calibration factors before being passed on to 4MAP. The current calibration factors are:

Abberation m Calibration factor
Spherical 0 0.00288
Astigmatism 2 0.00101
Trefoil 3 0.00117
Qaudrafoil 4 0.00123

where the values entered through the menu commands are DIVIDED by the calibration factor before being passed on to 4MAP.

However, when force patterns requests are entered directly into the 4MAP PC using the commands c0,c2,c3 or c4, the amplitudes must be specified without the scale factors. The units then correspond to the deflections predicted by a simplified analysis of the mirror performed by Lothar Noethe at ESO.

The calibration factors also convert the micron units used by IMAN into the nanometer units used by 4MAP, and would be 0.001 if the calculations by Noethe had been perfect. So Lothar's analysis came really close on every abberation except spherical.

back to top

 

Calibrations Positions for 4MAP lookup tables (obsolete)

This page is very old and much work has been done on the active optics system, including a major upgrade in 2014.  The value of the information here is uncertain.

German Schumacher
5 December 1995

The following table lists the hour angles and declinations at which IMAN measurements should be taken in order to calibrate the lookup tables for 4MAP (the 4M Active Primary mirror support system). The HA and Dec entries are chosen to give an equally spaced grid in azimuth and zenith distance; azimuth varies as you move vertically through the table and zenith distance as you move horizontally.

Start and end at zenith. In between, do the following:

 

 

AZIM/ZD 15 30 45 60
HA (h m) 0 0 00 0 00 0 00 0 00
DEC (d m) -15 09 -00 09 14 50 29 50
WEST   30 0 31 0 58 1 24 1 52
-16 57 03 29 10 01 23 24
60 0 55 1 45 2 31 3 16
-21 55 -12 39 -02 50 07 04
90 1 08 2 14 3 16 4 13
-29 01 -25 47 -20 48 -14 33
120 1 04 2 19 3 38 4 56
-36 40 -40 38 -41 22 -38 43
150 0 40 1 40 3 17 5 30
-42 46 -54 03 -62 13 -64 06
180 0 00 0 00 0 00 0 00
-45 09 -60 09 -75 09 -89 50
EAST   210 -0 40 -1 40 -3 17 -5 30
-42 46 -54 03 -62 13 -64 06
240 -1 04 -2 19 -3 38 -4 56
-36 40 -40 38 -41 22 -38 43
270 -1 08 -2 14 -3 16 -4 13
-29 02 -25 47 -20 48 -14 33
300 -0 55 -1 45 -2 31 -3 16
-21 55 -12 39 -02 50 07 04
330 -0 31 -0 58 -1 24 -1 52
-16 57 -03 29 10 01 23 24

 

The RCADC and Atmospheric Refraction

For wide-field use, especially with Hydra, a new corrector has been installed at the R/C focus of the Blanco Telescope. It is referred to as the "RCADC" (Ritchey-Chrètien Atmospheric Dispersion Compensator) corrector. It is located in the telescope chimney. Click here [69] to see just where it is.

Hydra MUST be used with this corrector. Any optical R/C instrument can use the RCADC if desired, but there is not much justification. The R/C and echelle spectrographs do not need its wide field though they sometimes might benefit from the ADC function. The RCADC can only be installed by Observer Support personnel via a motorized system operated from the Cass. cage.

The RCADC has six elements in four groups. This Optical Diagram [70] shows its configuration. It contains two meniscus "corrector" elements of fused silica at the front and back surfaces of the assembly. They provide images with D80 less than .3 arcsec over the entire 42 arcminute Hydra field. The corrector also makes the image "telecentric", which means that the pupil is located at the center of curvature of the field so that the optical axis of the images is perpendicular to the focal surface over the entire field. This minimizes light lost due to focal ratio degradation (FRD) in the fibers.

Between the two corrector elements, there are two cemented doublet prisms of silica and a light flint glass (LLF6). All surfaces of these prisms are plane, inclined appropriately so that the light passes through with zero deviation at an intermediate wavelength (4200A). Each prism provides a small amount of dispersion and rotates under control of the TCS though an angle of 360 degrees. When the two elements are oriented 180 degrees apart, their dispersions cancel so that the prisms have essentially no effect on the images. Orienting them at different angles can provide an artifical dispersion in any direction desired, which can compensate for atmospheric dispersion up to the limiting power of the prisms which in the case of the RCADC is at Air Mass 2.4 (65 degrees zenith angle).

The RCADC is coated with sol-gel over MgF2 on all eight surfaces. Sol-gel over MgF2 has very low reflectivity over a broad wavelength range. Although it has not been directly measured, the overall transmission of the corrector is believed to be above 95% at all wavelengths from 4000-10000A. Transmission falls in the UV due to the LLF6 elements in the ADC prism. Throughput of the corrector is roughly 85% at 3500A, 60% at 3340A and 20% at 3200A.

If dispersion correction is not desired or has been disabled for some reason, the ADC elements MUST be set in the neutral position. This is easily done via the TCS. Zero and 180 degrees is the standard setting but any orientation of the prisms 180o apart is equivalent. Normally, the ADC is left on and dispersion correction is automatic.

Observers sometimes ask when ADC should be used. The safest answer is "always". If there is significant dispersion in the field, correcting for it will improve the efficiency of the observation. It will never make it worse. The only reason not to use the ADC function is to avoid any possible effect on the pointing accuracy or if the control system is malfunctioning. Optical analysis indicates that rotating the elements does not significantly alter the field model, though for lack of time this has not been explicitly verified.

The expected effect of atmospheric refraction on the observing efficiency can be estimated from the following diagrams.

1. Differential refraction at 2km altitude [71]
2. Flux captured by Hydra fibers as a function of seeing and centering [72]
3. Image movement during exposure caused by refraction [73]

The first diagram quantifies the effect of refraction while the second lists fiber efficiency using the standard (Wolff) model of the profile of images degraded by seeing. Using the two diagrams it is relatively easy to estimate the effect of refraction on system efficiency.

For example, when the seeing is 1.0 arcsec, 85% of the incident light will enter a perfectly centered Hydra fiber. If the image is decentered by 0.5 arcsec, the efficiency falls to 73%. A decenter of 1.0 arcsec decreases the efficiency to 39%. Thus, if refraction decenters a star by 0.5 arcsec, in 1" seeing, overall system efficiency will decrease by approximately 14% (.85-.73/.85). Correspondingly at this seeing the efficiency will decrease by 54% if there is a 1 arcsec centering error.)

One can study the table as a function of seeing and estimate how much effect seeing might have on overall efficiency in a particular observing situation. If (say) the 10-15% efficiency degradation produced by an .5 arcsec offset is deemed acceptable, then an overall dispersion of 1 arcsec could be tolerated. Diagram 1 then tells us that someone observing from 3500-5000A could observe to an air mass of 1.3 without using the corrector. Observations from 4000-6000A could be done to an air mass of 1.45 while observations from 6000-9500A could be made at any air mass up to 2.40.

Important! Note that these tables can be used to determine the optimum central wavelength for positioning the fibers. If the corrector is not used, centering the guide star(s) on the wrong wavelength will offset the entire field. Either a filter must be used in the FOPS guide camera or FOPS stars of appropriate color must be used. Of course if the ADC function is enabled, no filter need be installed in the guide camera and the spectral type of the FOPS stars will have no significant effect on the positioning accuracy of the system.

Yet another consequence of refraction is to cause an apparent relative movement of points in the image as the field moves across the sky. This effect is quantified in the third diagram above.

Here, the Hydra field is shown with the locations of star images at 9 points in the field at -70 degrees during ten hours as the telescope tracks from 5 hours east to 5 hours west of the meridian. As can be seen, the image appears to rotate about a point approximately on the edge of the field with an amplitude of about .5 arcsec per hour of telescope motion at the other side of the field and the images drift with respect to the overall rotaion.

This effect is relatively small though it can be significant under some circumstances. Differential motion is the reason that Hydra asks for the approximate time of the middle of the exposure before positioning the fibers. In some situations it is desirable to reposition the Hydra fibers between exposures and to select the location of the guide star(s) in the field with care.

Deciding on what, if anything to do about this effect is up to the observer. One can use the information given in the first diagram to make an estimate as to the relative size of refraction effects at different zenith angles. The information in the third diagram can be used to make an educated guess as to how the images will drift during and between exposures. Since the effect is small, this is all that is ever necessary.

29 May 2000
by T. Ingerson

 
 
 

Deprecated pages

More obsolete Blanco web pages will be group here.

Various Instruments & Systems Responsibilities

  Hydra: Javier Rojas
  Mosaic: David Rojas
  ISPI: David Rojas
  Motor Controllers Javier Rojas
  SOAR Esteban Parkes
    Gerardo Gomez

 

Acquisition & Guiding at the f/8 focus

 

The information here is old, it is better to review the documentation for the instruments themselves for information on guiding.

 

The Instrument Rotator

All instruments used at the cassegrain foci of the Blanco telescope mount on an offset guider, which is in turn mounted on an instrument rotator which includes the acquisition TV. The instrument rotator has two side ports and a main, straight-through port. At present, all of our facility instruments are used only in the straight-through (up-looking) port.

 

CCD-TV Acquisition Camera

A CTIO CCD-TV acquisition camera is located on the North sideport of the instrument rotator. It can either view the sky directly, through a focal reducer lens, or it can use a periscope to view light reflected off the jaws of the spectrograph slit.

This camera is quite sensitive. Under good conditions, objects as faint as V = 22-23 can be seen in the direct sky viewing mode, and as faint as V=21-22 on the slit jaws. The field of view is 150" × 114" arcsec in the direct sky viewing mode, and 56" × 43" arcsec in the slit viewing mode.

The night assistant will operate this camera for you.

The Rotator Mirror

The instrument rotator includes a large mirror assembly which can be moved into different positions in order to send the telescope beam to different places. It is called the "rotator mirror" because it is part of the instrument rotator; it actually slides back and forth.

The rotator mirror has four positions, which perform the following functions:

  • Position 1. The rotator mirror moves completely out of the way. The full telescope beam passes to the instrument at the straight-through port. The CCD-TV acquistion camera sees nothing.
  • Position 2. The full telescope beam passes to the instrument at the straight-through port. Various optics are inserted so that the CCD-TV acquistion camera views the slit jaws.
  • Position 3. Sends telescope beam to the South sideport, which is normally occupied by the seeing monitor (RCA camera). The "tv flat mirror" (operated by a separate switch on the control console) which is part of the slit-viewing system must be moved out of way.
  • Position 4.The full telescope beam is directed to the North port (and hence to the CCD TV acquistion camera). The focal-reducer ("field-cruncher") lens is automatically moved in front of the CCD-TV camera. Meanwhile, the beam coming from the comparison lamps is reflected downwards into the spectrograph slit. Occasional photon-photon collisions lead to inverse beta decay.

The Offset Guider

The offset guider module was designed to have two independently movable probes, one covering each half of the telescope's 40 arcmin field-of-view. However, one of the probes was never installed, so at a given position angle of the instrument rotator only half of the field of view can be covered.

Map of field accesible to offset guider [74]

The detector system for the guider is another CCD-TV running with special software provided by Steve Shectman (Carnegie Institute [75]). It can guide on stars in the magnitude range V = 12-18, but works best with V = 14-16.

Guide stars sometimes can be hard to find. The night assistant can enter the RA and DEC of a guide star and the probe will move to that position (if it is in range). In theory, the HST guide star catalogue is on-line at the telescope, and the night assistant can quickly find the coordinates of a suitable star. However, the catalogue used at CTIO is on rather flakey CD drives, so it doesn't hurt to come to the telescope with lists of potential guide stars for each object; for example, all of the 14-16 mag stars within a 40 arcmin field centered on your object.

Search HST Guide Star Catalogue [76]. This is the direct link to STScI...a bit slow from Chile.

 

Astronomer's Tools

Computing Exposure Times with the IRAF Task CCDTIME [77]

ISPI Exposure Time Calculator [78]: for ISPI infrared imager on Blanco 4-m telescope.

SMARTS Imager Exposure Calculator [79]: for 0.9-m CCD and 1.0-m Y4KCam

Object Visibility [80]: ING utility which plots altitude against time for a particular night (Staralt), plots the path of your objects across the sky for a particular night (Startrack), plots how altitude changes over a year (Starobs), or gets a table with the best observing date for each object (Starmult).

Worldwide Astronomical Resources [81]

CTIO Tape Drives

La Serena recinto tape drives

IP address

Hostname

Location

139.229.4.100  ctiokq.ctio.noao.edu 

Remote Observing Room 

Type

Model

System device

IRAF device

Media supported

DAT SDT-11000 /dev/st0
/dev/nst0
-- DDS3

 

Type

Model

System device

IRAF device

Media supported

DAT SDT-10000 /dev/st0
/dev/nst0
mtd DDS3
EXABYTE EXB-8505SMBANSH2 /dev/st1
/dev/nst1
mtx D8
DLT DLT7000 /dev/st2
/dev/nst2
mtd --

 

 

Cerro Tololo tape drives

IP address

Hostname

Location

139.229.13.132  ctioa8.ctio.noao.edu 

4m console 

Type

Model

System device

IRAF device

Media supported

DAT SDT-10000 /dev/st0
/dev/nst0
-- DDS4
DLT DLT8000 /dev/st1
/dev/nst1
-- --

 

Type

Model

System device

IRAF device

Media supported

DAT SDT-11000 /dev/st0
/dev/nst0
-- --
EXABYTE EXB-8505SMBANSH2 /dev/st1
/dev/nst1
-- --

 

 

IP address

Hostname

Location

139.229.12.3  ctio60.ctio.noao.edu 

4m computer room 

 

Type

Model

System device

IRAF device

Media supported

DAT SDT-10000 /dev/st0 -- --
 

 

Maintenance Procedures

  • Active optics [82]
  • CO2 snow cleaning [83]

For more information go the Optical Engineering pages [84]

TCS Commands

This document lists all the 4-M TCS commands that can be given through serial ports A, B and D, or via RPC connection. The commands are given as messages consisting of a command keyword and optional parameters. A message is terminated with a message delimiter, that could be a CR or LF character.

All commands returns a specific response as a numeric string, or a status of the requested operation. Normally this is the string "ok", meaning that the command was accepted and acted upon. If the operation is a motion that takes some time to complete, then the string "moving" is returned. To determine the end of the motion, you need to poll by sending again the same command but without arguments, until the string "ok" is received. An error condition is reported with a message consisting of the word 'error', followed by a number, then the character ':' and finally a short text describing the error. For example:  error 4: motion already active. Then, the possible responses to a command are:

  •  a numeric string starting with a digit or number sign (e.g. -23.5    02:34:15.9)
  •  the string "ok"
  • the string "moving"
  •  a string starting with the word "error"

The following notation is used to describe the commands syntax:

[ ]

Square brackets indicate an optional item; it is not mandatory to give that item in the command line.

ra

denotes right ascension. It is given in units of time, i.e. hours, minutes, seconds, with each number separated by colon (:). For example, 14 hours, 23 minutes, and 15.37 seconds is represented as 14:23:15.37.

dec

denotes declination. It is given in units of arc, i.e. degrees, minutes, seconds, with each number separated by colon (:). For example, 43 degrees, 57 minutes and 15 seconds south is represented as -43:57:15.

ha

denotes hour angle. It is given in units of time, i.e. hours, minutes, seconds, with each number separated by colon (:). Negative numbers mean east  while positive numbers mean west. For example, 2 hours, 15 minutes and 43 seconds east is represented as -02:15:43.

n, s, e, w

denotes the directions north, south, east, west respectively.

ra_offset:
dec_offset:

denotes right ascension and declination offset respectively. An offset is given in units of arc, i.e. degrees, minutes, seconds, with each item separated by colon (:). Alternatively, it is possible also to give a single number that is to be understood in units of seconds. An offset must also be preceded by one direction character (n, s, e, w). For example, an offset to the south of 2 minutes and 30 seconds could be given as  s 00:02:30  or  s 150.

ra_rate:
dec_rate:

rates are given in units of arc_seconds/second.

4map   command_string

With this command you send messages to the 4map PC. This PC controls  the primary mirror active support system. See the 4map manual for a description of the commands.

adc  [enable, disable, stop, calc, move]

This commands performs operations related to the Atmospheric Dispersion Corrector devices. There is one device at prime focus and another one at cass. The selection of the active one is implicit in the instrument selection: Hydra selects the cass unit. Pfccd and Mosaic selects the prime focus one. The devices are controlled by an SMC: the prime focus SMC is called "pf4m" and the cass SMC is called "cfadc". The command options are:

enable:

enables the corrector to adjust itself as the telescope moves.

disable:

disables the auto adjust option

stop:

stops the motion of the device.

calc:

calculates the position of the corrector elements. If no argument is given (i.e. adc calc) then use the present telescope hour angle and declination. Otherwise the next two arguments are taken to be the hour angle and declination (in decimal hours and degrees resp.) for the calculation. It returns a string with the calculated inner and outer positions, the zenith distance and azimuth. For example:
adc calc 2.5 -67.3
18 235 27.3 112.4

move:

moves the corrector elements to a certain angular position. If no argument is given then use the present telescope coordinates to calculate the element positions. Otherwise, the arguments are considered to be the inner and outer angle position of the corrector.

If no argument is given, the command returns a string with the inner and outer angle position of the elements. For example:

adc
27 moving

apoff ra1 dec1 ra2 dec2

Calculates apparent offsets between two mean positions. Returns ra and dec offsets in arcseconds.

base

Sets the present telescope position as base position. The base position is the reference to calculate tracking and pointing corrections. This command is executed automatically at the end of every slew.

bsw [a, b]

Performs a beamswitch offset. If the parameter is "a", then the motion is in the declared direction, as given with the command bsw_set. If the parameter is "b", then the motion is in the reverse direction. If no parameter is given, then the command returns the status of the motion. For example:

bsw a
moving
bsw
moving
.
.
.
bsw
ok

bsw_set  [ra_offset, dec_offset]

This command declares the magnitude and direction of a beamswitch offset. If no parameter is given, then returns the present values. For example:

bsw_set n 35
ok
bsw_set
N 35

clamp   n [on, off]

This command handles the comparison lamps. "n" must be 1 or 2.  For example:

clamp 1 on
ok
clamp 1
on

coords

Returns telescope information in the following order: mean ra, mean dec, hour angle, dome position, sidereal time and universal time. For example:

coords
12:27:33.4  -30:10:50  00:12:28.3  214.3  14:23:37.3  05:46:02.1

date  [date string  mm/dd/yyyy]

Sets or gets the present date. The year could be given as a 4 or 2 digits number. For example:

date  04/25/1999
ok
date
04/25/1999

dome  [enable, disable, pause, move]

This command performs operations related to the dome.

enable

enables dome to follow the telescope

disable

disable dome motions

pause n

Pause dome motion for "n" seconds

move n

Move the dome to certain angle position given by "n". If the dome is disabled, it gets enabled just for this motion. At the end of the motion the dome is always disabled. For example:

dome move 270
moving

enco

returns a string consisting of raw ha and dec derived from PMAC encoder counters and the telescope absolute encoders. For example:

enco
INC  01:23:34.5  -30:10:50       ABS  01:23:30.1  -30:10:20

epoch   [epoch_number]

Sets the epoch for coordinates display. For example:

epoch 2000.0
ok

f8sec  [tilt, absolute, absnot, atilt, afocus, focus, display, fast, slow, SMC_string]

Command to perform operations with the f8 secondary mirror. The mirror is controlled by an SMC whose name is "f8sec". It is possible to pass commands directly to the SMC, but some operations require preprocessing at the TCS level.

tilt  [tilt_distance  azimuth]

Performs a relative tilt motion of "tilt_distance" and "azimuth". The telescope performs an offset to compensate for the mirror motion. If no arguments are given then returns the 3 encoder values or the state of the motion. For example:

f8sec tilt  0.0145  87.3
moving

absolute  tilt_distance  azimuth

Performs an absolute tilt motion of "tilt_distance" and "azimuth". The telescope performs an offset to compensate for the mirror motion. You must always give arguments with this command. To check for motion completion use f8sec tilt. For example:

f8sec absolute  0.304  117.8
moving

absnot  tilt_distance  azimuth

This is the same as absolute but the telescope doesn't  move.

atilt  encoder1 encoder2 encoder3

Move the mirror to the given encoder positions. The telescope doesn't move. For example:

f8sec atilt  12345  11917  12743
moving

afocus  [focus_value]

Move the mirror to an absolute focus value. If no parameter is given then returns the present focus value or the state of the motion. For example:

f8sec  afocus 326800
moving
f8sec afocus
326800

focus  [focus_value]

Move the mirror "focus_value" units relative to the present position. If no parameter is given then returns the present focus value or the state of the motion. For example:

f8sec focus -5000
moving
f8sec focus
321800

display

Returns the present tilt and azimuth values. For example:

f8sec display
0.304  117.8

fast   [fast_speed]

Sets the fast focus speed. The default value is 50. For example:

f8sec fast 45
ok
f8sec fast
45

slow  [slow_speed]

Sets the slow focus speed. The default value is 25. For example:

f8sec slow 20
ok
f8sec slow
20

SMC_string

The string should not start with any of the keywords mentioned before. The string is passed directly to the SMC.

f14sec  [tilt, absolute, absnot, atilt, afocus, focus, display, fast, slow, SMC_string]
f14sec  [adj, go]

This command is similar to f8sec, but acts on the f14 secondary system. Two new parameters are added:

adj n

Enables (n = 1) or disables (n = 0)  the coma correction adjustment. This correction is performed at the end of a slew motion.

go

Performs the coma correction at this position.

G  ra_error  dec_error

This is the command to send guider information to the TCS. The command was imposed to us when we installed the Shectman guider. This command can only be given through serial port A. The guider errors are given as 2 digit integer numbers in units of hundreds of arcseconds, with numbers greater than 50 being negative numbers. The digits are contiguous. For example:

G1764  means 0.17" error in ra and -0.36" error in dec

gg  ra_error  dec_error

This command is used to send guider error information from the Hydra guider. The numbers are scaled by the factors introduced with the commands ggha, ggdec and ggrot (see below). The numbers are decimal numbers. For example:

gg   4.3  -1.27

ggdec  [dec_factor]

This command is used to enter a scale factor to multiply the dec guider error given with the command gg, to convert it to arcseconds. The default value is -0.05.

ggha  [ha_factor]

This command is used to enter a scale factor to multiply the ra guider error given with the command gg, to convert it to arcseconds. The default value is 0.05.

ggrot  [angle]

This command is used to enter a rotation angle, that is applied to the ra and dec guider errors given with the command gg. The default value is 0.

go_flag  n

This command enables (1) or disables (0) the TCS. This command is given automatically when the TCP user interface starts.

grot

This command returns the angle position of the instrument rotator.

guider  [enable, disable, move, stop, type, x, y, park, optical, xrate, yrate]

This command operates on the guider devices. If no parameter is given then returns the present x, y positions or the status of the motion.

enable

Enables tracking of the telescope motion. In order for this to be active, both the follow and guider switches must be on.

disable

Disables following the telescope.

move  mean_ra  mean_dec  epoch

Moves the guider probe to the given coordinates. A check is done for out of limits condition. For example:

guider move 05:27:43.3  -65:37:56  2000.0
moving

stop

Stops the guider motion. The enable condition is preserved.

type  n

Defines the type of guider to utilize. At present times the following devices are defined:

1 ---> Shectman guider
2 ---> Leaky guider
3 ---> Fast Tip-tilt guider
4 ---> Hydra guider

x  pulses

Moves the device in the x direction a certain number of pulses

y pulses

Moves the device in the y direction a certain number of pulses

park

Park the device.

optical

Moves the device to the optical axis

xrate  [rate  ramp]

Enters a new maximum rate and ramp for the device x motor. It only applies to the main Cass guider. The default values are 700 and 1000.

yrate  [rate  ramp]

Enters a new maximum rate and ramp for the device y motor. It only applies to the main Cass guider. The default values are 700 and 900.

iman  [cals, pc, star, mstar, cal, small, large, stop, camera, flat, pell, ap]

Commands for the iman system. If no argument given returns the present position bits or the state of the motion, if any. Also by sending the command twice without parameters, clears any internal state of timeout or initialization, if present.

cals

Starts a calibration sequence. The state of the camera is checked and the sequence is granted if it is on.

pc   string

Send string to iman pc and returns response from the device.

star

Starts a star sequence. The state of the camera is checked and the sequence is granted if it is on.

mstar

Performs a more star sequence. The state of the camera is checked and the sequence is granted if it is on.

cal

Moves the aperture wheel to the led or cal position.  The bit pattern sent is as follows:

PELLICLE_IN | FLAT_OUT | AP_LED | CAMERA_ON    or
PELLICLE_OUT | FLAT_OUT | AP_LED | CAMERA_ON

small

Moves the aperture wheel to the small position. The bit pattern sent is as follows:

PELLICLE_IN | FLAT_OUT | AP_SMALL | CAMERA_ON    or
PELLICLE_OUT | FLAT_OUT | AP_SMALL | CAMERA_ON

large

Moves the aperture wheel to the large position. The bit pattern sent is as follows:

PELLICLE_IN | FLAT_OUT | AP_LARGE | CAMERA_ON    or
PELLICLE_OUT | FLAT_OUT | AP_LARGE | CAMERA_ON

stop

Moves the devices to the stop or observe position. The bit pattern sent is as follows:

PELLICLE_OUT | FLAT_IN | AP_SMALL | CAMERA_OFF

camera  [on, off]

Turns the camera on or off. If no argument given, returns the present state.

flat  [in, out]

Moves the flat mirror in or out.

pell   [in, out]

Moves the pellicle in or out. The state of this selection is remembered and the bit pattern is sent according to it.

ap  [led, small, large]

Moves the aperture wheel to the led, small or large position.

index  [ra_zero, dec_zero]

Adjust the zero point of the encoders. If no argument given, the zero points are adjusted to coincide with the last slew coordinates. Otherwise, the ra_zero and dec_zero values are added to the present zero point values.

info

Returns long telescope info. The order is as follows:

date
universal time
mean ra
mean dec
epoch
hour angle
sidereal time
dome azimuth
airmass
zenith distance

For example:

info
04/23/1999  17:34:23.1  05:34:02.1  -34:43:56  2000.0 -00:30:16.1  05:04:01.1 260.0 1.015 12.5

instrument  [n]

Selects instrument configuration. The selection of the instrument also sets the foci and default guider. The present assignments are:

1 ---> F/8 spectrograph
2 ---> Irs
3 ---> Echelle
4 ---> Pfccd
5 ---> Mosaic
6 ---> Cob
7 ---> IR-F30
8 ---> Hydra

local  string

This command sends a string to serial port C where all SMC devices are connected.

mark   n  [ra_offset]  [dec_offset]

Place the current telescope position values into the mark table as item #n. There are presently 100 slots in that table. If n < 0 then return the position values as ra and dec for that entry. Optionally add the ra and dec offsets if given.

mir  [n]
mirror  [n]

Moves the rotator mirror to position n (1 to 4). If no argument given, then returns the present position or state of the motion.

move  [n]  [ra_offset]  [dec_offset]

Move the telescope to the position stored in the mark table entry #n. Optionally add the ra and dec offsets if given. If no argument is given then return the status of the operation.

muxinit

Initializes the "rot4m" SMC.

offset  [ra_offset]  [dec_offset]  [stop]

Move the telescope relative to the current position, the specified angular amounts. This is corrected by the cosine of the declination. If no arguments are given then return the status of the motion. Use the stop argument to stop the motion. For example:

offset  e 23.3  n 47.1
moving
offset
moving

pedi  [angle]

Moves the inner ADC element to the given angle.

pedo  [angle]

Moves the outer ADC element to the given angle.

planet  [ra_rate, dec_rate]

Enters telescope rates to be added to the normal tracking rate. To restore conditions, enter the command with zero rates (i.e. planet 0 0).

pointing

Returns pointing data information. The fields are:

slew ra
slew dec
raw ra
raw dec
sidereal time

raw

Returns raw and apparent coordinates. The fields are:

raw ra
raw dec
apparent ra
apparent dec

rot  [angle]

Moves the instrument rotator to the given angle.

rot4m  string

Sends "string" to the rot4m SMC.

s  [time]

This command is used to initiate or terminate the recording of tracking and guiding information. The command acts as a toggle. The optional recording time is given in units of minutes. By default the time is 10 minutes. On the TCP status display, a field flashes whenever the recording is active.

sec  [mirror n]

This is the generic command for the secondary mirror control system, being F/8 or F/14. The TCS sends the command to the appropriate SMC depending on which mirror is selected. All the parameters for the F/8 or F/14 system, could be sended with this command.

mirror n

Selects the mirror.
1 ---> F/8
2 ---> F/14

set  variable_name  [value]

This command is used to set or display  certain internal TCS variables. By giving the name of the variable, its present value gets displayed. By giving the variable name and a value, the variable gets updated with the new value.

zha : zero point hour angle in 0.1 arcseconds
zdec : zero point declination in 0.1 arcseconds
track_rate : track_rate in arcseconds/seconds
fkh : encoder pulses to arcseconds conversion factor for hour angle
fkd : encoder pulses to arcseconds conversion factor for declination
zx : guider x zero point in encoder counts
zy : guider y zero point in encoder counts
hset : set rate for hour angle in arcseconds/seconds
dset: : set rate for declination in arcseconds/seconds
hguide : guide rate for hour angle in arcseconds/seconds
dguide : guide rate for declination in arcseconds/seconds
hstep : step distance for hour angle in arcseconds
dstep : step distance for declination in arcseconds
rate_hoff : offset rate for hour angle in arcseconds/seconds
rate_doff : offset rate for declination in arcseconds/seconds
cstbl : stabilization time after offset, in 0.1 seconds
ih : index   ha pointing coefficient
id : indec dec pointing coefficient
ch : collimation pointing coefficient
np : non-perpendicularity pointing coefficient
ph11 : polinomial pointing coefficient
d4hc : declination flexure pointing coefficient
d2ds : declination gears pointing coefficient
me : polar axis elevation pointing coefficient
ma : polar axis azimuth pointing coefficient
hf : horseshoe flexure pointing coefficient
flx : tube flexure pointing coefficient
scale : telescope scale in arseconds/mm
config : telescope configuration (1 = CASS  2 = PRIME)
dome : dome flag (1 = enable  0 = disable)
guider_follow : enable (1) or disable (0) guider follow option
handpaddle : select handpaddle normal (0) or x-y (1)
cosdec : enable (1) or disable (0) the cosdec option
set : returns a string with the following information

track rate
set hour angle rate
set declination rate
guide hour angle rate
guide declination rate
offset hour angle rate
offset declination rate
step hour angle distance
step declination distance
telescope scale
go flag state
guider follow flag
handpaddle flag
track switch state
telescope configuration
dome flag
instrument
telescope focus
rotator angle

slew  [stop, white_spot, zenith, app, previous, next, coordinates]
 

Slew the telescope. The motion is activated by pressing the enable switch in the control box. If no argument is given, returns ths status of the motion.

stop

aborts the slew operation. The dome is left disabled.

white_spot  'c'

Slew to the white spot position as selected by the character 'c' : n for north or s for south.

zenith

Slew to the zenith. The dome stays at the present position and it's left disabled.

app  hour_angle   declination

Slew to an apparent place given by the hour angle and declination coordinates.

previous

Slew to the previous position stored in the coordinates stack.

next

Slew to the next position stored in the coordinates stack.

ra  dec  [epoch, pm_ra, pm_dec]

Slew to a mean position given by the coordinates. The order is right ascension, declination, epoch, proper motion ra, proper motion dec. The last three fields are optional. For example:

slew  12:27:43.2  -43:03:16  2000.0

stack  [reset, top, bottom, pointer, set, list]

This command is used to manipulate the coordinates stack. After every slew, the coordinates are store in a stack. It's possible to add more coordinates if desired. The limit is 500 coordinates. If no argument is given, returns the present stack size.

reset

Resets the stack pointer. In other words, clears the stack.

top

Moves the stack pointer to the the top position.

bottom

Moves the stack pointer to the bottom position

pointer  #n

Moves the stack poiter to the #n position.

set  ra dec epoch

Push a new coordinates set.

list  [next]

To get the coordinates stored in the stack a sequence of commands is necessary. Start by sending the command "stack list". After receiving the first coordinates keep sending the command "stack list next" until the string "end" is received.

telfocus  [focus]

Gets or sets the telescope focus. This command acts on the selected focus (F/8 or F/14). If no argument given, returns the present focus value or the status of the motion.

time  [hh:mm:ss]

Gets or sets the time.

tt   command string

Send command string to the tip-tilt control PC.

xy  [zm, zr, zx, zy, rx, ry, string]

Commands to interact with the tip-tilt camera x-y table.

zm

Sets the present position as the middle position

zr

Sets the present position as the roi position

zx

Returns the middle x position

zy

Returns the middle y position

rx
 

Returns the roi x position

ry

Returns the roi y possition

string

Any other string string is passed to the x-y SMC  ("f14fgc").

TCS Router

CTIO TCS ROUTER (Rev. 1.0)
 

1. TCS Router Concept

The following explains the idea behind the TCS Router software. On one hand you have the TCS router and on the other hand applications (Mosaic, Arcon, Hydra, etc.) wanting to send commands to the TCS. All of them are connected to the GWC router. When applications want to send a request to the TCS (i.e current focus, time, coordinates, etc.) they publish the request in a variable subscribed by the TCS router. The TCS router see the variable change and send its contents to the TCS. The result returned by the TCS to the TCS router  is then published in another variable subscribed by the originators. To avoid race conditions every originator has to use a different variable.

The idea of this architecture to pass requests to TCS is a consequence of the lack of support for GWC libraries under the VxWorks environment in which the TCS program was written. Under those circumstances the TCS router was born as an auxiliary program to route TCS requests arriving through the GWC router. Soon it became obvious that the TCS router program could hold another macro style functionalities like controlling the Hydra comparison lamp system.

2. TCS Router Software Code

The TCS router software leaves in /ut22/newgui/tcsrouter. The structure of the directory tree is as follows:

  • tcsrouter

    • bin
    • doc
    • lib

      • bitmaps
      • tcsrgui
    • share

      • include
      • lib
      • tcl7.6
      • tk4.2
    • src

      • demos
      • tcswish

The TCS router software consists of an extended TCL/TK interpreter plus a set of TCL/TK scripts that build the functionality required by the application. The extended TCL/TK interpreter leaves at sub directory "src". Support is provided for compiling the interpreter under Linux, SunOs and Solaris. The TCL/TK scripts leave at sub directory lib/tcsrgui.

A bare bones implementation of the TCS router under a TCL/TK environment would be as following:

TCS Router Part
---------------------------------------------
proc tcs_command_callback {var command type value} {
  # Here goes the code to send the command to TCS
}

connect ctio_4m tcsrouter
ctio_4m newwvar tcs.main.etalon etalon string
set etalon(value) off
ctio_4m put tcs.main
ctio_4m comevent "tcs.main.command" tcs_command_callback
---------------------------------------------

The Hydra Part
---------------------------------------------
proc etalon_callback {var action type value} {
  # Here goes the code to handle the status of the etalon variable
}

connect ctio_4m hydra
ctio_4m atevent "tcs.main.etalon" etalon_callback
ctio_4m newcvar tcs.main.command tcsCommand set string
set tcsCommand(action) set
---------------------------------------------

Both scripts will run eventually in different machines. The code for the TCS router opens a connection to the router, create a variable to publish the result of an operation (etalon) and binds a callback function to command stream. The code for Hydra on the other hand, opens a connection to the router, bind a callback function to the etalon variable and creates a new variable associated to the command stream.

3. Starting The Program

The TCS router starts along with the TCP interface on ctiot2. Starting a TCP session runs a script called "start_tcsrouter" that actually launches the program. This start up shell script will search the home directory for file .tcsrrc to set the environment before running. If not found it will look for the default version of that file at /usr/local/tcsrouter/bin. Following is the file that actually leaves at /ut20/tcp4m.

---------------------------------------------------------------
#
#
#               .tcsrrc
#
#       Environment variables for the TCS Router program
#
#*********   Check these out and set them as you wish   ************

# Environment variable for the TCS_ROUTER home directory
setenv TCS_ROUTER_HOME /ut22/newgui/tcsrouter

# Home directory of the TCL/TK library
setenv TCL_LIBRARY $TCS_ROUTER_HOME/share/lib/tcl7.6
setenv TK_LIBRARY  $TCS_ROUTER_HOME/share/lib/tk4.2

# The MPG_ROUTER variable designates the name of the host in which
# the router run. When not defined the the mpg router is supposed
# to be running in indus.tuc.noao.edu.
setenv  MPG_ROUTER ctioa1

# The variable MPG_ROUTER_PORT designates the port in which the mpg
# router is listening for incoming connections. The default value
# for this variable is 1 plus the the wiyn router port (2345).
setenv  MPG_ROUTER_PORT 2347

# Hostname for the RPC server (TCS).
setenv TCP_NAME ctiox0

# This tell the program where to find the binaries and configurations file.
setenv TCS_ROUTER_BIN $TCS_ROUTER_HOME/bin

# Make sure that guidebin is in the search path
set path = ( $TCS_ROUTER_BIN $path )

# Make sure we have the right man path
if ($?MANPATH) then
  setenv MANPATH {$MANPATH}:$TCS_ROUTER_HOME/man
else
  setenv MANPATH {/usr/man}:$TCS_ROUTER_HOME/man
endif

# Uncomment this line if running in SunOs environment
setenv LD_LIBRARY_PATH /usr/lib:/usr/local/X11R5/lib:/usr/openwin/lib
---------------------------------------------------------------

4. Graphic Interface

The graphic user interface of the TCS router program allows the user to check for resent requests to the TCS and their result as well as for the current status of the communication link to the TCS and to the GWC router.

The GUI  also provides a means for sending commands to the TCS in a similar fashion as the TCP command mode does.

When the application starts it opens one connection to the TCS and one connection to the GWC router. Then subscribe to some GWC variables of interest and publish others of its own. Incoming request are logged into the logging panel along with a time stamp and a correlative number. Messages to the TCS are prefixed with the words "to TCS'. When an exception occurs the error message is put in the log with the word "ERROR" preceding the message.

4.1 Menu Bar

The menu bar has three menus: Options, Windows and Help.

4.1.1 Options Menu

Use the options menu to activate/deactivate the alarm bell and to quit the application. When selected the alarm bell flag activate an audible tone to signal that the communication link to either the TCS or the GWC router is broken.

4.1.2 Windows Menu

Use the windows menu to pop up a console window to send commands to the TCS. Right now the console supports only two commands: "complamp" and "local".

complamp [lamp] - turn the comparison lamps system on or off. Valid options for this command are "off", "tha", "etalon", "qua", "hene" and "pen".

local [command] - send string command to serial port C of the TCS, where all SMC devices are connected.

4.2 Logging Panel

The logging area shows all the incoming requests to the TCS and the exceptions that have occurred during the session. All messages are prefixed with a time stamp and a correlative number. Use the scroll bar to move across the log messages.

4.3 Status Bar

The status bar presents the current status of the communication link to the GWC router and to the TCS. When either link is broken the correspondent label will go red and will start  blinking signaling that the communication has been lost. After that the program will start a reconnection sequence trying to connect every ten seconds to either the GWC router or to the TCS.

5. GWC Variables

To send command requests to the TCS router the program subscribes to some command variables and publish an associated variable to respond to each of those command variable.
The TCS router subscribes to the following GWC variables:

tcs.main.command - non specific owner command variable to send TCS requests
tcs.main.Hcommand - hydra command variable to send TCS requests
tcs.main.Icommand - icsInfo command variable to send TCS requests
tcs.main.clamp - command variable to move the comparison lamp system

To publish the results of the requests on the first three command variables, the TCS router creates the following write variables:

tcs.main.response - results to TCS request through tcs.main.command
tcs.main.Hresponse - results to TCS requests through tcs.main.Hcommand
tcs.main.Iresponse - results to TCS requests through tcs.main.Icommand

The tcs.main.clamp variable is used in a more GWC way and no variable is required to publish the request results. Instead a set of write variables are created to publish the status of the various parts of the comparison lamps system. The variables created are:

tcs.caliblamps.flat - flat mirror status
tcs.caliblamps.sphe - spherical mirror status
tcs.caliblamps.plamps - diffuse lamps mirror status
tcs.caliblamps.lamps - lamp selector mirror status
tcs.caliblamps.etalon - Etalon lamp status
tcs.caliblamps.tha - Tha lamp status
tcs.caliblamps.qua - Quartz lamp status
tcs.caliblamps.hene - He-Ne-Ar lamp status
tcs.caliblamps.pen - Pen rays lamp status

6. Trouble Shooting

"ERROR: tcs router can't connect to GWC ROUTER..." - Check that the GWC router is actually running on its host machine. If its running check that the machine in which the TCS router is running is an enabled machine. Check the /usr/local/gwc/config/routersetup.tcl file for your machine name. If not present add the name using the rest of the file as a template. Check also that the environment variables MPG_ROUTER and MPG_ROUTER_PORT are set to the proper values in the tcsrrc file.

"WARNING: tcs router not connected to GWC ROUTER..." - This warning message appears to warn the user he chose not to connect to the GWC router. Consequences are that no header information will be available when image acquisition with the Arcon system.

"WARNING: system busy" - This warning message tell the user that a request for moving the comparison lamp system has arrived while executing a previous request. The warning shows at the logging panel.

"ERROR: timeout while waiting SMC response" - This message tell the user that no response was received while waiting for the SMC box to finish some operation. The timeout has been preset to 120 seconds.

"ERROR: "local...   failed (...)" - This error message appears when the response to an SMC command is an error message of the form "err(...) (box.motor) ......". The message in parenthesis is the actual response from the SMC box.

"ERROR: timeout while waiting TCS response" - This message tell the user that no response was received while waiting for the TCS to finish some operation. The timeout has been preset to 120 seconds.

"WARNING: tcs router not connected to TCS..." - This warning message appears to warn the user he chose not to connect to the TCS. Consequences are that no header information will be available when image acquisition with the Arcon system.

 

Last Updated:   April 25, 2000
rcantaruttiATnoao.edu

old_staff_responsibilities

A page to gather pages of staff reponsibilities that were copied in one page http://www.ctio.noao.edu/noao/content/CTIO-Staff-Responsibilities [85]

Scientific Staff Telescopes & Instruments Responsibilities

29 July 2020  (SDP)

TELESCOPES    
  Blanco 4-m Telescope: [86] Tim Abbott tabbottATctio.noao.edu [87]
  SOAR 4-m Telescope: [88] César Briceño cbricenoATctio.noao.edu [89]
  SMARTS Consortium [90] Todd Henry thenryATchara.gsu.edu [91]
       
SOAR 4-M INSTRUMENTS    
  Goodman Optical Spectrograph: [92] Sean Points spointsATctio.noao.edu [93]
  SOAR Optical Imager (SOI): [94] Sean Points spointsATctio.noao.edu [93]
  SOAR Adaptive Optics Module (SAM): [95] César Briceño cbricenoATctio.noao.edu [89]
  Spartan IR imager: [96] Jay Elias jeliasATnoao.edu [97]
  TripleSpec 4.1: [98] Sean Points spointsATctio.noao.edu [93]
       
BLANCO 4-M INSTRUMENTS    
  COSMOS: [99] Sean Points spointsATctio.noao.edu [93]
  Dark Energy Camera (DECam): [100] Alistair Walker awalkerATctio.noao.edu [101]
       

Subsystem Experts Responsibilities

Subsystem Experts

  TCS Rolando Cantarutti
  CCDTV Cameras Peter Moore
  CCDs Peter Moore
  CCD software Marco Bonati

 

Telescope Mechanics & Electronic Responsibilities

Electronics and mechanics staff at Cerro Tololo, Blanco Telescope.

  Electronics: David Rojas
    Javier Rojas
    Humberto Orrego
     
  Mechanics: Jorge Briones
    Alvaro Soto
    Yuse Jure

Observer Support Resposibilities

CTIO Technical Support for observations:

Telops Manager Esteban Parkes
Observer Support Hernan Tirado
Manuel Hernández
Floater Assistant Observer Rodrigo Hernández
Jacqueline Serón
Nigh Assistant Claudio Aguilera
Alberto Alvarez

 

Differential Atmospheric Refraction

Differential Atmospheric Refraction at an Altitude of 2KM relative to a reference wavelength of 5000A

Sec Z 3000A 3500A 4000A 4500A 5000A 5500A 6000A 6500A
1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1.05 0.68 0.38 0.20 0.08 0.00 -0.06 -0.11 -0.14
1.10 0.97 0.55 0.29 0.12 0.00 -0.09 -0.15 -0.20
1.15 1.20 0.68 0.36 0.15 0.00 -0.11 -0.19 -0.25
1.20 1.40 0.80 0.42 0.17 0.00 -0.13 -0.22 -0.30
1.25 1.59 0.90 0.48 0.20 0.00 -0.14 -0.25 -0.33
1.30 1.76 1.00 0.53 0.22 0.00 -0.16 -0.28 -0.37
1.35 1.92 1.09 0.58 0.24 0.00 -0.17 -0.30 -0.40
1.40 2.07 1.18 0.62 0.26 0.00 -0.19 -0.33 -0.44
1.45 2.22 1.26 0.67 0.28 0.00 -0.20 -0.35 -0.47
1.50 2.37 1.34 0.71 0.29 0.00 -0.21 -0.37 -0.50
1.55 2.51 1.42 0.75 0.31 0.00 -0.23 -0.40 -0.53
1.60 2.64 1.50 0.80 0.33 0.00 -0.24 -0.42 -0.56
1.65 2.78 1.58 0.84 0.34 0.00 -0.25 -0.44 -0.59
1.70 2.91 1.65 0.88 0.36 0.00 -0.26 -0.46 -0.61
1.75 3.04 1.73 0.92 0.38 0.00 -0.27 -0.48 -0.64
1.80 3.17 1.80 0.95 0.39 0.00 -0.29 -0.50 -0.67
1.85 3.29 1.87 0.99 0.41 0.00 -0.30 -0.52 -0.69
1.90 3.42 1.94 1.03 0.42 0.00 -0.31 -0.54 -0.72
2.00 3.54 2.01 1.07 0.44 0.00 -0.32 -0.56 -0.75
2.05 3.67 2.08 1.10 0.45 0.00 -0.33 -0.58 -0.77
2.10 3.91 2.22 1.18 0.48 0.00 -0.35 -0.62 -0.82
2.20 4.15 2.36 1.25 0.51 0.00 -0.37 -0.66 -0.87
2.30 4.38 2.49 1.32 0.54 0.00 -0.40 -0.69 -0.92
2.40 4.62 2.62 1.39 0.57 0.00 -0.42 -0.73 -0.97

 

Sec Z 7000A 7500A 8000A 8500A 9000A 9500A 10000A
1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1.05 -0.17 -0.19 -0.21 -0.23 -0.24 -0.25 -0.26
1.10 -0.24 -0.28 -0.30 -0.32 -0.34 -0.36 -0.37
1.15 -0.30 -0.34 -0.38 -0.40 -0.42 -0.44 -0.46
1.20 -0.35 -0.40 -0.44 -0.47 -0.50 -0.52 -0.54
1.25 -0.40 -0.45 -0.50 -0.53 -0.56 -0.59 -0.61
1.30 -0.44 -0.50 -0.66 -0.59 -0.62 -0.65 -0.67
1.35 -0.48 -0.55 -0.60 -0.64 -0.68 -0.71 -0.73
1.40 -0.52 -0.59 -0.65 -0.69 -0.73 -0.77 -0.79
1.45 -0.56 -0.63 -0.69 -0.74 -0.79 -0.82 -0.85
1.50 -0.60 -0.68 -0.74 -0.79 -0.84 -0.87 -0.91
1.55 -0.63 -0.72 -0.78 -0.84 -0.89 -0.93 -0.96
1.60 -0.67 -0.75 -0.83 -0.88 -0.93 -0.98 -1.01
1.65 -0.70 -0.79 -0.87 -0.93 -0.98 -1.03 -1.06
1.70 -0.73 -0.83 -0.91 -0.97 -1.03 -1.07 -1.11
1.75 -0.77 -0.87 -0.95 -1.02 -1.07 -1.12 -1.16
1.80 -0.80 -0.90 -0.99 -1.06 -1.12 -1.17 -1.21
1.85 -0.83 -0.94 -1.03 -1.10 -1.16 -1.22 -1.26
1.90 -0.86 -0.98 -1.07 -1.14 -1.21 -1.26 -1.31
2.00 -0.89 -1.01 -1.11 -1.19 -1.25 -1.31 -1.36
2.05 -0.92 -1.05 -1.15 -1.23 -1.30 -1.35 -1.40
2.10 -0.99 -1.12 -1.22 -1.31 -1.38 -1.44 -1.50
2.20 -1.05 -1.18 -1.30 -1.39 -1.47 -1.53 -1.59
2.30 -1.11 -1.25 -1.37 -1.47 -1.55 -1.62 -1.68
2.40 -1.16 -1.32 -1.44 -1.55 -1.63 -1.70 -1.77

Notes:

1. Sec Z is essentially equal to air mass over this range.
2. The CFADC can correct for atmospheric dispersion up to Sec Z=2.4 (65 degrees zenith angle)
3. The useful short wavelength limit of the Hydra corrector is 3350A
4. Source of this table: ESO

Old_filters

Old filters not used anymore

Overview

Mosaic Imager (Blanco 4-m Prime Focus)

The NOAO MOSAIC Imager II (as did the BTC before it) takes square filters 146 x 146 mm, 12 mm thick. We are slowly increasing our stock of filters in this size, so if you don't see what you need here, please contact us. What do we have, and what are the focus offsets? [102]

 

SOAR and Schmidt

The SOAR Optical Imager (minimosaic of two 2Kx4K EEV CCDs) and the Schmidt use 4 inch square filters up to 10 mm thick. We have quite a selection of filters in this size, see the 3" & 4"filter list [103]. Recent acquisitions are:

  • Sloan digital Sky Survey (SDSS) set ugriz, 4 x 4 inch. cwl/fwhm are u (3513/628), g (4759/1430), r (6265/1483), i (7734/1500), z (9100/1400). These are nominal figures, note that the long wavelength cutoff for the z filter is CCD dependent.
  • Calcium H&K filter, 4 x 4 inch. cwl/fwhm is 3960/100, peak transmission 50%.
  • For SOAR - a dedicated Johnson-Cousins UBVRI set, an SDSS ugriz set, and a Stromgren uvby set.

 

Cassegrain focus imaging (1.5-m, 0.9-m)

For Cass imaging we use 3 inch square filters up to 10 mm thick. We have quite a good selection of filters in this size too. The cass filter wheel assembly has two wheels holding up to 8 3x3 filters each. We also have a single module that can hold 5 4x4 filters, so filters in this size can be used if we don't have a 3x3 equivalent.

 

Oh No! CTIO doesn't have the filter I need!!!

Now and then people have asked to use one or more of our 2x2 inch interference filters due to not having it in 3x3 or 4x4 inch size, being prepared to accept some vignetting. Be warned! Most of these filters are many years old, and some have seen a lot of use. If you want to use some weird filter it's better to (a) buy one yourself, or (b) convince us to buy it for you. Filters can take a long time to make (several months to over a year for the 146x146 mm narrow band filters). Prices vary with manufacturer, and the specifications you ask for, we can recommend if you like. Plan on spending $2500 - $5000 for a 146 x 146 mm filter, half that for 3x3 inch or 4x4 inch.

 

Alistair Walker 17 April 2000, updated 4 April 2006

 

CTIO 5.75X5.75-inch Filters

A. Walker 18 Dec 2002

 

The Mosaic II imager, used at the Blanco 4-m prime focus, takes filters that are 146x146mm and 12mm (nominal) thick.

Focus offsets are referred to the R filter, since this is the filter we use for taking focus frames each night when the Mosaic is installed in order to monitor telescope performance.

We are (slowly) measuring these filters, let us know if there is any one you particular want to have us scan. Note that the Sloan set (griz) and the Johnson-Cousins BVR (but not I) sets should be near-identical to those at KPNO, see the KPNO Mosaic Filters. [104]

A set of standardized filter names and IDs have been developed to ensure proper application of astrometric solutions and real-time display processing (as well as future archive uniformity). These official names are listed in the Mosaic filter list [105]web page.

 

Filter Center
wavelegth
fwhm focus offset
microns
NOAO
code
Status
      
U 3570 650 -185 c6001 OK
B 4360 990 +10 c6002 OK
V 5370 940 +30 c6026 from 21 OCT 2000
R 6440 1510 0 c6004 OK ... filter offset ref
I 8050 1500 +10 c6028 from 24 May 2003
      
VR Stubbs
aka VR
Supermacho
6100 2000 0 c6027 transmission curve [106]
      
C (Wash) 4000 1000 +260 c6006 OK
M (Wash) 5020 1020 +260 c6007 OK
D51 (DDO) 5130 154 -55 c6008 OK
      
[OII] 3727* 50 ? c3012 not tested yet
[OIII] 4990* 60 +130 c6014 OK
Halpha 6563* 80 +65 c6009 cwl, fwhm nominal
Halpha+8 6650* 80 -35 c6011 cwl, fwhm nominal
[SII] 6725* 80 +60 c6013 cwl, fwhm nominal
      
u (SDSS) 3600  400 +230 c6021  cwl, fwhm approx,
Red Leak! [107]
g (SDSS) 4813  1537  +30 c6017  "set #2"
(in use 8/2000-)
r (SDSS) 6287  1468  +120 c6018  "set #2"
in use 8/2000-)
i (SDSS) 7732  1548  -20 c6019  "set #2"
(in use 8/2000-)
z (SDSS) 9400  2000  -15 c6020  OK
      
Bj (Tyson) 4350  1650  ?  c6024  #3, on loan
from A. Tyson
I (Tyson)  8800  2000  ?  c6025  cwl, fwhm approx
           
White 6500 5000 ? c6016 just a piece
of fused silica

 
Retired Filters
g (SDSS) 4825 1380 ? c6015 "set #3",
red cut-off a bit too red
(in use <8/2000)
V 5370 940 115 c6003 small chip in corner,
in use <10/2000
Bj 4350 1650 ? -- broken...
Bj 4350 1650 ? -- broken...
I 8050 1500 +25 c6005 Filter damaged
Nov 2002-
The are civered by CCD-1
(SW corner) is unusable

* = NOTE that the central wavelength of narrow band filters (actually all filters, but it is only significant for narrow band filters) is shifted aprox. 15A to the BLUE in the f/2.87 beam of the Blanco 4m + PFADC corrector as compared to the transmission measured in parallel light. The central wavelengths quoted above are nominally for when the filters are used at PF, with the aprox. 15A shift included.

 

Last updated: 2003 June 4 by C.Smith

Staff Contacts:
Alistair Walker: awalkerATnoao.edu
Chris Smith: csmithATnoao.edu

 

u leak

Subject: There is a leak -- just how much does it matter -- your call
Date: Fri, 8 Mar 2002 16:25:43 -0700 (MST)
From: Buell Jannuzi

Hi Guys,

Well there is a red leak in the ctio SDSS u' filter -- at a very low level, but perhaps enough to explain the flat field counts Mauro reports -- I'm afraid I have not had time to think this through carefully. Below are attached the asci data files containing the traces (done in the center of the filter) made by Jim DeVeny. The good news is that in the band-pass the ctio SDSS u' filter is a good match to the tracing I have on file for the actual SDSS u' filter (measured in air -- not in vacuum as actually used). The bad news is that while the SDSS u' does not appear to have a red leak (actual measurements of that filter between 8100 and 1100 angstroms so nothing), apparently because in addition to the 1mm UG11 + 1mm BG38 there is a film to, and now I'm quoting the message I got in 1996 about this filter, "suppresses a strong leak around 7000 Angstroms and acts as an AR coating in the passband. Now, the ctio SDSS u' filter does not have strong leak at 7000 -- but does have a leak near H-alpha (0.04%, tiny), with an increasing leak longward of 8000, but again, not huge -- but very significantly different from the SDSS filter.

As I said, I'm not 100% sure the measured leak accounts for Mauro's measured count difference in the flats he took last night -- but given the tracing I'm hard pressed to understand how the ctio SDSS u' filter could yield more counts than the Harris U without there being a significant leak (one might have hoped that the poor red response of the CCDs might have helped, but it looks like they are hot enough in the red to see some of the leaked light).

Buell

Attached files:

  • ctioSDSSu_leak.gif [108]
  • ctioSDSSu.gif [109] --- the SDSS u', the ctio SDSS u', and the KPNO Harris CuSO4 U
  • ctiosdssu.dat [110] --- asci data file from the tracing done in the band pass by J. DeVeny
  • ctiosdssuleak.dat [111] --- asci data file from the tracing done over broader wavelength range, by DeVeny

Note that the two data files will differ ever so slightly in the region covered by both tracings, but the slit used was 5 times larger (lower res) in the second set up.

 

IR Filters

 

Band/
Wavelength
Filter ID
(Text Data)
Filter ID
(Graph)
Available
for ISPI *
Comment
Y 191A [112] 191A [113]   30mm Barr
Y 191B [114] 191B [115]   50mm Barr
Y 191C [116] 191C [117]   65mm Barr
Y 191D [118] 191D [119]   30mm Barr
I 81 [120] 81 [121]   25mm inew
J 40 [122] 40 [123]   25 mm Jcit
J 82a [124] 82a [125]   25mm Jshort
J 183 [126] 183 [127]   30mm Barr
J 186 [128] 186 [129] removed,
2004b
60mm OCLI,
Gemini, ISPI
J 192 [130] 192 [131], scan [132] Yes 65mm Barr
H 44 [133] 44 [134]   25mm OCLI
H 184 [135] 184 [136]   30mm Barr
H 187 [137] 187 [138] removed,
2004b
60mm OCLI,
Gemini, ISPI
H 190 190 [139] Yes 65mm Barr
K 50 [140] 50 [141]   25mm OCLI
K 185 [142] 185 [143]   30mm Barr
K' 188 188 removed,
2004b
60mm OCLI,
Gemini, ISPI
Kshort 129 [144] 129 [145]   25mm Barr
/2MASS
Kshort 189 189 [146] Yes 65mm Barr, ISPI
2.248 H2 125 [147] 125 [148]   25mm Barr
2.248 H2 199 199 Yes 65mm Omega
2.19 He II 138 [149] 138 [150]   25mm Omega
2.19 HeII 198 198 Yes 65mm Omega
2.166w Brg 132 [151] 132 [152]   25mm Barr,
wedged
2.16 165 [153] 165 [154]   25mm Omega
2.16 Brg 197 197 Yes 65mm Omega
2.144w cont 131 [155] 131 [156]   25mm Barr,
wedged
2.14 cont 164 [157] 164 [158]   30mm Omega
2.14 cont 200 200 Yes 65mm Omega
2.122w H2 130 [159] 130 [160]   25mm Barr,
wedged
2.12 H2 89 [161] 89 [162]   25mm Barr
2.12 H2 163 [163] 163 [164]   25mm Omega
2.12 H2 196 196 Yes 65mm Omega,
bad ghosts
2.08 C IV 136 [165] 136 [166]   25mm Omega
2.08 C IV 195 195 Yes 65mm Omega
2.06 He I 135 [167] 135 [168]   25mm Omega
2.06 He I 194 194 Yes 65mm Omega
2.03 cont 134 [169] 134 [170]   25mm Omega
2.03 cont 193 193 Yes 65mm Omega
1.644 [Fe II] 128 128 [171]   25mm Barr
1.28 Palpha 110 [172] 110 [173]   25mm Barr
1.257 [FeII] 111 [174] 111 [175]   25mm Barr

 

Notes on IR Filters:

* Check the ISPI pages [176] to see if the filter is currently in the ISPI Dewar.

The filters listed above have seen recent use in Tololo imagers. There are other filters available. Observers should check with the staff noted below if there is a filter or transmission curve not listed above which would be of interest.

In response to an increasing number of requests, we are starting to place digital versions of the transmission data for some of our filters here. The user should take some care to verify that the filter is valid for the instrument he or she is considering at the time of use in question. The actual filter in use will in general not be the exact filter for which we have transmission data, but rather be one of the same batch. The numbers refer to the CTIO filter ID by which the filter data is archived. In case of doubt, consult with Nicole van der Bliek, Patrice Bouchet, Bob Blum, Brooke Gregory.

10 March, 2006 [rdb]

 
 

Y4KCam filters

 

Position Filter Focus Offset
relative to V
Filter
Transmission
curves
Plot Data File
2 B +25 y4kcam_b.pdf [177] y4kcam_B.txt [178]
3 V 0 y4kcam_v.pdf [179] y4kcam_V.txt [180]
4 RC -25 y4kcam_r.pdf [181] y4kcam_Rc.txt [182]
5 IC +25 y4kcam_i.pdf [183] y4kcam_Ic.txt [184]
6 U+CuSO4 +125    
8 SDSS u -50 y4kcam_sdss_u.pdf [185] sdss_u.txt [186]
9 SDSS g -25 y4kcam_sdss_g.pdf [187] sdss_g.txt [188]
10 SDSS r -50 y4kcam_sdss_r.pdf [189] sdss_r.txt [190]
11 SDSS i -25 y4kcam_sdss_i.pdf [191] sdss_i.txt [192]
12 SDSS z -70 y4kcam_sdss_z.pdf [193] sdss_z.txt [194]

 

 
 

CTIO Various Filters

D. Maturana April 28,1995, updated 29 March 1999

Warning! Many of the 2x2 interference filters are now VERY old, and are not in great shape physically (scratches, coating deteoriation etc). Passband shifts can be expected too. Filters this size vignette on all our present imaging CCD systems.

Click here [195] for tabulated transmissions of other filters where available.

FILTER
/width
SIZ
(")
Thick
(mm.)
Cent.
(A.)
fwhm
(A.)
Trans
(%)
FILTSET Transm curve
(.txt)
COMMENTS
  2x2 4.22       B std PFCCD    
  2x2 3.20       I 34  PFCCD    
  2x2 4.18       V std PFCCD    
3085/75 [196] 1"d 7.27 3085 75 38.50 Comet Set 3085/75 [197]  
3510/300 [198] 2x2 9.24 3510 300 33.60 u2 Strom.set 1 3510/300 [199]  
3515/290 [200] 2x2 9.30 3517 280 35.11 u1 Strom.set 1 3515/290 [201]  
3520/300 [202] 2"d 9.63 3520 296 37.50 u Strom.set 2 3520/300 [203]  
3525/320 2x2 9.03 3525 320 36.00 u Strom.set 3    
3530/280 [204] 4x4 9.15 3530 280 37.14 u Strom. 4x4 3530/280 [205]  
3530/400 [206] 2x2 6.03 3539 386 28.01 u Gunn-T set 1 3530/400 [207]  
3570/660 2x2 8.78 3570 660 84.34 U liq.cuso4 1    
3570/660 3x3   3570 660 80.59 U liq.CuS04 Tek set#2    
3572/665 2x2 8.68 3572 665 82.50 U liq.cuso4 2    
3575/600 [208] 3x3 9.09 3575 600 74.21 U liq.CuSo4 Tek set#1 3575/600 [209]  
3575/670 2x2 8.73 3575 670 82.90 U liq.cuso4 3    
3580/610 [210] 4x4 9.32 3580 610 74.66 U Liq.Cuso4 set#1 3580/610 [211] 4mts
3590/660 2x2   3590 660 87.20 U Liq.CuSo4 4   1mt. guider box
3623/605 [212] 3x3 8.83 3623 605 67.66 U liq.CuSo4 Tek set#3 3623/605 [213]  
3650/100 [214] 1"d 6.52 3651 79  44.00 Comet Set 3650/100 [215]  
 3650/600 [216] 2x2 5.93 3641 470 34.56 U ctio ("new") 3650/600 [217]  
3700/110 [218] 2x2 4.03 3698 97 46.95   3700/110 [219] red leak (9000A)
3727/21 [220] 2x2 6.04 3735 24 30.39   3727/21 [221]  
3727/44 [222] 2x2 6.19 3728 58 33.24 H beta set 3727/44 [223] one face coated
3727/45 [224] 2x2 4.22 3727 40 28.06   3727/45 [225] ghost images?
3765/45 [226] 2x2 4.23 3770 43 24.52   3765/45 [227]  
3767/44 [228] 2x2 6.20 3765 52 34.83 H beta set 3767/44 [229] one face coated
3800/110 [230] 2x2 4.58 3797 110 34.85   3800/110 [231]  
3870/50 [232] 1"d 9.10 3877 39 25.00 Comet Set 3870/50 [233]  
3980/400 [234] 2x2 6.02 3987 398 47.95 v Gunn-T set 1 3980/400 [235]  
3986/1047 [236] 2x2 5.99 3986 1047 62.70 C Wash. set #3    
3996/1042 [237] 3x3 8.11 3996 1042 62.70 C Wash.    
4000/1030 [238] 4x4 8.45 4000 1030 62.45 C Wash.    
4060/70 [239] 1"d 8.23 4061 75 46.50 Comet Set 4060/70 [240]  
4100/160 2x2 9.73 4110 160 60.00 v Strom.set 3    
4110/190 [241] 2x2 4.79 4125 182 44.99 v Strom.set 1 4110/190 [242]  
4118/146 [243] 4x4 9.87 4118 146 52.04 v Strom. 4x4 4118/146 [244]  
4120/160 [245] 2"d 8.43 4126 172 59.11 v Strom.Set 2 4120/160 [246]  
4166/83 1"d 7.53 4167 90 63.00 DDO set    
4185/1030 [247] 4x4 5.40 4185 1030 70.44 B Harris set#1   4mts
  4x4         B Set# 2 Schmidt    
4201/1050 [248] 3x3 5.17 4200 1050 66.48 B Tek set#1    
4202/1050 [249] 3x3   4200 1050 66.16 B Tek set#2    
4203/1050 [250] 3x3 5.26 4200 1050 66.72 B Tek set#3    
4257/73 1"d 7.51 4260 77 77.00 DDO set    
4260/65 [251] 1"d 6.04 4278 70 44.50 Comet Set 4260/65 [252]  
4324/1050 [253] 2x2 4.15 4300 1050 73.00 B Harris set 1    
4324/1056 [254] 2x2 4.11 4324 1056 71.00 B Harris set 3    
4324/1156 [255] 2x2 4.05 4324 1156 72.00 B Harris set 2    
4340/980 [256] 3x3 6.38 4341 980 60.33 Harris set 1 4340/980 [257]  
4345/980 3x3 6.33 4345 980 60.85 Harris set 2    
4350/1680 [258] 2x2 4.00 4350 1680 89.14 B Tyson "J"   coated both sides
4357/1665 [259] 4x4 3.65 4357 1665 88.19 B Tyson "J"   coated both sides
4363/20 [260] 2x2 5.98 4358 19 31.16   4363/20 [261]  
4380/1086 2x2 5.75 4380 1086 77.00 B-14    
4390/1060 2x2 5.68 4390 1060 78.00 B-3    
4390/1109 2x2 5.98 4390 1109 77.00 B-15    
4410/1109 2x2 5.71 4410 1109 78.00 B-16    
4440/1125 2x2 5.68 4440 1125 79.00 B-13    
4517/76 1"d 7.59 4516 77 75.00 DDO set    
4650/190 [262] 2x2 3.56 4654 173 55.09 b Strom.set 1    
4685/44 [263] 2x2 6.08 4682 42 75.85 H beta set 4685/44 [264] one face coated
4686/15 [265] 2x2 4.72 4685 13 29.77   4686/15 [266]  
4695/15 [267] 2x2 5.54 4692 15 34.60   4695/15 [268]  
4697/196 [269] 4x4 9.85 4697 196 71.27 b Str”m. 4x4 4697/196 [270]  
4700/190 [271] 2"d 6.99 4724 190 69.12 b Strom.set 2 4700/190 [272]  
4705/175 2x2 8.18 4705 175 79.30 b Strom.set 3    
4845/65 [273] 1"d 6.18 4846 69 74.00 Comet set 4845/65 [274]  
4857/12 [275] 2x2 4.33 4858 14 51.73   4857/12 [276]  
4861/26 [277] 2"d 3.70 4854 27 56.00   4861/26 [278]  
4861/44 [279] 2x2 6.07 4858 38 78.85 H beta set 4861/44 [280] one face coated
4861/50 [281] 2x2 8.22 4872 53 58.66   4861/50 [282]  
4862/14 [283] 2x2 8.22 4860 14 66.00   4862/14 [284]  
4866/12 [285] 2x2 4.31 4859 15 48.34   4866/12 [286]  
4880/70 [287] 2x2 4.26 4888 70 64.79   4880/70 [288]  
4886/186 1"d 7.57 4890 195 76.00 DDO set    
4905/44 [289] 2x2 6.04 4899 40 77.30 H beta set 4905/44 [290] one face coated
4940/700 [291] 4x4 8.95 4920 670 93.09 Gunn g 4940/700 [292]  
4949/44 [293] 2x2 6.06 4948 46 81.80 H beta set 4949/44 [294] one face coated
4993/44 [295] 2x2 6.07 4993 40 80.65 H beta set 4993/44 [296] one face coated
5000/70 [297] 2x2 4.04 4994 77 63.41   5000/70 [298]  
5007/22 2x2 9.33 5007 20 69.65 old Fabry-Perot    
5007/44 [299] 2x2 6.19 5005 39 77.19 H beta set 5007/44 [300] one face coated
5013/14 [301] 2x2 9.61 5015 17 64.63 Old Fabry Perot 5013/14 [302] LMC Redshift
5019/50 [303] 4x4 7.83 5027 50 79.48   5019/50 [304]  
5024/15 [305] 2x2 3.46 5026 16 43.63   5024/15 [306]  internal fringes
5025/1020 [307] 2x2 8.13 5025 1020 82.87 M Wash. set#3    
5025/1023 [308] 3x3 8.08 5025 1023 88.60 M Wash.    
5029/43 [309] 2x2 3.92 5030 46 42.07 Rutgers F-P 5029/43 [310]  
5032/15 [311] 2x2 5.56 5032 15 41.50   5032/15 [312] internal fringes
5037/44 [313] 2x2 6.05 5036 39 83.59 H beta set 5037/44 [314] one face coated
5040/15 [315] 2x2 5.60 5038 16 36.58   5040/15 [316]  
5040/990 [317] 4x4 8.25 5040 990 88.23 M Wash. 5040/990 [318]  
5049/15 [319] 2x2 5.56 5049 14 38.15   5049/15 [320] internal fringes
5057/15 [321] 2x2 5.57 5057 14 39.28   5057/15 [322] internal fringes
5081/44 [323] 2x2 6.03 5083 39 82.41 H beta set 5081/44 [324] one face coated
5100/100 [325] 1x1 5.16 5098 88 61.00   5100/100 [326] 3/4"d usefull
5117/895 [327] 2x2 5.07 5117 895 81.39 g Gunn-T set 2 5117/895 [328]  
5118/900 [329] 3x3 5.05 5118 900 81.39 g Gunn-T 5118/900 [330]  
5125/44 [331] 2x2 6.03 5116 40 81.87 H beta set 5125/44 [332] one face coated
5130/155 [333] 4x4 7.76 5121 133 84.13 DDO 51 Wash. set    
5140/90 [334] 1"d 6.19 5137 87 62.00 Comet set    
5140/153 [335] 2"d 9.36 5140 153 88.84 DDO51-1   in Wash set#3
5145/30 [336] 2x2   5145 30 56.84 Rutgers F-P    
5145/80 [337] 2x2 4.40 5152 80 60.69 3c    
5169/44 [338] 2x2 6.07 5161 44 79.58 H beta set   one face coated
5182/10 [339] 2x2   5175 12 52.71 Rutgers F-P    
5200/95 3/4 3.93 5187 95 64.00     round filter
5213/44 [340] 2x2 6.05 5213 44 78.20 H beta set   one face coated
5257/44 [341] 2x2 6.03 5259 44 79.34 H beta set   one face coated
5295/1590 [342] 4x4 5.24 5292 1625 90.66 HST "V"   thin film coating
5362/895 3x3 6.14 5362 895 76.80 V Harris set 1    
5370/900 3x3 6.18 5370 900 75.64 V Harris set 2    
5378/1018 [343] 2x2 3.97 5378 1018 91.00 V Harris set 3    
5380/1000 [344] 2x2 4.04 5380 1000 91.00 V Harris set 1    
5400/100 [345] 2x2 5.57 5415 114 46.58      
5409/948 [346] 2x2 4.10 5409 948 90.50 V Harris set 2    
 5435/1081 [347] 2x2 5.72 5435 1081 72.00 V-14    
5438/1026 [348] 3x3   5438 1026 91.91 V Tek set#2    
5443/1060 [349] 4x4 5.12 5443 1060 88.50 V Harris set#1   4mts
  4x4         V set#2 Schmidt    
5460/1118 2x2 5.72 5465 1118 74.60 V-16    
5461/100 [350] 1x1 3.71 5447 96 55.00      
5470/1114 2x2 5.69 5470 1114 74.00 V-15    
5475/1000 [351] 3x3   5475 1000 87.71 V Tek set#1    
5497/241 [352] 4x4 9.74 5478 244 70.83 y Strom. 4x4    
5500/200 [353] 2x2 3.51 5514 224 62.76 y Strom.set 1    
5500a240 [354] 2"d 7.63 5513 238 74.45 y Strom.set 2    
 5500b240 2x2 8.82 5500 260 80.00 y Strom.set 3    
5588/1127 3x3 5.09 5588 1127 89.44 V Tek set#3    
5755/20 [355] 2x2 6.03 5758 20 60.19      
5800/100 [356] 2x2 5.55 5796 108 56.35      
5850/1300 2x2 6.08     86.00      
 5877/14 [357] 2x2 9.36 5877 16 75.62 old Fabry-Perot    
5890/40 [358] 2"d 8.05 5890 39 74.12 Rutgers F-P    
5894/14 [359] 2x2 5.79 5889 16 56.87 Rutgers F-P    
5900/350 [360] 2x2 6.09 5924 268 62.01 x Gunn-T set 1    
5915/40 [361] 2"d 6.77 5917 38 83.00 Rutgers F-P    
5950/40 [362] 2"d 7.43 5950 44 79.4 Rutgers F-P    
5997/40 [363] 2"d 7.94 5994 40 74.8 Rutgers F-P    
6087/40 [364] 2x2 7.94 6084 42 71.40 Rutgers F-P    
6100/100 [365] 2x2 5.12 6101 103 53.66      
6120/140 [366] 3x3 7.97 6115 135 85.89 Supernova    
6130/590 [367] 4x4 8.35 6130 590 56.19 T1 Wash   .9% leak at 1.2u.
6152/625 [368] 3x3 8.21 6152 625 58.06 T1 Wash   1% leak at 1.0u.
6170/590 [369] 2x2 5.07 6170 590 50.88 T1 Wash. set#3   1% leak at 1.0u.
6301/10 [370] 2x2 10.98 6294 13 75.00 old Fabry-Perot    
6330/100 [371] 1"d 5.03 6342 93 65.15 633fs10-25   fringes
6400/1450 [372] 3x3   6400 1450 81.09 R Tek set#2    
6410/1470 [373] 3x3 5.23 6410 1470 81.76 R Tek set#3    
6420/1180 2x2 5.64 6420 1180 68.00 R-13    
6425/1500 [374] 3x3 5.25 6425 1500 79.69 R Tek set#1    
6437/1525 [375] 4x4 5.22 6437 1525 81.38 R Harris set#1   4mts
  4x4         R set #2 Schmidt    
6440/1520 [376] 2x2 3.98 6440 1520 86.00 R Harris set 1    
6454/1451 [377] 2x2 3.98 6454 1451 85.00 R Harris set 2    
6465/1300 2x2 5.64 6465 1300 57.00 R-10   bubbles
6475/1600 3x3 6.18 6475 1600 81.70 R Harris set 1    
6477/1235 2x2  5.80 6477 1235 59.74 R-11   broken corner
6477/75 [378] 2x2 6.12 6484 77 83.20 H alfa set    
6484/1532 [379] 2x2 4.06 6484 1532 86.00 R Harris set 3    
6493/1445 3x3 6.15 6493 1445 77.00 R Harris set 2    
6500/1330 2x2 3.00 6500 1330 92.00 R 33  PFCCD    
6510/1300 2x2 3.02 6510 1300 90.00 R 34  PFCCD    
6520/76 [380] 2x2 6.15 6530 71 81.09 H alfa set    
6552/40 [381] 2"d 6.63       Rutgers F-P    
6559/5 [382] 2x2 9.08 6557 7 56.12 old Fabry-Perot    
6560/110 [383] 2x2 3.91 6591 118 62.28 Corion    
 6560/900 [384] 4x4 9.19 6495 900 94.95 Gunn r    
6563/110 2x2 4.10 6562 120 62.66 3C    
6563/12 [385] 2"d 7.62 6563 11 66.55 Rutgers F-P    
6563/16 1x1 6.18 6573 15 79.00      
6563/17 [386] 2x2 9.50 6560 20 77.41 old Fabry-Perot   bad corner
656375-3 [387] 3x3 5.61 6559 64 89.37      
656375-4 [388] 4x4 5.54 6567 68 82.32      
6563/78 [389] 2x2 6.11 6568 68 82.36 H alfa set    
6563/85 1x1 6.15 6586 103 83.00     bad corner
6568/20 [390] 2x2 5.61 6568 19 69.81 H alfa narrow   both faces coated
6571/15 [391] 2"d 6.01 6571 16 72.21 Rutgers F-P    
6575/14 [392] 2x2 12.33 6571 18 74.12 Old Fabry Perot   LMC Redshift
6584/15 [393] 2"d 8.00 6583 16 74.56 Rutgers F-P    
6586/20 [394] 2x2 5.60 6583 20 70.80 H alfa narrow   both faces coated
6586/40 [395] 2x2 5.38 6590 40 80.50 Rutgers F-P    
6600/100 [396] 2x2 4.74 6593 118 62.08 #1    
6600a110 2x2 4.77 6593 118 62.08 #2    
6600b110 [397] 2x2 4.46 6597 108 57.25 3c    
660075-3 [398] 3x3 5.57 6598 69 87.77      
660075-4 [399] 4x4 5.57 6600 67 84.77      
6602/20 [400] 2x2 5.74 6596 18 70.04 H alfa narrow   one face coated
6606/75 [401] 2x2 6.14 6608 70 84.30 H alfa set    
6618/20 [402] 2x2 5.72 6610 18 72.22 H alfa narrow   both faces coated
6636/20 [403] 2x2 5.71 6628 19 72.49 H alfa narrow   both faces coated
6649/76 [404] 2x2 6.15 6650 77 87.49 H alfa set    
6654/20 [405] 2x2 5.73 6645 20 76.44 H alfa narrow   both faces coated
6672/20 [406] 2x2 5.72 6661 20 72.82 H alfa narrow   both faces coated
6680/100 [407] 2x2 4.54 6687 112 87.59 CFA set    
6693/76 [408] 2x2 6.02 6693 92 87.93 H alfa set    
6700/350 [409] 2x2 6.07 6696 316 61.71 r Gunn-T set 1    
6705/5 1x1   6702 7 42.00      
6716/13 2x2 5.23 6716 13 55.00      
6718/20 [410] 2x2 6.19 6708 26 80.32 H alfa narrow   one face coated
6718/5 [411] 1x1   6719 6 46.00      
6724/34 2x2 9.33 6726 36 82.71 old Fabry-Perot    
6724/7 [412] 2x2 5.22            
6727/1015 [413] 2x2 5.04 6727 1015 93.83 r Gunn-T set 2    
6728/1000 [414] 3x3 5.05 6728 1000 93.83 r Gunn-T    
6731/13 2x2 5.27            
6731/6 [415] 2x2 10.88 6733 7 50.61 old Fabry-Perot    
6732/20 [416] 2x2 5.93 6730 26 76.93 H alfa narrow   one face coated
6732/5 1x1   6737 10 32.00      
6737/76 [417] 2x2 6.06 6746 91 86.06 H alfa set    
6738/50 [418] 4x4 7.97 6744 50 87.83      
6781/78 [419] 2x2 6.12 6785 77 78.98 H alfa set    
6820/100 [420] 2x2 4.59 6820 100 87.00 CFA set    
6826/78 [421] 2x2 6.14 6832 81 82.32 H alfa set    
6840/120 2x2 5.00 6903 130 63.40      
6840/90 [422] 1"d 5.91 6848 90 76.80 Comet set    
6850/80 2x2 4.88 6899 134 61.59      
6860/80 2x2 4.96 6888 128 62.09      
6871/78 [423] 2x2 6.00 6867 85 86.73 H alfa set    
6890/100 [424] 2x2 6.45 6890 100 83.00 CFA set    
6916/78 [425] 2x2 6.15 6916 84 82.46 H alfa set    
6961/79 [426] 2x2 6.14 6967 90 84.01 H alfa set    
7000/175 [427] 1"d 6.11 7125 175 82.00 Comet set    
7007/79 [428] 2x2 6.07 7007 81 75.00 H alfa set    
7053/79 [429] 2x2 6.14 7046 77 77.00 H alfa set    
7080/100 [430] 2x2 6.43 7080 100 83.00 CFA set    
7099/80 [431] 2x2 6.03 7101 82 78.00 H alfa set    
7146/80 [432] 2x2 6.12 7146 72 82.13 H alfa set    
7193/80 [433] 2x2 6.10 7198 65 77.14 H alfa set    
7240/75 [434] 2x2 6.06 7235 71 84.84 H alfa set    
7288/82 [435] 2x2 6.08 7280 85 84.65 H alfa set    
7336/82 [436] 2x2 6.03 7326 78 84.58 H alfa set    
7384/84 [437] 2x2 6.12 7367 87 82.25 H alfa set    
7433/84 [438] 2x2 6.09 7421 83 84.99 H alfa set    
7482/84 [439] 2x2 6.09 7469 98 83.30 H alfa set    
7500/100 [440] 2x2 4.02 7512 147 58.00      
7531/84 [441] 2x2 6.00 7532 90 80.40 H alfa set    
7580/85 [442] 2x2 6.07 7585 97 77.80 H alfa set    
7630/85 [443] 2x2 6.07 7636 85 81.53 H alfa set    
7680/84 [444] 2x2 5.95 7678 78 80.15 H alfa set    
7700/110 [445] 2x2 4.34 7708 108 64.00      
7730/85 [446] 2x2 6.04 7731 81 78.33 H alfa set    
7781/86 [447] 2x2 6.12 7774 77 74.33 H alfa set    
7832/86 [448] 2x2 6.04 7824 91 80.08 H alfa set    
7860/2000 2x2 5.14   84        
7883/86 [449] 2x2 6.12 7871 93 77.65 H alfa set    
7935/88 [450] 2x2 6.09 7926 98 75.46 H alfa set    
8067/1485 [451] 3x3 6.11 8067 1485 95.49 I kc Tek set#3    
8075/1500 [452] 3x3 6.13 8075 1500 95.53 I kc Tek set#1    
8075/1500 [452] 4x4 6.19 8075 1500 94.09 I kc set#1 4mts    
8100/110 [453] 2x2 4.03 8106 123 67.00      
8100/1500 [454] 3x3 5.08 8100 1500 93.00 i Gunn-T    
8102/1505 [455] 2x2 5.03 8102 1505 93.89  Gunn-T set 2    
8118/1415 [456] 3x3   8118 1415 96.63 I kc Tek set#2    
8120/1500 [457] 4x4 9.22 8065 1600 86.60 Gunn i    
8123/1313 [458] 2x2 7.99 8123 1313 84.30 T2 Wash. set#3    
8200/900 2x2 6.11 8186 943 90.00 i Gunn-T set 1    
8227/1865 2x2 4.62 8227 1865 71.65 I-11    
8200/1640 2x2 4.64 8200 1640 76.00 I-10    
8200/1640 2x2 4.53 8200 1640 76.00 I-13   bubble
8300/110 [459] 2x2 3.76 8306 128 61.00      
8300/2500 [460] 4x4 5.43 8310 2560 98.73 HST "I"   thin film coating
8542/18 [461] 2x2   8540 19 60.20 Rutgers F-P    
8549/25 [462] 2x2   8560 28 77.17 Rutgers F-P    
8585/100 [463] 2"d   8589 105 85.57 Rutgers F-P    
8632/100 [464] 2x2   8639 90 91.89 Rutgers F-P    
9532/20 [465] 2x2 7.10 9536 20 45.00      
9900/ n [466] 2x2              
9900/ n [467] 3x3 5.05     95.30 z Gunn-T set 2   from 8435 (45%) --->
  4x4 5.07     95.50 z Gunn-T   from 8490 (57%) --->
            z Gunn    

 

                 

mkeaneATnoao.edu

CTIO Various Filters - Transmission curves

Transmission Curves (.txt)

3615/570 [468]

3656/167 [469]

3780-181 [470]

3912-196 [471]

4054-214 [472]

4207-233 [473]

4372-255 [474]

4551-280 [475]

4650-190 [476]

4745-309 [477]

4900-650 [478]

4955-341 [479]

go back to CTIO Various [480]

 

Filters for use with 4m R-C SPec

Order blocking

Standard Schott Colored Glass Filters

"Blue" Blocking, Long-Pass Filters

    WG335
    WG345 [481]
    WG360 [482]
    GG385 [483]
    GG420 [484]
    GG455 [485]
    GG495 [486]
    OG515
    OG570 [487]
    OG590
    RG610 [488]
    RG665
    RG695 [489]

"Red" Blocking, Bandpass Filetrs

    BG23
    BG38 [490]
    BG39 [491]

Other

    Copper Sulfate (CuSO4) [492]
    Corning 9780

Michael Keane (mkeaneATnoao.edu)
Jack Baldwin (jbaldwinATnoao.edu)

Telescopes

Telescopes no longer in operations by CTIO or SMARTS.

SMARTS 1.3-m Telescope

The SMARTS 1.3 meter telescope has been close since late August 2019.

The SMARTS 1.3-meter telescope was previously the 2MASS southern telescope before SMARTS took over its operation. A permanently-mounted, dual-channel, optical-IR imager called ANDICAM takes simultaneous optical and infrared data on the telescope. The 1.3-m was operated entirely in service / queue mode.

ANDICAM started regular operations at the 1.3-m in February 2003 by the SMARTS Consortium. Previously, it had been operated in queue mode on the 1.0-m (YALO Consortium) with the optical detector since the 1998B semester. The IR array was installed in July 1999, enabling simultaneous optical and infrared imaging, including dithering in the IR channel while the optical channel integrates.  ANDICAM was constructed by the Ohio State astronomical instrumentation group led by Darren DePoy and its construction was funded in part by the National Science Foundation.

ANDICAM takes simultaneous optical and infrared data by using a dichroic with a CCD and a HgCdTe array.  A moveable mirror allows dithering in the IR while an optical exposure is going on. The primary purpose of the instrument is for microlensing event follow-up to look for the presence of planets and other anomalous behaviour.  ANDICAM is operated by the Prospero control software. It also has a twin--DANDICAM (Dutch ANDICAM)--that is used on a 1m telescope in South Africa.  With ANDICAM one can obtain UBVRIJHK photometry within a 6 arcmin (optical) or 1 arcmin (near-IR) field.

ANDICAM Resources

  • SMARTS 1.3-meter [493] (Yale University webpage)
  • ANDICAM Data Products [494] (Yale University webpage)
  • ANDICAM Instrument and Detector Characteristics [495] (Ohio State University webpage)
  • Filters for ANDICAM at SMARTS 1.3-meter Telescope. BVRI and JHK filters
     
      FILTER Plot Data file
    CCD Filters KPNO-B kpno_b.pdf [496] kpno_b.txt [497]
      KPNO-V kpno_v.pdf [498] kpno_v.txt [499]
      KPNO-I kpno_i.pdf [500] kpno_i.txt [501]
    Infrared Filers J-band andi_j.pdf [502] j_andi.txt [503]
      H-band andi_h.pdf [504] h_andi.txt [505]
      K-band andi_k.pdf [506] k_andi.txt [507]
    Legacy Filters YALO B yalo_b.pdf [508] b_yalo.txt [509]
      YALO wide R yalo_r.pdf [510] r_yalo.txt [511]
  • ANDICAM E-mail lists [512]

 

Operational Information

  • Telescope Operator Instructions [513] (Yale University webpage)
  • Optical Processing Procedure [514] (Yale University webpage) 

 

Reports

  • Nightly Observing Logs [515] (2006 - 2014)
  • Nightly Observing Reports [516] (2006 - 2014)
  • Daily Processing Reports [517] (2003-2013)
     
  • Photometric Standards and Measurements Report [518]

 

General Information

  • Problem Observing Landolt PG1323 [519]
  • Neutral Density Filters [520]
  • Information on Queue Software [521]

 

1.3m Usage Summaries (2004-2006)

  • 2004B Usage [522]
  • 2005A Usage [523]
  • 2005B Usage [524]
  • 2006A Usage [525]
  • 2006B Usage [526]

 

NOTE: The 1.3m has been removed from the CTIO exposure time calculator. The values obtained using this calculator were found to be too optimistic by several orders of magnitude. Please estimate you exposure times using the values found at the ANDICAM detector website.

1.3-m Operational Information

Under Construction. Thanks for your patience.

Telescope Operator Instructions [513]
Optical Processing Procedure [527]

Reports and Logs

Nightly 1.3m Observing Log Archive [515]

1.3m Nightly Observer's Reports
[516]

1.3m Telescope Trouble Reports
[528]

Report Forms

Photometric Standards and Measurements Reports [529]

Nightly Observing Logs [530]
Nightly Observing Reports [513]
Daily Processing Reports [517]

SMARTS 1.3-m Telescope Information

delete this page.

IR Photometric Measurements

delete this page.

Infrared Flat Field Images

March 2009

Combined infrared flat field images now available to ANDICAM users

To assist you in reducing your infrared images, we are now providing combined infrared flat field images for each filter. These are created by combining all of the flat images that are taken at each dither position, producing one flat image for each filter. These can be downloaded from the ftp site in /home/ftp/pub/smarts13m/flatsir.

Separate flat field images (at each of the dither positions) will continue to be available from the same ftp directory as before (/home/ftp/pub/smarts13m/calibsir).

Please direct any questions to either Michelle Buxton or Suzanne Tourtellotte.

 

1.3-m Queue Software

If you have to generate schedules for a telescope (or anything else) and are interested in streamlining the process, we recommend the software developed at NASA Goddard by the Science Goal Montior (SGM) group. The main website can be found here and you can download the specific software developed for SMARTS here. Email Michelle Buxton if you need help with creating the specific sun and moon files needed (this is currently done using another piece of software, XEphem).

ANDICAM Neutral Density Filters

The 1.3m/ANDICAM now has neutral-density filters installed for viewing bright sources in V, I, H, and narrowband He 1038nm. Tests with standard stars show that the V+ND combination has an attenuation of 4.6 (a factor of 39,000, or 11.5 magnitudes) over that of the V filter, and the I+ND combination an attentuation of 3.0 (1100, or 7.6 magnitudes).

The ANDICAM instrument has two optical neutral density filters, V+ND4 and I+ND4, and two infrared neutral density filters, H+ND4 and 10830+ND3. (The 10830+ND3 filter is a narrowband He filter.) The optical ND filters are 5-arcminute diameter round filters, and the IR ND filters are 2.4-arcmin square filters. According to the previous paragraph, the V+ND filter has an attenuation of 4.6 (a factor of 39,000, or 11.5 magnitudes) over that of the V filter, and the I+ND combination has an attenuation of 3.0 (1100, or 7.6 magnitudes).

From observations of Eta Car in the ND4 filters done by Alan Whiting, the FWHM generally ranges from 2.5 to 4.9 pixels in V. He also notes that flat fields taken through the attenuated filters have not been successful in calibrating the data. However, the flats from the unattenuated V, I, and H filters seem to work fine with ND filter observations.

Landolt Standard PG1323 on the 1.3m Telescope

We have spotted a peculiarity in observing the Landolt standard PG1323. It appears as though the light of a bright star (most likely Spica) outside the field of view is not properly baffled, causing the raised level of the background, as shown here:

In principle, this should not affect the count rate in the standard stars themselves, but, we do not recommend using this particular standard for your observations.

Estimating exposures times

The 1.3m has been removed from the CTIO exposure time calculator. The values obtained using this calculator were found to be too optimistic by several orders of magnitude. Please estimate you exposure times using the values found at the ANDICAM detector website (http://www.astronomy.ohio-state.edu/ANDICAM/detectors.html#sens [531]).

1.3-m data processing procedures

Standard procedures for handling 1.3m [532] data include the following:

  1. Bias frames are taken every night.
     
  2. Flats
    BVRI dome flats are observed every night, 10 exposures of each.
    JHK dome flats are observed every third night in rotation. 10 exposures are taken at each of the 7 dither positions (dither throw = 40). 10 additional exposures at each dither position are then taken with the dome lamps off. The final flat at each dither position is the difference between the combined lamp-on flat minus the combined lamp-off flat.

    PLEASE NOTE: The U filter is currently broken and unusable.
     

  3. Optical data are processed using standard IRAF procedures (see here for further details [533]), and are usually available by 11:00am (EST) the following day. You will be contacted  with instructions on how to collect your data.
     
  4. IR data are not processed, but the raw frames and combined dome flats can be collected in the same manner as the optical data. Note that the data are binned 2x2 (resulting in 0.34" pixels).
     
  5. The PI of each project will receive automated email notifications each night that data is obtained for the project. A second person can receive these notifications as well (contact the 1.3-m Queue Manager [534] if this is desired).
     
  6. Each photometric night, a Landolt standard field is observed once in all optical filters, and two IR standards (one blue and one red) are observed once in all IR filters, each at their best airmass. Once a month, more thorough observations of the same standards are performed, observing each star at three different airmasses. These standards are available to all users. We do our best to choose those Landolt fields with at least 3 standard stars available in the field of view. If your program requires additional standard observations, they must be included as part of your program, and are charged against your allocation.  See 1.3-m Photometric Standards [518] page for more information.

Optical Processing Procedure

SMARTS optical images are processed with the IRAF task CCDPROC using a bias prepared with the IRAF task ZEROCOMBINE and a domeflat or skyflat prepared with the IRAF task FLATCOMBINE. As of November 1, 2006, the SMARTS optical images are processed slightly differently. In order to remove the low-level horizontal "banding" that we have seen at times during the last six months, the overscan is now fit with a cubic spline function of order 11. All other steps remain the same. The old processing parameters can be found here.

Modified 11/01/2006

===============================================================================
Ten biases are taken each night and are combined into a single
bias frame using the IRAF task ZEROCOMBINE.

The IRAF task ZEROCOMBINE parameters are set as follows:

                I R A F
Image Reduction and Analysis Facility
  PACKAGE = ccdred
  TASK = zerocombine
       
  input   =   List of zero level images to combine
  (output = ZERO) Output zero level name
  (combine= average) Type of combine operation
  (reject = minmax) Type of rejection
  (ccdtype= ) CCD image type to combine
  (process= no) Process images before combining?
  (delete = no) Delete input images after combining?
  (clobber= no) Clobber existing output image?
  (scale  = none) Image scaling
  (statsec= ) Image section for computing statistics
  (nlow   = 1) minmax: Number of low pixels to reject
  (nhigh  = 1) minmax: Number of high pixels to reject
  (nkeep  = 1) Minimum to keep (pos) or maximum to reject(neg)
  (mclip  = yes) Use median in sigma clipping algorithms?
  (lsigma = 3.) Lower sigma clipping factor
  (hsigma = 3.) Upper sigma clipping factor
  (rdnoise= 0.) ccdclip: CCD readout noise (electrons)
  (gain   = 1.) ccdclip: CCD gain (electrons/DN)
  (snoise = 0.) ccdclip: Sensitivity noise (fraction)
  (pclip  = -0.5) pclip: Percentile clipping parameter
  (blank  = 0.) Value if there are no pixels
  (mode   = ql)  

===============================================================================

VRI dome flats are observed every night, 10 exposures of each. 

JHK dome flats are observed every third night in rotation.  10 exposures are taken at each of the 7 dither positions (dither throw = 40).  10 additional exposures at each dither position are then taken with the dome lamps off.  The final flat at each dither position is the difference between the combined lamp-on flat minus the combined lamp-off flat. 

B sky flats are taken due to undesirable artifacts present in the B domes.  A minimum of 3 images are taken every night weather permitting.  It is required that individual skyflats have different RA and
DEC values.

In all cases, the individual flats are processed first with CCDPROC for the overscan and zero corrections, then combined with FLATCOMBINE.

FLATCOMBINE parameters are set as follows for the SKY flats:

                I R A F
Image Reduction and Analysis Facility
  PACKAGE = ccdred
  TASK = flatcombine
       
  input   =   List of flat field images to combine
  (output = FLAT) Output flat field root name
  (combine= median) Type of combine operation
  (reject = minmax) Type of rejection
  (ccdtype= ) CCD image type to combine
  (process= no) Process images before combining?
  (subsets= no) Combine images by subset parameter?
  (delete = no) Delete input images after combining?
  (clobber= no) Clobber existing output image?
  (scale = mode) Image scaling
  (statsec = ) Image section for computing statistics
  (nlow = 1) minmax: Number of low pixels to reject
  (nhigh = 1) minmax: Number of high pixels to reject
  (nkeep = 1) Minimum to keep (pos) or maximum to reject(neg)
  (mclip = yes) Use median in sigma clipping algorithms?
  (lsigma = 3.) Lower sigma clipping factor
  (hsigma = 3.) Upper sigma clipping factor
  (rdnoise = 0.) ccdclip: CCD readout noise (electrons)
  (gain = 1.) ccdclip: CCD gain (electrons/DN)
  (snoise = 0.) ccdclip: Sensitivity noise (fraction)
  (pclip = -0.5) pclip: Percentile clipping parameter
  (blank = 0.) Value if there are no pixels
  (mode = ql)  

FLATCOMBINE parameters are set as follows for the DOME flats:

        

                   
  I R A F
Image Reduction and Analysis Facility
  PACKAGE = ccdred
  TASK = flatcombine
  input   =   List of flat field images to combine
  (output = FLAT) Output flat field root name
  (combine= average) Type of combine operation
  (reject = crreject) Type of rejection
  (ccdtype= ) CCD image type to combine
  (process= no) Process images before combining?
  (subsets= no) Combine images by subset parameter?
  (delete = no) Delete input images after combining?
  (clobber= no) Clobber existing output image?
  (scale  = mode) Image scaling
  (statsec= ) Image section for computing statistics
  (nlow   = 1) minmax: Number of low pixels to reject
  (nhigh  = 1) minmax: Number of high pixels to reject
  (nkeep  = 1) Minimum to keep (pos) or maximum to reject(neg)
  (mclip  = yes) Use median in sigma clipping algorithms?
  (lsigma = 3.) Lower sigma clipping factor
  (hsigma = 3.) Upper sigma clipping factor
  (rdnoise= 6.5) ccdclip: CCD readout noise (electrons)
  (gain   = 2.3) ccdclip: CCD gain (electrons/DN)
  (snoise = 0.) ccdclip: Sensitivity noise (fraction)
  (pclip  = -0.5) pclip: Percentile clipping parameter
  (blank  = 1.) Value if there are no pixels
  (mode   = ql)  

===============================================================================
Images are processed, one filter type at a time, with a bias and a skyflat of the corresponding filter type using the IRAF task CCDPROC. The result is a processed image, prefixed with the letter "r", that have been OZF'ed (overscanned, flattened and zeroed) but not T'ed (trimmed).

When biases are not taken for a given night, the ZEROCOMBINEd bias from the nearest available night is used instead.  This bias will have already gone through CCDPROC with images of its same night. The bias section for use in overscanning was determined by IMPLOT to extend from less than 3 and more than 14, so [3:14,1:1024]) was chosen as the overscan strip image section.

When contemporaneous skyflats are not available, FLATCOMBINEd skyflats from previous nights are used instead.  These skyflats will have already been processed using their own contemporaneous biases.

The IRAF task CCDPROC parameters are set as follows:

              I R A F 
Image Reduction and Analysis Facility
PACKAGE = ccdred
   TASK = ccdproc

              
  I R A F 
Image Reduction and Analysis Facility
  PACKAGE = ccdred
  TASK = ccdproc
  images  = @in.(filtertype) ) List of CCD images to correct
  (output = @out.(filtertype) ) List of output CCD images
  (ccdtype= ) CCD image type to correct
  (max_cac= 0) Maximum image caching memory (in Mbytes)
  (noproc = no) List processing steps only?
       
  (fixpix = no) Fix bad CCD lines and columns?
  (oversca= yes) Apply overscan strip correction?
  (trim   = no) Trim the image?
  (zerocor= yes) Apply zero level correction?
  (darkcor= no) Apply dark count correction?
  (flatcor= yes) Apply flat field correction?
  (illumco= no) Apply illumination correction?
  (fringec= no) Apply fringe correction?
  (readcor= no) Convert zero level image to readout correction?
  (scancor= no) Convert flat field image to scan correction?
       
  (readaxi= line) Read out axis (column|line)
  (fixfile= ) File describing the bad lines and columns
  (biassec= [3:14,1:1024]) Overscan strip image section
  (trimsec= ) Trim data section
  (zero   = ccd(night).bias) Zero level calibration image
  (dark   = ) Dark count calibration image
  (flat   = ccd(night).sky/domeflat(filter) ) Flat field images
  (illum  = ) Illumination correction images
  (fringe = ) Fringe correction images
  (minrepl= 1.) Minimum flat field value
  (scantyp= shortscan) Scan type (shortscan|longscan)
  (nscan  = 1) Number of short scan lines
       
  (interac= no) Fit overscan interactively?
  (functio= spline3) Fitting function
  (order  = 11) Number of polynomial terms or spline pieces
  (sample = *) Sample points to fit
  (naverag= 1) Number of sample points to combine
  (niterat= 1) Number of rejection iterations
  (low_rej= 3.) Low sigma rejection factor
  (high_re= 3.) High sigma rejection factor
  (grow   = 0.) Rejection growing radius
  (mode   =   ql)  

 

1.3-m Photometric Standards

1.3m Observations of General-Purpose Photometric Standards and Reports of Calculated Measurements

General-purpose photometric standards are observed every photometric night on the 1.3m telescope.

The procedure is as follows:

Each photometric night, 1 Landolt field is observed ONCE in all optical filters. In addition, 2 IR standards (one blue and one red) are observed ONCE in all IR filters. Because extinction coefficients cannot be calculated on such nights, "default" values (see below)are used for calculations of zeropoints and color terms.

Periodically, more thorough observations of the same standards are performed, observing each of the 3 standard fields (1 Landolt, 2 IR fields) at 3 different airmasses in order to calculate extinction coefficients. The medians of these values, taken over many months, are the "default" extinction coefficients mentioned above.

Standard star images are available to all users and are not charged against their allocation. We do our best to choose those Landolt fields with at least 3 standard stars available in the field of view. If your program requires additional standard observations, please include them in your PhaseII submission. Additional observations are charged against your allocation.

     Photometric Results Optical [535] Infrared [536]
  Extinction Coefficients Values Optical [537] Infrared [538]
  Description of Photometric Calculation Methods Optical [539] Infrared [540]

 

ANDICAM Contacts

SMARTS Consortium [90]

ANDICAM & CTIO 1.3m Telescope Contact Information

Program Coordinators:

Program coordinators are responsible for the coordinating their institution's shares of the SMARTS telescope time. Members of the U.S. and Chilean astronomical communities granted time on SMARTS telescopes and instruments through the NOAO TAC should work with the AURA/NOAO coordinator.

These contacts are for both SMARTS in general and ANDICAM in particular:

SMARTS Contacts & Coordinators:

SMARTS Operations:
    Prof. Charles Bailyn (charles.bailyn@yale.edu [541])
    SMARTS Consortium General Manager

    Victoria Gardner (victoria.gardner@yale.edu [542])
    SMARTS Administrative Coordinator

Ohio State University:
    Prof. Darren DePoy (depoy@astronomy.ohio-state.edu [543])
    Instrument configuration and future upgrades

    Prof. Richard Pogge (pogge@astronomy.ohio-state.edu [544])
    Data-Acquisition and Observing Preparation/Tracking Software


 

Informational Contacts:

ANDICAM Observing Queue Manager:
    Dr. Michelle Buxton (Yale) (michelle.buxton@yale.edu [545])

Data Processing and Archving Manager:
    Dr. Suzanne Tourtellotte (Yale) (swt@astro.yale.edu [546])

ANDICAM Instrument Scientist:
    Prof. Darren DePoy (OSU) (depoy@astronomy.ohio-state.edu [543])

CTIO Operations:
    Dr. R. Chris Smith (CTIO) (csmith@noao.edu [547])

ANDICAM Web Pages & Observing Preparation Tools:
    Prof. Richard Pogge (OSU) (pogge@astronomy.ohio-state.edu [544])

NOAO Observer Programs:
    Dr. R. Chris Smith (CTIO) (csmith@noao.edu [547])

 

ANDICAM Phase II Observing Tools

Observing Program Preparation, Submission & Tracking Tools

This page provides access to tools for preparing, submitting, and tracking the progress of "Phase II" observing programs approved for scheduling on the CTIO 1.3-meter [532] telescope and ANDICAM [548] . 

Access to these tools is via a login screen [549]. If you have been granted time with ANDICAM [548] but not yet received a SMARTS Project ID code for your observing program, please contact your program coordinator [550].

Login to the ANDICAM Phase II Observing Pages [549]

Information:

    Phase II Submission Instructions [551]

    Observation Template (Obs File) Creation Form Instructions [552]

    Multi-Observation Script Creation Form Instructions [553]

    Phase II Observing Program Submission Form Instructions [554]

    Obs File Manager Form Instructions [555]

    Archive of Old Observing Files [556]

ANDICAM - Phase II Submission Instructions

UNDER CONSTRUCTION. Thank you for your patience.  Please use this ANDICAM  Phase II menu [557] for now.

   Contents
1. The ANDICAM Phase II Observing Program Submission Process
2. What kind of observing program do you have?
3. Submitting an ANDICAM Phase II Observing Program
4. Observation Execution Time Estimation
5. Phase II Submission Checklist
6. Program Tracking
7. Problems and Feedback

 

 

 

 

 

 

1. The ANDICAM Phase II Observing Program Submission Process

Once a project has been approved for observing with ANDICAM, the PI needs to submit a detailed "Phase II" observing plan to the queue manager. This plan consists of a set of observations to be carried out, each "unit" observation of which is described by one or more data-acquisition template files called "Observation Templates" or "obs files". A set of written instructions for how to use these obs files to execute your program observations rounds out the Phase II submission package. Other elements may be required for more complex programs or those with long target lists.

We have adopted a web-based electronic submission process built around a suite of simple web forms. The observing program submission procedure is analogous to "Phase II" observing preparation for Hubble Space Telescope, Gemini, WIYN, or the ESO NTT and VLT. Indeed, many ideas and examples from those systems were used in considering the development of these tools. The CTIO 1.3m has only one instrument with three well-defined observing modes, so it should be very straightforward to use efficiently, and the Phase II process is therefore proportionally simpler than these other observatories. Our highly successful experience with this observing mode at the Yale 1-meter telescope bears out this expectation.

back to top

2. What kind of observing program do you have?

ANDICAM observing programs generally come in three broad types: Synoptic, Survey, and Target-Of-Opportunity.

Synoptic Programs

    These are programs in which you wish to observe a relatively small number of variable targets many times over the course of an observing season. For these programs, you will generally create a small number of single-target obs files that will get executed many times.

    In cases where each target requires either a large number of separate obs files (e.g., 5 obs files, one for each of the UBVRI filters), or a small number of obs files to be executed in a specific sequence with repeats (e.g., I+H and V+H dual-mode observations, executed in the sequence "VIIV"), you have the option of creating an additional multi-observation script that will define the observing sequence made up of particular obs files. For "complex" synoptic programs, use of multi-observation scripts can improve the efficiency of your program (there is less for the on-site observer to type).

Survey Programs

    These are programs in which you have a relatively large number of targets that you wish to observe only once, but in many filters. For example, a program to obtain UBVRI+JHK images of a sample of 100 cool subdwarf stars would require you to create nearly 500 separate obs files using only single-target files. This is clearly ridiculous.

    To make execution of such programs easier, you would settle on some standarized set of exposure times (e.g., either one set for all in each filter, or divide your sample into long and short exposure time groups), and then create a small set of multi-target obs files for each generic set. These obs files have no target specifications (name and coordinates), only filter and exposure settings.

    You would then create a multi-observation script to wrap around these generic obs files which would be executed by the on-site observer to take your observations. The script prompts the observer to enter the target name each time, ensuring that the correct object name makes it into the header. A complete target list with coordinates, specifying which are to be observed with which multi-observation script, rounds out your Phase II submission.

    For our example of the 100 star UBVRI+JHK observing program, we might divide the sample into two exposure time sets (long and short), and create 5 multi-target obs files for each filter combination for each set. This would reduce the number of Phase II observing files needed to execute the program from 500 to 12: 6 files for each of the long and short sets, each of which consist of 5 multi-target obs files and 1 multi-observation script to execute them. The advantages of combining generic obs files with scripts is considerable.

Target-Of-Opportunity (TOO) Programs

    These are one-time programs triggered by transient events like novae, supernovae, gamma-ray bursts, etc. TOO programs must be pre-approved (if NOAO time), or you must warn the queue management team in advance if you think you will be requesting TOO observations. Politics apply, so keep on top of the situation. In the event of super-rare events (e.g., a Galactic or LMC/SMC Supernova), we will coordinate all observations by the SMARTS consortium as a whole.

    TOO programs will be treated like single-target synoptic programs. You will need to prepare single-target obs files (and any optional multi-observation scripts) in advance of calling in the TOO trigger, and submit a Phase II program using the regular forms.

    Important! TOO programs requested after 3:30pm Eastern Time (1530 EST or EDT) will be executed that night at the discretion of the queue manager, otherwise they will be deferred to the next night. We remind all principal investigators that they are specifically forbidden to call up the on-site observers directly, and note that the on-site observers are empowered to hang up on you politely (in fact, they are instructed to ignore all such extraneous calls). Maintaining a clear, unambiguous "chain of command" is absolutely essential for smooth remote queue operations, so no matter how important it is, please work through the proper channels. Repeat offenders will have their observing programs terminated with extreme prejudice.

back to top

3. Submitting an ANDICAM Phase II Observing Program

The Phase II submission process has 3 steps, as follows:

Step 1: Login to the Observation Preparation Pages

    Projects awarded time with ANDICAM on the CTIO 1.3m Telescope (either via the SMARTS consortium or the NOAO TAC) are assigned a Project ID code their programs. This ID is your entry point into the observation preparation tools on this web server. Using these tools, you can create obs files for your observing program, and edit or delete existing obs files. The obs files reside on the server in separate directories assigned to each approved project.

    If you do not find your project ID in the list, contact the SMARTS queue manager or NOAO SMARTS Program Coordinator [558] (as appropriate). Please do not appropriate someone else's project space.

Step 2: Create Observing Templates and Scripts

    Observation Template Files ("obs files" for short) are used by the ANDICAM data-taking system to execute your observations. A set of web forms are provided to help you create obs files that have the correct format (eliminating syntax errors if you try to make them by hand). In addition, these obs file creation tools provide estimates of the amount of time required to execute an observation, exclusive of target acquisition and setup time. These estimates will help you optimize the data-acquisition for your program, especially for those programs that will be acquiring simultaneous IR and CCD images. Instructions for the creation of obs files is described in the ANDICAM Observation Template Files document. Please read this document carefully.

    If you are submitting a survey-type program, you also need to create a multi-observation script to execute your multi-target obs files. Programs that make use of multi-target obs files are required to submit valid multi-observation scripts with their Phase II program.

    Similarly, if you have a complex synoptic program, you may wish to also prepare one or more optional multi-observation script to execute your single-target obs files in a particular sequence. These scripts are optional for single-target programs, and should only be done if necessary.

Step 3: Submit the Phase II Observing Program

    Once you have created a complete set of obs files for all targets in your program (or a set of multi-target obs files and associated multi-observation scripts), the Phase II Observing Program Submission Form is used to submit the obs files, multi-observation scripts, and your detailed narrative instructions to the ANDICAM queue manager for eventual scheduling and implementation. This form is accessed from the main observing preparation menu after you have logged in (see Step 1 above).

    The Phase 2 submission form copies your observing files and the instructions (in an ASCII text file) to an ftp staging disk, and emails the instructions to the queue management team (via the andicam-submit mailing list). Once on the staging disk, the files will be downloaded by the queue manager or by the on-site observers (at the queue manager's instructions) to CTIO where they will be used to execute your program when it is scheduled. Click here for detailed instructions for using the Phase II program submission form.

    In preparing your Phase II submission for execution, the queue management team, in consultation with the instrument scientists, may require changes in your program if the proposed observations present an unusually complicated execution problem, or present book-keeping or execution-time problems for the on-site observers. Programs that require excessive execution time may be sent back for reduction in scope.

    In addition to submitting your Phase II observing program, these forms can be used to submit updates, corrections, and amendments to your program. The nature of the submission should be clearly spelled out at the top of the narrative instructions.

NOTE: Phase II files and instructions must be submitted by 3:30pm EST/EDT for the targets to be scheduled in that night's queue. Please contact the queue manager if this deadline presents a major problem to your program's feasibility.

back to top

4. Observation Execution Time Estimation

Time with the ANDICAM is generally awarded as a given number of hours of observing time to be devoted to a project. "Observing" in this context includes not only the amount of time spent collecting photons, but also the target acquisition, setup, and system overheads. These overheads are included in your time allocation (same as they would be if you were awarded, for example, a night of observing or some number of HST orbits). How efficiently you can observe determines what fraction of your time allocation is spent collecting photons.

Each obs file you create includes an estimate of the execution time. This execution time only includes the operations that occur between the observer typing "GO" for that obs file and when the last image in the obs file has finished being readout. This overhead calculation includes detector setup and readout times, as well as the requested integration times. These times are all highly predictable. Separate estimates are given for the CCD and IR channels (as appropriate), to help you evaluate how much deadtime there will be (the execution time for an obs file is the longer of the two estimates). Details on how this estimate is computed is included in the ANDICAM Observation Template Files document.

This is not the whole story, however. The individual obsfile execution time estimates do not include the following unpredictable overheads:

   1. Instrument configuration times, which typically run a 1-4 seconds per operation, and usually at most 10 seconds per obs file. These times are so short to be treated as "noise" in the process. For example, if the filter and exposure times from the previous obs file are the same as yours, there is no overhead, but if they must be changed, it takes 1 second to change the exptime and 1-4 seconds to change a filter (depending on the amount of motion required). Hence why we don't compute them since they depend unpredictably on what observations came before.

   2. Telescope Pointing & Target Acquisition (TP&TA). This typically requires between 3 and 5 minutes per pointing, and includes such unpredictables as telescope slew time, target acquisition offsets (though the 1.3m points admirably well, sometimes your target may be hard to identify the first time), and guide star acquisition (time to select a suitable guide star and lock the guider). If your program is simple (point to a target and take a series of images using a set of obs file), this TP&TA overhead will have a minimal impact on your time allocation. However, if your program requires a lot of pointings or offsets at a particular location, it will cut into the observing efficiency because of the greater TP&TA requirements, ultimately reducing the amount of your time allocation that is actually spent collecting photons.

In estimating the amount of time your Phase II submission will require, the ANDICAM queue managers at Yale will factor in a nominal TP&TA overhead, and combine the overheads from your individual obs files. If the amount of time you request exceeds your allocation, or looks to present an unusually low-efficiency observation, you will be contacted by them and asked to revise your observing project so as to both meet your scientific needs and have a program that does not present execution problems for the 1.3m on-site observers.

Note that requests for additional calibration data (e.g., special flats other than the ones acquired generally for all projects, or special flux calibration targets) do count against your time allocation. These are handled on a case-by-case basis by the queue management team at Yale.

back to top

5. Phase II Submission Checklists

Synoptic or TOO Programs

  • A set of single-target observation template files, with correct object names and coordinates.
  • [optional] one or more multi-observation script files used to execute your obs files in a particular sequence (only as required).
  • A Phase II Instructions Narrative that includes:
  • A summary target list, including coordinates.

    • Instructions for what observations to take in what sequence (name the specific obs files or multi-observation scripts to be used).
    • Conditions under which your program should and should not be observed (e.g., photometric conditions, or OK in any conditions; good or bad seeing is tolerable/intolerable, etc.).
    • Any special instructions (e.g., offsets or particular placement of targets in the IR or CCD detector fields-of-view, bright star avoidance, etc.). If your program requires multiple offset pointings for a given target, please specify the offsets and which obs files are to be executed at each offset position.
    • Any special disposition of the data (subject to review and approval by the queue management team).
  • Check the boxes next to the obs files and multi-observation scripts to be submitted with these instructions (sometimes people forget!).
  • If a finding chart is required, please give a WWW or FTP address where this may be picked up. GIF, JPEG, and PostScript are required. Finders must be labeled with the scale (arcsec) and the orientation (directions of N and E at least). Black on white-sky negative images work best.

Survey Programs

  • A set of multi-target observation template files to be used for all of your targets (or subsets by exposure time groups).
  • One or more multi-observation script files used to execute your multi-target obs files, making sure to include the prompt for the target name. These are required for survey programs.
  • A Phase II Instructions Narrative that includes:

    • A complete target list with coordinates (RA and DEC in J2000 equinox, in hh:mm:ss and dd:mm:ss format for RA and Dec, respectively). Names must be simple and not contain any 's "s or other special characters. Long target lists may be provided off-line using URLs pointing to web pages or ftp sites with ASCII text versions (no Word or PostScript or other formats, please!) of these tables if they are too large to conveniently cut-and-paste into the submission form.
    • Instructions for which multi-observation script is to be used to observe each target.
    • If the same script is used for all targets, be sure to specify what the script does, and roughly how long it will take (add up the execution times for each obs file executed by the script, and add 5s of setup overhead of each obs file).
    • Conditions under which your program should and should not be observed (e.g., photometric conditions, or OK in any conditions; good or bad seeing is tolerable/intolerable, etc.).
    • Any special instructions (e.g., offsets or particular placement of targets in the IR or CCD detector fields-of-view, bright star avoidance, etc.). If multiple offset pointings for a given target are required, please specify the offsets and which obs files are to be executed at each offset position.
    • Any special disposition of the data (subject to review and approval by the queue management team).
  • Check the obs files and multi-observation scripts to be submitted with these instructions (sometimes people forget!).
  • If a finding chart is required, please give a WWW or FTP address where this may be picked up. GIF, JPEG, and PostScript are required. Finders must be labeled with the scale (arcsec) and the orientation (directions of N and E at least). Black on white-sky negative images work best.

back to top

6. Program Tracking

In general, you will be informed by email when observations for your program have been acquired and are ready for pickup from the FTP server at Yale. In between times, however, you can track the progress of your program electronically in a number of ways:

ANDICAM Email Lists

    You can receive a copy of the nightly observing logs by subscribing to the andicam-logs mailing list. Instructions for subscribing and unsubscribing to this list may be found in the ANDICAM Mail Lists document.

Observing Log Search Tool

    When you login to the Phase II Observing Tools page for your project, a simple search tool is provided that will extract all observing log entries for your Project ID. You can also extract observing log entries for a restricted range of dates, or for which a particular keyword (e.g., a target name) matches. All searches on keywords are case-insensitive. This allows you to get to the info you need on your program's observations without having to wade through all of the others.

back to top

7. Problems and Feedback

If you have problems using these web tools, or have comments that you think will improve their usefulness, please send your feedback to the Queue Management personnel at SMARTS2 at Yale (see the contact list for the current personnel).

back to top

Updated: 2006 May 11 [rwp/osu]

ANDICAM Multi-Observation Scripts Instructions

 

UNDER CONSTRUCTION. Thank you for your patience.  Please use this ANDICAM  Phase II menu [557] for now.

SMARTS Consortium
Creating ANDICAM Multi-Observation Scripts

Updated: 2003 March 1

Table of Contents:

    * Overview
    * How to Create Multi-Observation Scripts
          o Step 1: Select Obs files to execute
          o Step 2: Prompt for Target Name?
          o Step 3: Enter the Script Filename
    * Example Multi-Observation Scripts

Overview

The ANDICAM is a 2-channel instrument with separately configurable CCD and IR cameras fed by a dichroic beam splitter. To enable efficient queue scheduling of observations, all ANDICAM data are acquired by means of Observation Template Files (or "obs files" for short) prepared by the astronomer. Obs files define "unit observations", specifying the instrument, detector, and target parameters and configurations needed to acquire a single observation.

In addition, astronomers can create simple Multi-Observation Scripts that are used to execute a sequence of obs files for a single target. There are two basic uses of Multi-Observation Scripts:

Complex Synoptic Observations:

    A "synoptic" program is here defined as one in which you wish to observe a relatively small number of targets many times over a long period of time. A "complex" synoptic program is one in which the target is to be observed through a number of different filters in a specific sequence. In this case, you would create separate single-target obs files for each exposure-time and filter combination required for a given target (and do so for each of your targets). After your obs files have been created, you make a set of multi-observation scripts that would be used to execute each of these obs files in the preferred sequence each time, including repeats, for each target. Examples are given below.

    Note that for standard single-target obs files, multi-observation scripts are optional, and should only be done if the observations are of particular complexity (e.g., many different exposure/filter combinations that must be executed in a particular sequence or a pattern of repeat observations required in a single continguous sequence). Don't make and submit multi-observation scripts if you don't really need them, as they do complicate the Phase II submission process, and are inappropriate for execution of just 1 or 2 single-target obs files.

Survey Observations:

    A "survey" project is broadly defined as one in which you wish to observe a number of targets in the same way in many filters only once (or at most a couple of times). In this case, having to create a number of separate single-target obs files for all of the targets quickly becomes a burden for both the astronomer (who has to create them all) and for the observers (who have to keep them organized). The "one obs file per observation per target" mode that works well for synoptic programs is clearly impractical for even medium-sized survey projects, especially if you want to observe each target in many filters.

    A better solution is to create a small set of generic multi-target obs files that contain exposure and filter settings, but do not specify the targets or their coordinates. A multi-observation script would then be created to execute these generic obs files for all of your targets, and the script would include the option to prompt the observer to enter the target name. Thus a single multi-observation script and a small set of generic obs files stands in for many separate obs files. The trade-off is that you must standardize exposure times, or divide your program into "long" and "short" exposure sequences and provide sets of generic obs files and associated multi-osbservation scripts for each. The examples section below discusses some strategy issues (a simple observing program is more likely to get executed than a very complex one). A separate target list with coordinates would be submitted with the Phase II instructions to round out your program submission.

    For submission of survey-style projects, use of multi-target obs files and multi-observation scripts is mandatory.

In general, multi-observation scripts are not useful if you have relatively simple programs (at most one or two obs files per target). The gain in using them comes with large numbers of targets, or large numbers of observations per target that must come in a specific sequence.

This document describes how to create multi-observation scripts for your observing program, and gives worked examples.

[Contents]
How to Create Multi-Observation Scripts

Multi-observation scripts are created using a webform accessed by logging into the Observing Preparation Tools pages (via the Phase II front page), and using the Project ID assigned to your project when it was approved for implementation and scheduling. Scripts are created after you have created the obs files for your program. Once you have made your multi-observation scripts, you will submit them along with your obs files as part of the Phase II Observing Program Submission.

There are two basic types of multi-observation script:

   1. Single-Target Scripts that execute a set of single-target obs files in a particular sequence, including repeats.

   2. Multi-Target Scripts that execute a set of generic multi-target obs files in a specific sequence for many different targets, each time prompting the observer to enter the target name.

Step 0: Create the set of observing template files

Multi-observation scripts are created after you create your basic set of observing template files for your program. If there are no obs files, the script creation form will not have anything to work with.

Step 1: Select obs files to execute

Each multi-observation script may execute up to 10 obs files in sequence. This includes repeat observations of a given obs file. the form presents you with a set of 10 pull-down boxes, the menu containing a list of all of the obs files you have currently in your project's working directory on this server.

The obs files you select will be executed in the order selected, top to bottom in the form. Blank selections are ignored). If you wish to execute a given obs file twice in sequence, it must be selected twice.

Step 2: Prompt for Target Name?

If the obs files selected above are generic multi-target obs files that do not contain target names or coordinates, then your script will need to prompt the observer to enter the target name before the obs files are executed. Check the box to create a prompt in the script. If you omit this, no object name will be put into the image headers or observing logs, making it impossible to know what was observed.

If instead your script is executing standard single-target obs files, leave this box unchecked. If you do check it, the observer will have to type something at the prompt, and then what is typed will be overridden by what is in the subsequent obs files.

Step 3: Enter the script filename

Finally, you need to provide a unique filename for your multi-observation script. It should be descriptive of the obs files it contains, and should be unique to your project insofar as possible, so generic names like "myscript" or "script1" are discouraged. Filenames that conflict with other programs will be renamed at the discretion of the queue manager.

The filename you give must not have a file extension appended. A file extension (.pro) will be automatically assigned by the system, and has a specific meaning to the data-taking system. Adding a file extension could result in a script that cannot execute.

Example Multi-Observation Scripts

Example 1: Multi-Filter Synpotic Observations

In this example, the program is to make nightly observations of the microlensing source OB03018. Two obs files have been prepared

    ob03018ih
    ob03018vh

and each night the target is to be observed in the sequence

    I+H
    V+H
    I+H

Using the form you would make 3 obs file selections, in order

    ob03018ih
    ob03018vh
    ob03018ih

and leave the other 7 entries blank.

Since this is a set of single-target observations, you would leave the "Prompt for Target Name?" check box blank, as having the observer type in the target name would be redundant and a waste of time, since the target name in the obs files proper would override whatever they type.

Since this script is for a specific target, you would select a simple filename, the target itself:

    ob03018

Which choice keeps the book-keeping simple for all concerned.

Example 2: Stellar Photometry Survey

This program is to acquire UBVRI and JHK images of a set of 200 low-mass stars from the 2MASS catalog. Since all of the stars are of comparable brightness, the same exposure times can be used for each star for the various filters. Since the H and K observations will take longer than J, we will double them up, taking J only with the most efficient R filter. The resulting set of 5 multi-target obs files is:

   2masslm_uk
   2masslm_bk
   2masslm_vh
   2masslm_ih
   2masslm_rj

Here we have used "2masslm" as the base name (for "2MASS Low Mass") and specified the filters used in each obs files.

Using the form you would make 5 obs file selections, in order

   2mass_uk
   2mass_bk
   2mass_vh
   2mass_rj
   2mass_ih

so that the optical imaging is acquired in the order UBVRI, and leave the other 5 entries blank.

Since this is a set of multi-target obs files, you would check the "Prompt for Target Name?" box. The observer will be prompted to enter the target name each time he/she executes the script.

Because this script is for many targets, a generic but suggestive name would be:

    2masslm

this choice is the same as the "root name" of the obs files, making the association between them, and the program proper, clear.

Example 3: Multiple Targets, but long & short exposures

In this example, you have a large number of quasars from the LBQS, but about half the targets require relatively long exposures (e.g., 300s at V) whiel the others are brighter targets that would saturate in this time and can be observed with shorter exposures (e.g., 120s at V).

To handle this situation, you would create two sets of obs files, first a set of "long" observations templates:

    lbqs_l_vh
    lbqs_l_rh
    lbqs_l_ij

and a parallel set of "short" observation templates

    lbsq_s_vh
    lbsq_s_rh
    lbsq_s_ij

You then divide your sample into "long" and "short" targets, and create two multi-object scripts:

    lbqs_long
    lbqs_short

to execute the long and short sequences, respectively. In both cases, you need to makes sure you check the "Prompt for Target Name?" box so that the quasar's name is correctly entered by the observer.

As a general point of strategy, fine-tuning exposure times is a waste of time. If you really think one object has to have 320s at V and another 280s, then you will have to create separate single-target obs files for them. Since this places a greater book-keeping burden on the observers, it will cut into the observing efficiency, and it will require you to create each of the individual obs files. The on-site observers will not fine-tune obs files, and they will not edit obs files on the fly. That cuts too deeply into the observing efficiency. Inefficient Phase II programs will be returned to the astronomer with instructions for revision if it is felt that they will have to high of an impact on observing efficiency.

[Contents]

If you came here from one of the entry forms, use the "BACK" button on your browser to return to the obs file generation form in progress.

Updated: 2003 March 1 [rwp/osu]

ANDICAM Observation Template

    Contents
  1. Overview
  2. How to Create Obs Files
  2.1 Step 1: Enter Target Information
  2.2 Step 2: Enter exposure Parameters
  2.3 Step 3: Validate Entries & Save the Obs File
  2.4 Execution Time Analysis
  2.5 Name it & Save it
  2.6 Notes
  3. Obs File Creation Form Entries
  3.1 Project Information (login)
  3.2 Step 1: Enter Target Information
  3.3 Step 2: Enter Exposure Parameters
  3.4 Step 3: Validate & Save the Obs File
  4. Editing Existing Obs Files
  5. Viewing/Renaming/Deleting Obs files with the Obs File Manager
  6. Example Obs Files
     

 

UNDER CONSTRUCTION. Thank you for your patience.  Please use this ANDICAM  Phase II menu [557] for now.

SMARTS Consortium
ANDICAM Observation Template (Obs) Files

Updated: 2003 August 6

 

 

1. Overview

The ANDICAM is a 2-channel instrument with separately configurable CCD and IR cameras behind a dichroic beam splitter that can acquire simultaneous CCD and IR images. To enable efficient queue scheduling of observations, all data with ANDICAM are acquired by means of Observation Template Files (or "obs files" for short).

Obs files define the target parameters and the instrument and exposure configuration of the smallest schedulable "unit observation" that can be acquired with the ANDICAM. A "unit observation" means that the choice of filters and the base integration times for each channel are fixed, but multiple images with those filters and integration times may be acquired. Similarly, IR channel observations can be dithered between images using internal tip/tilt mirror. If observations with different filters or exposure times are required, the astronomer must create a different obs file. Some examples are described below.

Each obs file consists of the following basic blocks:

Project ID Block:
    SMARTS Project ID used to assign "ownership" of the data acquired to a particular project.

Target Block:
    Contains the target name and coordinates (RA, Dec, and Equinox). In a generic multi-target observing template, the target name and coordinates will be omitted.

Observation Block:
    Specifies the observing mode (DUAL, CCD-only, or IR-only), and the exposure parameters, as follows:

    CCD Block with the CCD observing parameters (filter, exposure time, number of images to acquire, etc.), if required.

    IR Block with the IR observing parameters (filter, exposure time, number of co-adds and sequential images, dithering parameters, etc.), if required.

While obs files have been primarily designed for efficient simultaneous CCD and IR imaging, they also provide a consistent and logical way to schedule single-channel observations (i.e., CCD-only or IR-only imaging) with ANDICAM. This allows us to simplify the suite of commands needed to take data in each of the ANDICAM's 3 modes, which in turn simplifies the work of the on-site observers and the queue manager. It also ensures that the unused detector channel is kept idle while the other is active.

A set of obs files for a given target can be executed in a specific sequence by creating an optional multi-observation script. This is most often done for complex multi-wavelength observations (e.g., UBVRI+JHK photometry), or for "survey" projects in which many targets are observed once in the same way using a set of pre-defined templates. A special web form is provided to help you create simple multi-observation scripts as part of the Phase II observing preparation process. Use of such scripts can greatly simplify the execution of your observations. Note that if you are creating multi-target obs files for survey-type projects, use of multi-observation scripts is required.

Once you have created all of the obs files (and any associated scripts) for your program, you need to submit them along with a set of detailed observing instructions to the queue manager for evaluation, scheduling, and implementation. This is done using a separate "Phase II Submission Form". See the Phase II Observing Program Electronic Submission Instructions for details [559].

back to top

2. How to Create Obs Files

Obs files are created in three steps using a multi-part web form. This form is accessed by logging into the Observing Preparation Tools pages (via the Phase II Front Page [560]) and using the Project ID assigned to your project when it was approved for implementation and scheduling.

Step 1: Enter Target Information

The first step in creating a set of obs files for a target is to specify the information for the target proper. You have two basic options:

Single Target:
    In which the obs file is to be used for a single, specific target. In this case you would enter the following information:

       1. The name of the target.
       2. The RA and Dec of the target, and the equinox of the coordinates.
       3. Indicate whether the target is a solar system object (i.e., a moving target requiring ephemerides or other time-dependent sources of coordinates).

Multiple Targets:
    In which the obs file is to be used as a generic observing template for many different targets that will share the same detectors, filters, and exposure times. In this case, no target information need be entered.

In addition, you need to also specify the imaging mode you wish to use, which is one of:

   1. CCD-only (no IR imaging).
   2. IR-only (no CCD imaging).
   3. Dual CCD+IR Imaging (simultaneous imaging in both channels)

Once you have entered this information, hitting the "Next>" button on the form will pass you into the exposure parameter entry form.

back to top

Step 2: Enter Exposure Parameters

After entering the target info, you will be given a blank form for entering the exposure parameters for the observations. As described above, obs files are used to perform unit observations with a given instrument configuration. These units can be combined into multi-part imaging "sequences" using Prospero scripts that execute each of the separate obs files in turn.

For example, to take BVI images of an object, you would create three separate obs files, one for each of the B, V, and I filters. You would then have the on-site observers execute the obs files one at a time by hand, or create a multi-observation script to execute them in a sequence (thus reducing three execution steps into one: executing the script).

Once you have entered the exposure parameters for a given configuration, hitting the "Next>" button will then validate and analyze the entries.

Step 3: Validate Entries & Save the Obs File

You will next be shown a summary of the observation parameters you entered on the previous form along with an execution time analysis. At this point you need to review the parameters for errors. The project PI's are responsible for making sure that everything is correct before submission. You can use the browser's "Back" button to return to the exposure parameter entry form, make changes, and iterate until everything is ready before submitting the final obs file.

back to top

Execution Time Analysis

The exposure parameters you entered on the previous form are analyzed to make an estimate of the total amount of time that will be required to execute the requested exposures sequence. This estimate includes the unit integration times in each channel, number of images to be acquired, detector reset and readout times, IR mirror dithering motion overheads, etc., as appropriate. In general, the estimates are good to about 5% or so. The estimates do not, however, include instrument configuration overheads (e.g., changing filters or entering user parameters like the object name and coordinates), telescope configuration, etc. These latter will add to the total time it takes to execute your observation program. In general, instrument-related overheads add only ~10 seconds for each target/instrument change.

The estimates provided by the execution time analysis are meant to serve two purposes:

   1. To aid the proposer in optimizing 2-channel observation to minimize dead-time.
   2. To provide guidance to the queue manager in scheduling the observations.

From the proposer's perspective, the first provides a way to make sure that time that could be spent collecting more photons is not wasted because the CCD and IR operations are mismatched. For example, you might find that your first choices of integration times leave 64s of "dead time" on the IR channel while the CCD is still integrating and reading out. The web tools provided allow you to assess the impact is of adding an extra 60-second IR image to the obs files to close the gap. The web tools have been designed to make this kind of optimization exercise straightforward.

If you need to adjust any of the exposure parameters, use the "Back" button on your browser to return to the exposure parameter entry form in Step 2, make the changes, and then repeat the validation step. You can iterate as often as you like until you get things the way you want them. This way you avoid making lots of intermediate files that pile up on the disk (you can always clean up later with the Obs File Manager, but why make extra work?

It bears repeating that the estimates of execution times do not include such factors as the time required to setup the observation (e.g., setting the filters, exposure times, object names, etc.), nor do they include the computer-to-disk data-transfer times. They only provide estimates of the time it takes to perform those operations that occur from the moment the first exposure in the sequence begins until the last image is readout. All of the other configuration and data-transfer overheads cannot be predicted with any precision, the former because it depends critically on the previous configurtion of the instrument, and the latter because the inter-machine data-transfer system has a roughly factor of 4 range of transfer speeds (roughly 1Mb/sec to 4Mb/sec) governed by such ineffibles as the disk caching, how busy the up/downstream machines are, etc. As such, the queue manager has to empirically estimate any additional overheads based on past experience, and the adjust the queue schedule accordingly on subsequent nights based on how long it takes the observers to execute the program in practice (e.g., using the times reported by the nightly data logs).

Telescope pointing, target acquisition, and guide-star acquisition/lock times are not known a priori, but in general, the official estimate is to allow 3 minutes per acquisition. This is a slight overestimate, but it works out in the final accounting, since it allows for greater or lesser degrees of difficulty that the observer will have pointing, focussing, setting guide stars, etc. This is the value the queue-scheduling team uses when working out the observing program for each night.

If your program requires a lot of additional operations, e.g., many offsets around the target position between observations, it will cost you in terms of total execution time. If your program proves to be excessively costly in additional overhead, the queue manager will contact you regarding how to modify your program to make it more efficient. Not surprisingly, difficult programs are also difficult to schedule and execute, and have higher overheads. Keeping it simple is a virtue.

back to top

Name it & Save it

If everything is satisfactory, you are then asked to give the obs file a name. Each project is assigned a unique working directory for its obs files, so there is little chance your files with collide with others, though care in choosing filenames is essential. Above all else, make filenames that are simple and descriptive.

By simple, we mean you must restrict yourself to letters and numbers; no ".", "_" or other special characters. Special characters (even those technically allowed by Unix) can cause problems with the data-taking system, and if your observation fails because it has an illegal filename syntax, the fault is yours not the systems!

Similarly, a filename should reflect as much as possible the contents of the file (without being so complicated as to be unusable). For example, if the obs file is to acquire simultaneous V and H band images of a star cluster named NGC007, you might name the obs file ngc007vh. Naming it "fred001" is not just perverse, it could potentially waste a lot of time, as who knows that "fred001" means "make V+H images of NGC007".

Remember that choosing simple, unique, descriptive names will help the on-site observers execute your program. If you make complicated names that are hard to type, it will slow down the process; please keep it simple (the filenames are ultimately for them, not you). The observing managers will ask observers to resubmit observation files with more meaningful names, or change names as required if they cause execution problems.

After selecting a name, save the final obs file to your project's working directory by hitting the "Save Obs File" button at the bottom of the form. The obs file is stored on disk where you can view it later with the Obs File Manager (which also provides tools for renaming and deleting files). You will also be shown a copy of the final, saved obs file on your browser screen. We recommend that you print out your browser screen with the final version for your records.

back to top

Notes:

Safe Saving

To protect existing obs files for your project from accidental deletion, you are prevented from overwriting existing obs files with the form. If you try, the form will warn you and ask you to either (a) provide another, unique name and resubmit the form for processing, or (b) to go to the Obs File Manager and either delete or rename the existing file, and then resubmit the form again. Careful use of the "back" button on the browser lets you do this simply.

Making more than one obs file for a target

The multi-step process is designed to allow multiple iterations between any sets of forms, provided you take care to use the browser Back button and the various form buttons carefully. The target information (name and coordinates) are If you reload the form by following a link, bookmark, or other means, you will be given a blank form. By now simple web forms are familiar to most users, so this needs little detailed explanation.

Trouble? How to Get Help

No system is perfect. If you have problems using these forms please contact the SMARTS2 support personnel at Yale and describe your problem, the time it occurred, and any other info you think might help him debug things. The more feedback the better at this stage.

back to top

3. Obs File Creation Form Entries

The following are descriptions of the entries in the obs file creation forms. These entries are accessible from within the forms themselves by clicking on the highlighted item. If you have come to this page from the web form, remember use the "Back" button on your browser to continue filling out the form in progress.

Project Information (login)

On logging into the Observing Preparation Tools pages, you need to provide your name and Project ID.

Your Name

To keep track of who created the obs files for a project, we ask you to enter your name in the box provided.

Project ID

Project ID codes are assigned by the SMARTS scheduling committee when time is awarded on the SMARTS telescopes. Select your SMARTS Project ID from among the entries in the pull-down menu. If you don't know your ID number, or don't find it in the menu, contact the current queue manager or NOAO program coordinator (as appropriate) immediately.

back to top

Step 1: Enter Target Information:

The first form will ask you to enter the target name and coordinates, and the imaging mode to be used. Project PIs (or their CoIs) are responsible for entering the target name and coordinates correctly. Neither the queue manager nor the on-site observers will enter, validate or correct target names or coordinates. Although if there are problems with your coordinates, the queue manager will be in touch.

There are two types of observing template that can be created: single-target and multi-target.

Single Target

If your obs file is to be used for one, specific target, you will be creating a "single-target obs file". In this case, check the "Single Target" box, and enter the Target Name and coordinates in the boxes provided, as follows:

Target Name

Enter the target name of the object you wish to observe. This is how the target name will appear in all observing logs and FITS image headers (the OBJECT keyword). The target name you enter in step 1 is carried forward through all subsequent obs file creation steps.

You can enter up target names up to 60 characters long (including spaces), but only the first 16 characters will appear in the observing logs (all 60 will appear in the image FITS headers).

Solar System Objects

If your target is a solar system object (i.e., a moving target), be sure to check the "Solar System Object" box. You will also need to provide both approximate coordinates for the object, as well as arranging to send the queue manager ephemerides for minor bodies (asteroids and moons) separately from this form.

Target RA, Dec, & Equinox

Enter the Right Ascension, Declination, and Equinox of the target. RA should be in hh:mm:ss.s format, and Declination in dd:mm:ss format. The sign of the declination goes in the first place, thus:

            -00:00:32
            +12:12:34

etc. are valid declinations. Please do not enter decimal coordinates.

The default equinox is J2000.0 coordinates, and we would prefer that you precess coordinates to J2000.0 before entering them here. If you cannot precess the coordinates, enter the Equinox in the box provided (e.g., 1950.0 for B1950.0 coordinates; omit the "J" or "B"). Use of non-2000 coordinates is greatly discouraged, as it could be overlooked by observers working through a long target list with 99% J2000 coordinates. Give them a break and precess them, please.

If your target is a solar system object, enter approximate coordinates for the observing season to assist in queue scheduling, and remember to check the "Solar System Object" box next to the Target Name. All of the planets are already in the 1.3m telescope's control system, but for minor planets or planetary moons you will have to provide the queue manager with an accurate ephemeris. Contact the queue manager [550] for instructions on how to submit ephemerides for solar system targets.

Note: There is apparently some confusion about the precise role of these coordinates in the data-taking process. They are not actually used by the data-taking system per-se (i.e., the data-taking system does not read the coordinates from the obs file and slew the telescope). Rather, they are there for two purposes: (1) to be used by the queue-management team as the "definitive" coordinates for your target, and (2) in cases of uncertainty at the telescope the observer will consult the obs file for a particular target to verify the coordinates against what is given on their nightly observing list. This sounds non-functional, but in fact it serves to "bind" the definitive coordinates to the observation template in an unambiguous fashion.

If your observing program requires multiple pointings within or around an object because it is larger than the ANDICAM field-of-view, the situation is more complicated. Such offset pointings must be treated as separate observations because the on-site observers must enter the new field coordinates by hand into the TCS, execute the telescope offset, and setup the autoguider separately for each subfield. None of these operations may be automated by way of obs files at the present time (and may not in fact be easy or possible in the future). There are a number of ways to go about doing this, so you will need to consult with ANDICAM core team members for recommendations as this is not a normal ANDICAM observing mode.

back to top

Multiple Targets

    If you are creating a generic obs file to be used as a template for multiple targets that will share the same exposure times and filters, check this box to create a "multi-target obs file". No target name or coordinate info needs to be entered if this box is checked (and any entries you put into those boxes will be ignored by subsequent forms).

    Multi-object observing template are most often used to take observations of many different targets in a "survey" style mode (see the Phase II Instructions [559] for a discussion). This is what you would use if you had a large list of objects that only need to be observed once (or only infrequently), but with different filter settings. A multi-observation script is then used to set the Target name separately, and you will be required to submit a separate coordinate list with your Phase II instructions.

Imaging Mode

Once you have selected single- or multiple-target mode, you must select the imaging mode for the observations. This is one of:

  • Dual CCD+IR Mode = simultaneous CCD and IR imaging.
  • CCD-only Mode = CCD imaging only, IR channel idle.
  • IR-only Mode = IR imaging only, CCD channel idle.

You may change the imaging mode used for a given template later by returning to Step 1 with the Back button on your browser. All of the stages in the form are designed to be as "re-entrant" as possible to make building sets of templates for the same object easier (no guarantees, it depends on which web browser you are using).

back to top

Step 2: Enter Exposure Parameters

Having set the target parameters (single or multiple) and the base observing mode (CCD, IR, or Dual), the second form asks you to enter the CCD and/or IR imaging exposure parameters for your target for the imaging mode selected. This includes filter selection, and setting up the dithering parameters for IR imaging.

CCD Imaging Parameters:

   CCD Filter

Select a filter from the list provided. Only one CCD filter can be specified in a given obs file. To make a series of observations through more than one CCD filter, you need to create a separate obs file for each filter.

   CCD Base Integration Time

Enter the integration time, in seconds, of a single CCD image. Integration times up to 1800s are allowed. You can integrate for longer than 1800s, but cosmic ray contamination becomes severe. There is no default integration time, and this field may not be left blank.

An integration time of 0 seconds will result in a "bias" or "zero" frame being acquired. If you do not wish to take CCD images with this obs file, back up to the target info form and select "IR-only Mode" as the Imaging Mode.

   Number of CCD Images

Select the total number of CCD images to be acquired during this observation. Each CCD image will have the base integration time entered above. The total integration time will be the base CCD integration time multiplied by the number of CCD images. Default is 1 image. The total CCD integration time will be the number of CCD images times the base integration time.

NOTE: you cannot select 0 CCD images. If you do not wish to take CCD images with this obs file, back up to the target info form and select "IR-only Mode" as the Imaging Mode.

CCD Binning

New to the 1.3m ANDICAM. The unbinned pixel scale at the CTIO 1.3m telescope is ~0.18 arcsec/pixel, necessitating that we bin the detector 2x2 pixels on-chip to get a more reasonable scale of ~0.37 arcsec/pixel.

As a consequence, CCD binning is no longer a user-selectable parameter at the 1.3m (this is a change from how we worked at the Yale 1-meter, and is not negotiable).

back to top

IR Imaging Parameters:

IR Filter

Select a filter from the list provided. Only one IR filter can be specified in a given obs file. To make a set of observations through more than one IR filter, you need to create a separate obs file for each filter.

IR Base Integration Time

Enter the integration time, in seconds, of a single IR array image. Times up to 1800s are allowed, but the background will typically saturate in a few minutes, especially at K. There is no default integration time, and this field may not be left blank.

 The minimum IR detector integration time is 4 seconds. If you enter a base integration time between 0 and 4 seconds, you will get at 4 seconds of integration anyway. Above 4 seconds, the requested integration time will be achieved. See the ANDICAM manual for an explanation.

Number of IR Images

Select the total number of IR images to be acquired by this observation. Each IR image will have the base integration time entered above. Default is 1 image. The total effective IR integration time will be the number of IR images times the base integration time.

    NOTE: You cannot select 0 IR images. If you do not wish to take IR images with this obs file, back up to the target info form and select "CCD-only Mode" as the Imaging Mode.

    Number of CoAdds per IR image

    Each IR image can be composed of a number of separate images averaged together ("co-added") in the detector control computer before being stored as a single image file on disk. Each IR CoAdd will have the base integration time entered above. For example, if you specify 5 IR images of 3 co-adds each, the instrument will acquire 15 images of the base integration time, averaging them in groups of 3, and storing them as 5 separate FITS files. Default is 1 Co-add/image.

    In general, co-adding is most useful when a target is sufficiently bright that you are restricted to very short integration times to avoid saturation, and so would need a very large number of single images to build up sufficient signal. Co-adding helps build up signal while producing a reasonable number of final image files, and with the additional benefit of a slightly reduced overhead penalty compared to taking a large number of single images. The cumulative readout noise penalty, however, is the same regardless.

back to top

Dithering:

    An internal tip-tilt mirror in the IR channel beam can be used to make small "dithering" offsets between IR images. Dithering is the standard way to reduce the effects of bad pixels and flat-field artifacts on the IR array by shifting and combining multiple images taken at slightly offset positions on the array. No dithering is done between IR Co-Adds.

    To dither between images, check the "Dither between images" box, and select scale the dithering pattern ("dither scale") from the pull-down menu. The default dither scale is 40, which corresponds to a dither throw of approximately 20 arcseconds on the CTIO 1.3m telescope. This is the dither scale used for generation of IR dome flats, so this makes the most sense to use this for most observations. Dither scales range from 10 to 100 in steps of 10 (5-50 arcsec in steps of 5 arcsec). If you want to use another dither scale, you may need to arrange for additional flat-field calibration (at a cost to your time allocation).

    The IR tip/tilt mirror dithers the image around the IR detector in a fixed hexagonal offset pattern. There are 7 dither positions: the first (1) centered on the array, and the following 6 (2-7) arranged in a lop-sided hexagon, stepped in (roughly) 120-degrees segments. The hexagon is lopsided due to the 45-degree difference between the tip/tilt actuator plane and the surface of the diagonal pickoff mirror. This pattern is repeated (modulo 7) until the total number of IR Images requested have been acquired. At the end of a dithering sequence, the mirror is returned to the home (centered) position. Tests at the telescope show that the dithering is repeatable to ~0.5 pixel (0.07 arcsec on this IR array).

    If you do not wish to dither between images, check the "No Dithering between images" box. This will keep the IR tip/tilt mirror centered during the entire obs file's IR imaging sequence.

back to top

Step 3: Validate & Save the Obs File

Once the exposure parameters have been entered in step 2, the obs file creation form generates the obs file and estimates the execution times for the CCD and/or IR images requested. You are asked to first validate your entries, using the estimated execution times to help adjust your exposure parameters to optimize your observations, and then select a filename for the obs file and save it to your project's working disk.

    IMPORTANT NOTE:
    Filenames must be kept "simple": only letters (a-z & A-Z) and numbers (0-9) are allowed. All other characters are forbidden (i.e., it cannot contain any of the following:

       "'()[]{}-+_=.,:;|\/?><~!@#$%^&*

    even though a few of these are are technically allowed by Unix!). Please remember that the observer has to type the name, sometimes many times, so think of them when you make up filenames. Difficult filenames can lead to errors and slow down observing, and will be changed by the queue management team without asking you.

Estimated Execution Times

The estimated execution times give the approximate amount of real time required to execute the requested exposures, from the first detector array reset until the end of the last detector readout (not including any instrument or telescope configuration overheads). The various data-acquisition overheads were measured during engineering runs in January/February 2003 with the new ANDICAM setup, and yield estimates based on our CCD and IR Array readout models that are accurate to within 5%. Be warned, your mileage *will* vary, so don't expend too much effort time optimizing out the last second of dead time in dual-channel observations - reality *will* have the last word. For those interested in factoring in instrument configuration overheads, at most this amounts to 10-seconds per observing template (assming change of name, filter, exposure time, etc.). Telescope pointing, target acquition, and guide-star acquisition/lock times are totally up for grabs. If your program requires a lot of hand offsets around the field, it will cost total observation execution time. If your program proves excessively costly in overhead, the queue manager will contact you regarding modification of your program.

Estimated CCD Execution Times

    This estimate takes into account:

       1. The base integration time per CCD image.
       2. The number of CCD images requested.
       3. The time required to readout the CCD (vertical and horizontal clocking times and the readout amp integration time per pixel).
       4. The number of readout amplifiers being used (2 at present, not user-selectable).
       5. The pre-exposure "setup" overhead, including array erase cycles (~6-sec independent of binning).

    For example, a single, full-frame, 2x2 binned 1024x1024 CCD image requires approximately 47 seconds over and above the base integration time to erase and readout the array. Future operation with 2-amplifier readout should reduce this to 20-odd seconds.

    Taking many short exposures incurs a greater readout "penalty" compared to taking fewer longer exposures to achieve the same total integration time. For example, a single 300 second full-frame, unbinned image will require approximately 347 seconds to execute, while dividing the 300 seconds of integration time into two (2) exposures of 150 seconds each requires 394 seconds (~14% more time). Doing three exposures of 100 seconds each would require ~441 seconds to execute (27% more time).

Estimated IR Execution Times

    This estimate takes into account the following:

       1. The base integration time per IR image (the minimum integration time is 4 seconds).
       2. The number of IR images requested.
       3. The number frames co-added per IR image requested.
       4. IR setup, readout, and post-processing (pre-read minus post-read math) overheads amounting to about 20 seconds.
       5. The tip/tilt mirror overhead if dithering between images (approx. 2 seconds/position).

    The algorithm for computing the execution time of IR images is complicated by execution latencies encountered during readout and storage due to the finite clock interval allowed in the hardware. In general, the times computed are good to 5%, although if a large number of images (>10) has been requested with a comparable number of co-adds per image, the calculator will systematically underestimate the total execution time by as much as 10% due to cumulative small latencies in the system.

back to top

Enter a Filename for the Obs File

Each ANDICAM project is assigned a private directory on the queue server for storing their observation template files.

This field asks you to provide a filename for your new obs file. The filenames of obs files should be kept simple (i.e., only letters and number: NO SPECIAL CHARACTERS), and should reflect as much as possible the contents of the file. For example, if the obs file is to acquire simultaneous V and H band images of a star cluster named NGC007, you might name the obs file ngc007vh. Including the object name in the filename like this helps to ensure relatively unique names, and makes it easy to know what file is doing what by just looking at the name. You only have to look at a few of these files, the operations staff has to handle hundreds! Give us a break, please!

Filenames are case sensitive, and may contain only letters and numbers, NO SPECIAL CHARACTERS (e.g., +, -, _, etc.) ARE ALLOWED (even though technically Unix might allow quite complex filenames). Please remember that the observers have to type them, sometimes many times a night, so complex or confusing filenames can cause problems, and will be changed to simpler names if they are crazy.

If the filename you provide will overwrite an existing obs file in your directory, you will be given a warning and asked to confirm that you really want to overwrite the existing file. Detailed instructions are provided if this occurs.

Note that the obs files will be given the .obs files extension automatically by the web forms, so do not include a file extension with the filename you type in the box provided.

back to top

Editing Existing Obs Files

Once you have a set of Obs files created, you can later go back and edit them with the Obs File Editor. This form will read in the contents of a existing Obs file and let you modify the entries, either to replace an old Obs file or to create a new Obs file using an old one as a template. In cases where readout or overhead times change substantially (e.g., in September 2000), the editor can be used to re-evaluate old Obs files and modify them to reduce deadtime in DUAL mode.

The basic entries are the same as on the Obs file creation form described above. The one potential point of confusion is if you are editing an Obs file that was originally either CCD-only or IR-only imaging mode. In these cases, the editor form provides boxes for the unused channel (after entries for the active channel). These entries will be ignored unless you decide to change the imaging mode as part of your editing session. It's easier to try than read about, trust me, you'll figure it out.

back to top

Viewing/Renaming/Deleting Obs Files with the Obs File Manager

After a while, you can get quite a collection of Obs files. To provide a way to manage these semi-sensibly, we have provided the Obs File Manager Form [555]. The file manager is a table-based web form that shows you all of the obs files that have been created for your project, and lets you view, delete, or rename individual files. This lets you clean up after making your obs files, fix ugly filenames, etc., without having to go back through the creation or editor forms.

Obs files "deleted" from the active list are moved to the wastebasket for your project, where they are held until you decide to either delete them once and for all, or to "undelete" them and return them to the active list. If there are any files in your project's wastebasket when you open up the file manager, they will appear in a separate "wastebasket table" beneath the table of active files. This is a safety feature to prevent you from accidentally deleting obs files (you can delete them, we just make you think about it first).

Editing existing obs files is not an option during the early parts of the testing phases (the file parser is not working yet), but we hope to have something working eventually.

The instructions for using the File Manager are described in a separate document [555].

back to top

Example Obs Files

Example 1: CCD-only Imaging

This is an obs file to take one 300-second CCD image of MB99018 with the I-band filter. The IR channel is kept idle during the observation (CCD-only mode).

# Prospero Observation Template File
# Created: 2003 Feb 9 [13:35:50] by saveobs.pl Version 1.5
# For: R. Pogge
#
PROJECT=OS03001
IMGTYPE=OBJECT
OBJECT=MB99018
RA=18:01:07.7
DEC=-28:31:41
EQUINOX=2000.0
MODE=CCD
#
# CCD Imaging Parameters
#
# Estimated Execution Time: 347 sec
#
CCD:
   FILTER=0 # I
   EXPTIME=300.0
   NIMGS=1
END

back to top

Example 2: IR-only Imaging

This obs file takes a sequence of five (5) 60-second images at K of a Seyfert 1 galaxy, dithering between images with a dither scale of 20 units (about 10 arcsec). The CCD channel is kept idle during this observation (IR-only mode).

# Prospero Observation Template File
# Created: 2003 Feb 7 [13:27:45] by saveobs.pl Version 1.5
# For: Rick Pogge (OSU)
#
PROJECT=OS03011
IMGTYPE=OBJECT
OBJECT=Mrk 1347 K
RA=12:39:47.3
DEC=-23:27:16.0
EQUINOX=2000.0
MODE=IR
#
#  IR Imaging Parameters
#
# Estimated Execution Time: 410 sec
#
IR:
   FILTER=3 # K
   EXPTIME=60.0
   NCOADDS=1
   NIMGS=5
   DITHER=T
   DSCALE=20
END

back to top

Example 3: Dual CCD+IR Imaging

This obs file takes simultaneous V and K-band images of 47 Tucanae, one 180-sec integration at V and three 60-sec integrations at K, dithering by a factor of 40 between IR images.

# Prospero Observation Template File
# Created: 2003 Feb 7 [13:41:59] by saveobs.pl Version 1.5
# For: bailyn
#
PROJECT=YA03001
IMGTYPE=OBJECT
OBJECT=47 tuc
RA=00:26:00
DEC=07:02:22
EQUINOX=2000.0
MODE=DUAL
#
# CCD Imaging Parameters
#
# Estimated Execution Time: 227 sec
#
CCD:
   FILTER=6 # V
   EXPTIME=180.0
   NIMGS=1
#
#  IR Imaging Parameters
#
# Estimated Execution Time: 246 sec
#
IR:
   FILTER=3 # K
   EXPTIME=60.0
   NCOADDS=1
   NIMGS=3
   DITHER=T
   DSCALE=40
END

Note that there is approximately 19 seconds of "deadtime" between the IR and CCD images. Attempting to optimize the difference by more than 10-20 seconds, however, is usually a waste as this time can easily be consumed by various system latencies that are unpredictable (some dual-channel operations must execute serially instead of in parallel).

back to top

Example 4: Multi-Target CCD+IR Imaging Template

This is a multi-target obs file used to take simultaneous V and H-band images. No target name or coordinates are given because it is to be used on a number of different targets generically. Here, we take one 180-sec integration at V and three 60-sec integrations at H, dithering by 50 units between the successive IR images.

# Prospero Observation Template File
# Created: 2003 Mar 2 [14:21:34] by saveobs.pl Version 2.0
# For: pogge
#
PROJECT=OSU-TOO
IMGTYPE=OBJECT
MODE=DUAL
#
# CCD Imaging Parameters
#
# Estimated Execution Time: 227 sec
#
CCD:
   FILTER=6 # V
   EXPTIME=180.0
   NIMGS=1
#
#  IR Imaging Parameters
#
# Estimated Execution Time: 246 sec
#
IR:
   FILTER=2 # H
   EXPTIME=60.0
   NCOADDS=1
   NIMGS=3
   DITHER=T
   DSCALE=50
END

Note that unlike all of the other example obs files shown thus far, there are no OBJECT=, RA=, DEC=, or EQUINOX= entries. This makes the obs file "generic" in the sense that it can be used for any target. Such a generic obs file can only be executed by an accompanying multi-observation script that will prompt for the target name, and run any other multi-target obs files that are part of a sequence to be executed for each target in the program. Executing it without such a script will result in either a blank object name (bad), or with the object name of the last target observed (worse). See the Phase II Instructions for details.

back to top

If you came here from one of the entry forms, use the "BACK" button on your browser to return to the obs file generation form in progress.

Updated: 2006 May 11 [rwp/osu]

ANDICAM Observation Template File Manager Instructions

  Contents:
1. Overview
2. The Entry Page
3. File Manager Table Entries
4. Wastebasket Table Entries

 

UNDER CONSTRUCTION. Thank you for your patience.  Please use this ANDICAM  Phase II menu [557] for now.

SMARTS Consortium
CTIO 1.3m Telescope ANDICAM Observation Template File Manager Instructions

 

Overview

Once you have created a set of Observation Template files ("obs files" for your program, you can delete or rename them using the Observation Template File Manager Form. This form shows you a table with all of the obs files that have been created for your project, and lets you view, delete, or rename individual files. This lets you clean up after making your obs files, fix ugly filenames, etc., without having to go back through the creation step.

Obs files "deleted" from the active list are moved to the wastebasket for your project, where they are held until you decide to either delete them once and for all or to "undelete" them and return them to the active list. If there are any files in our project's wastebasket, they will appear in a separate "wastebasket table" beneath the table of active files in the file manager form. This is a safety feature to prevent you from accidentally deleting obs files.

Each time the "Delete/Rename Marked Files" button is pressed, the file manager tables are regenerated, and a synopsis of any actions taken is printed. If there were errors, they appear in red below the buttons.

This page describes the Obs File Manager form and its contents.

back to top

The Entrance Page

Entrance into the File Manager is via a page with simple pull-down menu with the current list of approved ANDICAM projects. Select your project ID from among the entries in the pull-down menu, and click on the "Next>" button to see the obs files for that project. If you don't know your ID number, or don't find it, contact the current queue manager.

Project ID codes are assigned by the SMARTS scheduling committee when time is awarded with ANDICAM on the CTIO 1.3m telescope. Obs files are sorted by SMARTS Project ID Numbers. If there are no obs files in your project's working directory, you will be told this, otherwise, you will be shown a table of the obs files for your project.

At this time, it has not yet been decided whether or not the PI directories will be protected by passords assigned by the queue management team. This will mean that only Project PIs (and the queue management team) can use the web forms to view or manipulate a project's files. For now, the vagueries of web "security" being as they are, no protection works better than any protection at all. (Failure to grant access to PIs is not an option).

back to top

File Manager Table Entries

The following are brief descriptions of the entries in the Obs File Manager Table. These descriptions are also accessible by from within the form by clicking on the highlighted item.

If you have come to this page from the manager form, remember use the "Back" button on your browser to return to the form from whence you came.

Obs File (Column 1)

The names of all active obs files found in your project's working directory are shown in this column. Only the files for your project are shown.

To view the contents of an obs file, click on the highlighted filename. You can also save it to your local disk using "Shift+Click".

Delete Button (Column 2)

If you click on this radio button, you will mark the obs file for deletion. Once you have marked all of the files you wish to delete, you can press the "Delete/Rename Marked Files" button to delete them.

The "deleted" file is moved to the wastebasket, where it is held until it is either (a) expunged (deleted forever) either individually or by emptying the wastebasket, or (b) it is undeleted and restored to the active obs file list.

Rename Button (Column 3)

If you click on this radio button, you will mark the obs file for renaming. You will need to enter new name for the file in the New Name box in Column 4.

Note that deletion and renaming are mutually exclusive (they are both "radio buttons").

New Name Box (Column 4)

If you are Renaming an obs file, enter the new filename in this box. New files names follow the same rules for old files names, and names up to 16 characters long are allowed. There is no need to type the ".obs" extension, that will be added by the file manager automatically.

Once you have marked all of the files you wish to rename, you can press the "Delete/Rename Marked Files" button to rename them.

Warning! The file manager form will not let you rename a file so as to overwrite an existing file. However, if the new name is that of a file that you are also Deleting with the manager in this session, file deletion operation is done before renaming, so there should be no problem.

back to top

Wastebasket Table Entries

Files that are "deleted" from the active obs file list are moved to a "Wastebasket". This allows you to undelete a file later if you decide it shouldn't have been marked for deletion, or to delete it forever by "expunging" it from the wastebasket, at which point it will be physically deleted from the disk. These descriptions are also accessible by from within the Wastebasket table form by clicking on the highlighted items.

If you have come to this page from the manager form, remember use the "Back" button on your browser to return to the form from whence you came.

Trash File (Column 1)

The names of defunct obs files found in your project wastebasket are listed in this column. Only the files for your project are shown.

To view the contents of an obs file in the wastebasket, click on the highlighted filename. You can also save it to your local disk using "Shift+Click".

Expunge Button (Column 2)

If you click on this radio button, you will mark the file for expunging from the wastebasket. "Expunging" a file from the wastebasket means it is deleted from the system and gone forever.

Undelete Button (Column 3)

If you click on this radio button, you will mark the defunct obs file in the wastebasket for un-deletion. This means it will be restored to the list of "active" obs files, and available for implementation.

Note that expunging and un-deletion are mutually exclusive (they are both "radio buttons").

Undelete To box(Column 4)

If you are Undeleting a file in the wastebasket, you can give it a new name at the same time. By default, if this box is left empty, the file will recover its original name when undeleted. If this might overwrite an existing file with the same name, you can give it a new name.

Warning! The file manager form will not let you undelete a file so as to overwrite an existing file. However, if the new name is that of a file that you are also Deleting from the active list in this session, file deletion operation is done before undeletion, so there should be no problem.

Empty Wastebasket

By checking the Empty Wastebasket check box at the top of the Wastebasket table, you will mark all files in the wastebasket for final, irretrievable deletion. Any files marked with to undelete below will be ignored.

Note: Emptying the wastebasket is final, there are no recovery options once it is empty!

back to top

If you came here from one of the entry forms, use the "BACK" button on your browser to return to the obs file manager form in progress.

Updated: 2003 January 29 [rwp/osu]

ANDICAM resources

ANDICAM Phase II Observing Preparation Tools [557]

ANDICAM Instrument & Detector Characteristics
[495] [OSU]

ANDICAM Filters [561]

ANDICAM Data Products [494]

SMARTS2 and ANDICAM Contact Information
[558]

ANDICAM Email Lists
[512]

SMARTS2 Consortium [90]

1.3m Telescope 
[532]

ANDICAM [548] home

Yale 1.0-m Telescope

Yale University's 1.0 meter telescope was automated by the Astronomical Research Institute (ARI https://www.astro-research.org/ [562]).  It is operated with NASA funding to recover and follow-up NEOs.

About the 1.0m telescope

The CTIO/Yale 1-meter telescope is an f/10 reflecting telescope with a closed tube Cassegrain design. It is controlled using a custom Comsoft PC-TCS/DCS system which includes full automation of the dome. A CTIO-built autoguider (with a fixed-position CCD guide camera) was installed in early 2004. From June 1998 until September 2002, the 1.0-m was used by the YALO consortium with the OSU-built ANDICAM [548] dual optical/IR imager. When the ANDICAM [548] was moved to the CTIO 1.3-m [563] as part of the SMARTS collaboration startup in 2003, the 1.0-m sat idle until a new 12-position filter wheel and CCD was installed by OSU in March 2003.  

From July 2005 until the present, the 1.0-m has been equipped with the dedicated STA 4064x4064 CCD known as Y4KCam [564]. Prior to July 2005, the 1.0-m was equipped with a 512x512 Apogee AP7 CCD [565] .  The 1.0-m is equipped with a 12 position filter wheel using 4"x4" filters.  Available filters include BVRcIc  (standard CTIO/KPNO Kron-Cousins set), SDSS ugriz, and U+CuSO4. The complete suite of filters available is listed here [103].

For more information, please see the 1.0m website [566].

 

Y4KCam

SMARTS Y4KCam website [567]

Y4KCam is a 4Kx4K optical CCD optimized for wide-field broad-band imaging.  It has a 12-position filter wheel and uses a corrector lens (doubling as the dewar window) that provides a nearly undistorted 20x20-arcminute field of view for UBVRI imaging.  The CCD has excellent blue sensitivity, especially at U-band.

Detector Parameters
Pixels 4064x4064
Pixel Scale 0.289"/pixel
Field Size 20'x20'


CCD Parameters

The CCD is operated using multiple amplifier readout (quad). There is no region-of-interest capability.

Conversion Gain : 1.38 electrons/DN
Readout Noise : 6.6 electrons (rms) per quadrant
Linearity : <1% linear to 42,000 ADU above bias
Full Well : ~66,000 electrons
Acquisition Overheads:  
    1x1 binning : 51 sec
  2x2 binning : 16 sec
  4x4 binning : <5 sec

 Additional CCD characteristics can be found at the Ohio State Y4KCam Detector page [568].


CCD Notes:

Detector & Control System
This CCD is a backside-illuminated detector that was thinned and coated by Michael Lesser of the Steward Observatory Imaging Technology Laboratory [569] (ITL). The control system is an Astronomical Research Cameras [570] GenIII Controller integrated by ITL that reads out the CCD in quadrants. The controller is operated by the ITL-provided AzCamServer software running on a Windows XP workstation.

Detector Quantum Efficiency
The measured Detector Quantum Efficiency [571] is quite good across the blue and red portions of the spectrum, falling off towards the near-infrared. The U-band performance is superb.

Nominal DC Bias Level
Because the 4K CCD is readout in 4 quadrants with 4 different corner amplifiers, each has a different DC bias level associated with it. After the electronics and firmware upgrade during repairs undertaken in November 2007, the normal bias level is around 3500ADU, varying from 3400 to 3700 in the different quadrants. These numbers are about 2x larger than previously. The pattern of "high" and "low" bias quadrants has also changed because of the different electronics. Sample Bias Image from 2007 Dec 10 (ds9 orientation) [572].

Detector Gain, Readout Noise, and Saturation

Gain and Readout noise measurements by quadrant (2010 April 28) are

(1,1) +------+------+
      |      |      |
      |  Q1  |  Q2  |
      |      |      |
      +------+------+
      |      |      |
      |  Q3  |  Q4  |
      |      |      |
      +------+------+

  Q1: g=1.33 e-/ADU   ron=7.12 e-
  Q2: g=1.33 e-/ADU   ron=6.91 e-
  Q3: g=1.43 e-/ADU   ron=6.01 e-
  Q4: g=1.45 e-/ADU   ron=6.53 e-

These gain numbers are consistent with the last measurement in August 2007, but the measurement of the readout noise is improved (better method not a better CCD!). This number is inline with expectations for the STA0500 detector.

The CCD conversion gain and readout noise are measured using Janesick's Photon Transfer method, using pairs of biases and a sequence of pairs of flat-field images taken with 1 to 300 second exposures running from low level to at or near saturation.

The gain and readout noise vary from quadrant-to-quadrant, as expected for 4 independent readout amplifiers, ranging from 1.33 to 1.45 e-/ADU. The nominal 1.4 e-/ADU quoted above represents a round average of the 4 quadrants that should be useful for exposure time estimates based on predicted photon fluxes at the detector.

Prior to 2007 February, readout noise was dominated by a 60Hz pickup noise which resulted in an effective readout noise of ~15 electrons per quadrant. This noise source was eliminated by identifying and electrically isolating the offending component, in this case the camera power supply leaking dirty power from the telescope. Now bias images are much cleaner and yield a high-quality 2D bias frame from a median of 5-10 zero images. Recent measurements put the readout noise at about 6.6 electrons.

Examination of overexposed star images (saturated but not pushed past full-well and "bleeding") on raw images shows that the nominal full-well saturation occurs at about 50000ADU, or about 44000ADU above bias, corresponding to about 66,000 electrons full-well depth for a nominal gain of 1.4 e-/ADU.

Bias-subtracted radial profile of a saturated star [573]. The sky level in this image is about 55 ADU.

This full-well seems shallow for a 15-micron pixel device, but that's what we measure. Non-linearity seems to start to become an issue 40,000 ADU above bias, and we strongly recommend that you keep important photometric targets below 40K ADU per pixel. For reference, digitization saturates at 65535 ADU, well above the full-well threshold, so operating the camera at a higher than usual bias level (~3500ADU) has no impact on the dynamic range of the camera system.

Detector Cosmetics
The cosmetics of the CCD are excellent, with only three blocked columns (2 adjacent columns in quadrant 4 and one in quadrant 2) and minor cosmetic defects (isolated spots and smears) that appear to flat field out using dome flats.  A bad pixel mask can be used to interpolate across the bad columns (binning 1x1 [574] and 2x2 [575] - simply rename files to exclude '.txt').  The detector is flat to <2% at all wavelengths before flat fielding. Flat fields show a number of out-of-focus dust specks ("donuts") that appear to flat field out in high S/N-ratio dome flats.

Shutter Shading Corrections
The large detector and large, relatively slow shutter means that the shutter shading correction is non-trivial for short exposures. For >10sec integrations, the correction is everywhere <0.3%, but we recommend that flat fields be taken with minimum exposure times of 30sec. For short integrations, a shading correction will be required. The shortest practical exposure time is 0.3sec, for which the shading correction is ~20% from center to edge, with a complex six-sided pattern [576] that reflects the 6-bladed shutter architecture.

Tests during February 2007 show that the shading correction function has been stable on a few-year timescale. We recommend that a set of shading correction data be taken only once per semester and stored on the data-taking computer at the 1-meter as well as in the Yale respository.

Fringing
There is noticeable fringing in the I-band images in bright-sky conditions, and a slight bit of fringing in the R-band. This seems to come out OK in flat fielding and fringing is not expected to be a problem for most applications.

Cross-Talk
When stars are strongly saturated on one quadrant, there is significant crosstalk into pixels in adjacent quadrants. The effect is strongest in side-by-side quadrants, and weaker in top-to-bottom quadrants, consistent with the expected crosstalk signal pathway through the device.
 
Y4KCam Cross-Talk [577]
 
A particularly nice example of cross-talk is shown above, using purposely badly saturated stars on one quadrant. Click on the image to view a higher resolution version (185k JPEG).

Data were taken during February 2011 to calculate correction coefficients.  Those coefficients and brief instructions on the correction methodology can be found here [578].

Dark Current
The Y4KCam CCD is cryogenically cooled and operated at a temperature of -95 to -100°C. Laboratory measurements found negligible dark current of ~21 electrons/pixel/hour at this temperature, so "dark" images are not required for this CCD.

Pixel Scale
The pixel scale given above is for the BVRI bands, and was measured by fitting to about 150 USNO catalog stars found in the images of SA114. The effective linear pixel scale was consistently 0.289 arcsec/pixel in all bands, so the pixel scale is independent of wavelength for these filters to first order.


Data Acquisition Procedures

Please refer to the Prospero Observer's Guide for the Y4KCam [579] for a complete discussion of data acquisition procedures.  For previous users of Y4KCam, this Quick Guide [580] may be helpful as a refresher.


Data Reduction Procedures

There is a nice package of IRAF-based scripts written by Phil Massey for the Y4KCam that can be found at his website [581].  In addition, IRAF's QUADPROC can also be used if a keyword file is added to the header.  This file (binning 1x1 [582] or 2x2 [583]) can be added to the fits headers using IRAF script noao.artdata.mkheader.  Please note that, to do standardized photometry with Y4KCam, it is necessary to take sky flats to get the full FOV sufficiently flat (see Phil Massey's note [584] on the subject).

SMARTS Logs

SMARTS Nightly Observing Logs

  1.5-m 1.3-m           1.0-m          0.9-m
2011   1.3-m Logs 2011 [585] 1.0-m Logs 2011  
2010 --- 1.3-m Logs 2010 [586] 1.0-m Logs 2010  
---  
2009 --- 1.3-m Logs 2009 [587] 1.0-m Logs 2009  
---  
2008 --- 1.3-m Logs 2008 [588] 1.0-m Logs 2008  
---  
2007 --- 1.3-m Logs 2007 [589] 1.0-m Logs 2007  
---  
2006 --- 1.3-m Logs 2006 [590] 1.0-m Logs 2006  
1.5-m Logs 2006A [591]  
2005 1.5-m Logs 2005B [592] 1.3-m Logs 2005 [593] 1.0-m Logs 2005  
1.5-m Logs 2005A [594]  
2004 1.5-m Logs 2004B [595] 1.3-m Logs 2004 [596] 1.0-m Logs 2004 [597]  
1.5-m Logs 2004A [598]  
2003 1.5-m Logs 2003B [599] 1.3-m Logs 2003 [600]    
---  

 

Notes:

1.5m RCSpec Service Observing Nightly Logs

The creation of official nightly logs on the 1.5m did not begin until mid-November, 2003. Logs prior to this point can be found here [601]. Also, logs for dates after May 9, 2006 can be found in the same place.

1.3-m: Archive of ANDICAM 2003 Observing

ANDICAM began SMARTS operations on the CTIO 1.3m telescope on 2003 Feb 3.

ANDICAM nightly observing logs contain a list of all images acquired during a given night. Observing logs are filed by the local date at the start of the observing night. For example, to find the observing logs for the night that began the evening of 2003 June 12 and ended at sunrise on June 13, you would consult the observing log dated 2003 June 12 (20030612.log).

SMARTS2 operations began in January 2006. ANDICAM operations at the CTIO 1.3m telescope began as part of the original SMARTS consortium on 2003 February 3 and ran through 2005 December.

Observing logs are generated automatically by the AutoLog program running as part of the data-taking system and are updated automatically at 10am Eastern Time.

1.0-m Archive  1.0m Telescope + Y4KCam 2010 Observing Logs

Observing logs are organized by month. Within each month the logs are filed by "Observing Date", which is defined as the local date at the start of the observing night. For example, to see what was observed during the night that began at sunset on 2010 June 12 and ended at sunrise on June 13, you would look at the log for 2010 June 12.

Logs are updated automatically at 10am Eastern Time.

CTIO 1.0m operations did not begin until 2004 May 12.

 

1.5m telescope Plate logs

This is the book page to refer to old pages containing plate logs per month.

1969

1969 Plate logs for 1.5-m Telescope

January

January 1969 Plate logs for 1.5-m telescope

Plate N. N. R. A. Dec Exp.

Time
Emulsion Filtro Seeing Observer Date Object Re-

marks
CTIO
17   05 09 42 - 68 49 15 m lla - O GG 385 2" B . Bok 31 01 69 NGC 1854    
18   05 09 42 - 68 49 30 m lla - O UG 2 2" B . Bok 31 01 69 NGC 1854    
19   05 09 42 - 68 49 30 m 103a - D GG 495 2" B . Bok 31 01 69 NGC 1854    
20   05 40 00 - 69 04 45 m 103a - E R G 610 2" B . Bok 31 01 69 30 Dor.    
21   11 39 05 - 61 54 15 m lla - O GG 385 2" B . Bok 31 01 69 HD 101545    
22   11 39 05 - 61 54 45 m lla - O UG 2 2" B . Bok 31 01 69 HD 101545    
23   11 39 05 - 61 54 45 m 103a - D GG 495 4.5" B . Bok 31 01 69 HD 101545    

 

Last Updated on 8/27/99

By Guerra & Marin

 

February

February 1969 Plate logs for 1.5-m telescope

Plate N. N. R. A. Dec Exp.Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
24   05 07 44 - 69 05.7 10 m 103a - D GG 495 2" B . Bok 01 02 69 Sec Tifft    
25a   05 07 44 - 69 05.7 07 m lla - O GG 385 2" B . Bok 01 02 69 Sec Tifft    
25b   05 07 44 - 69 05.7 45 m lla - O UG 2 2.5" B . Bok 01 02 69 Sec Tifft    
26   05 22 28 - 68 00.3 10 m 103a - D GG 495 2.5" B . Bok 01 02 69 NGC 1927 Broken Ok" ? CTIO
27a   05 22 28 - 68 00.3 ? lla - O UG 2 2.5" B . Bok 01 02 69 NGC 1927    
27b   05 22 28 - 68 00.3 07 m lla - O GG 385 1.5 B . Bok 01 02 69 NGC 1927 Broken Ok" CTIO
28   10 18 54 - 56 03.4 10 m 103a - D GG 495 3" B . Bok 01 02 69 ?    
29a   10 18 54 - 56 03.4 07 m lla - O GG 385 3" B . Bok 01 02 69 ?    
29b   10 18 54 - 56 03.4 45 m lla - O UG 2 3" B . Bok 01 02 69 ?    
30   11 36 33 - 63 12.4 10 m 103a - D GG 495 3" B . Bok 01 02 69 IC 2944    
31a   11 36 33 - 63 12.4 07 m lla - O GG 385 2.5" B . Bok 01 02 69 IC 2944    
31b   11 36 33 - 63 12.4 40 m lla - O UG 2 2" B . Bok 01 02 69 IC 2944    

 

Last Updated on 8/27/99

By Guerra & Marin

April

April 1969 Plate logs for 1.5-m telescope

Plate N.N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
32   16 52 15 -42 52 01 m lla - O -   Every Body 29 04 69 NGC 6231 focus plate  

Last Updated on 8/27/99
By Jorge Marin

June

 June 1969 Plate logs for 1.5-m telescope

Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
89   17 23 06 - 48 27 01 m 103a - O GG 385   Hartwick 09 06 69 NGC 6352 focus plate  
90   12 22 30 - 72 31 15 m 103a - O GG 385   Hartwick 09 06 69 NGC 4372    
91   12 20 31 - 72 31 01 m 103a - D GG 495   Hartwick 09 06 69 NGC 4372 focus plate  
92   12 20 31 - 72 31 45 m 103a - D GG 495   Hartwick 09 06 69 NGC 4372    
93   12 20 30 - 72 31 30 m 103a - D GG 495   Hartwick 09 06 69 NGC 4372    
94   12 20 30 - 72 31 30 m 103a - O GG 385   Hartwick 09 06 69 NGC 4372    
95   17 21 48 - 17 49 60 m 103a - O GG 385   Hartwick 09 06 69 NGC 6356 Broken Ok"  
96   17 21 48 - 17 49 60 m 103a - D GG 495   Hartwick 09 06 69 NGC 6356    
97   17 21 30 - 48 25 15 m 103a - D GG 495   Hartwick 09 06 69 NGC 6352    
98   17 21 30 - 48 25 15 m 103a - D GG 495   Hartwick 09 06 69 NGC 6352    
99   17 21 30 - 48 25 15 m 103a - O GG 385   Hartwick 09 06 69 NGC 6352    
100   17 21 30 - 48 25 15 m 103a - O GG 385   Hartwick 09 06 69 NGC 6352    
101   12 23 00 - 72 24   103a - O GG 385   Hartwick 15 06 69 NGC 4372 focus plate CTIO
102   12 23 00 - 72 24   103a - O GG 385   Hartwick 15 06 69 NGC 4372 focus plate  
103   12 23 00 - 72 24 15 m 103a - O GG 385   Hartwick 15 06 69 NGC 4372    
104   12 23 00 - 72 24 15 m 103a - D GG 495   Hartwick 15 06 69 NGC 4372    
105   17 20 00 - 17 46 30 m 103a - D GG 495   Hartwick 15 06 69 NGC 6356    
106   17 20 00 - 17 46 30 m 103a - O GG 385   Hartwick 15 06 69 NGC 6356    
107   17 21 36 - 48 26 30 m 103a - O GG 385   Hartwick 15 06 69 NGC 6352    
108   17 21 36 - 48 26 30 m 103a - D GG 495   Hartwick 15 06 69 NGC 6352    
109   17 21 36 - 48 26 15 m 103a - D GG 495   Hartwick 15 06 69 NGC 6352    
110   17 21 36 - 48 26 30 m 103a - D GG 495   Hartwick 15 06 69 NGC 6352 focus plate CTIO
111   17 21 36 - 48 26 30 m 103a - D GG 495   Hartwick 15 06 69 NGC 6352    
112   17 21 36 - 48 26 15 m 103a - D GG 495   Hartwick 15 06 69 NGC 6352    
113   17 21 36 - 48 26 15 m 103a - O GG 385   Hartwick 15 06 69 NGC 6352    
114   17 21 36 - 48 26 15 m 103a - O GG 385   Hartwick 15 06 69 NGC 6352    
115   17 21 36 - 48 26 15 m 103a - D GG 495   Hartwick 15 06 69 NGC 6352    
116   12 23 00 - 72 24 60 seg 103a - D GG 495   Hartwick 16 06 69 NGC 4372 focus plate CTIO
117   12 23 00 - 72 24 60 seg 103a - D GG 495   Hartwick 16 06 69 NGC 4372 focus plate CTIO
118   12 23 00 - 72 24 30 seg 103a - D GG 495   Hartwick 16 06 69 NGC 4372 focus plate CTIO
119   12 23 00 - 72 24 30 m 103a - D GG 495   Hartwick 16 06 69 NGC 4372    
120   18 00 00 - 30 02 30 m 103a - O GG 385   Hartwick 16 06 69 NGC 6522 Broken Ok" CTIO
121   18 00 00 - 30 02 30 m 103a - O GG 385   Hartwick 16 06 69 NGC 6522   CTIO
122   17 20 00 - 17 46 30 m 103a - D GG 495   Hartwick 16 06 69 NGC 6356    
123   17 21 00 - 48 26 01 m 103a - D GG 495   Hartwick 16 06 69 NGC 6352 focus plate  
124   17 21 00 - 48 26 30 m 103a - D GG 495   Hartwick 16 06 69 NGC 6352    
125   18 00 00 - 30 02 30 m 103a - O GG 385   Hartwick 16 06 69 NGC 6522   CTIO
126   18 00 00 - 30 02 30 m 103a - O GG 385   Hartwick 16 06 69 NGC 6522   CTIO
127   17 21 00 - 48 26   103a - O GG 385   Hartwick 16 06 69 NGC 6352 focus plate CTIO
128   17 21 00 - 48 26 30 m 103a - O GG 385   Hartwick 16 06 69 NGC 6352    
129   17 46 48 - 37 02 15 m 103a - O GG 385   Hartwick 16 06 69 NGC 6441    
130   17 46 48 - 37 02 15 m 103a - D GG 495   Hartwick 16 06 69 NGC 6441    
131   17 46 48 - 37 02 05 m 103a - D GG 495   Hartwick 16 06 69 NGC 6441    
132   17 46 48 - 37 02 05 m 103a - O GG 385   Hartwick 16 06 69 NGC 6441    
133   18 00 00 - 30 02 30 m 103a - O GG 385   Hartwick 16 06 69 NGC 6522 Broken Ok" CTIO
134   18 00 00 - 30 02 30 m 103a - D GG 495   Hartwick 16 06 69 NGC 6522   CTIO
135   18 00 00 - 30 02 25 m 103a - O GG 385   Hartwick 16 06 69 NGC 6522 Broken Ok" CTIO
136   18 00 00 - 30 02 30 m 103a - O GG 385   Hartwick 16 06 69 NGC 6522 Destroyed CTIO

  

Last Updated on 8/27/99

By Guerra & Marin 

August

August 1969 Plate logs for 1.5-m telescope

Plate N.N. R.A. Dec Exp Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
137   11 38 00 -45 36 15 m 103a - O none   Mintz/Blanco 16 08 69 1620 Geographos    
138   11 38 00 -45 37 15 m 103a - O none   Mintz/Blanco 17 08 69 1620 Geographos    
139   11 53 00 -47 24 15 m 103a - O none   Mintz/Blanco 18 08 69 1620 Geographos    
140   11 53 00 -47 24 15 m 103a - O none   Mintz/Blanco 18 08 69 1620 Geographos    
141   12 10 43 -49 12.7 15 m 103a - O none   Mintz/Blanco 19 08 69 1620 Geographos    
142   12 10 43 -49 12.7 15 m 103a - O none   Mintz/Blanco 19 08 69 1620 Geographos    
143   12 32 04 -51 02.5 15 m 103a - O none   Mintz/Blanco 20 08 69 1620 Geographos    
144   12 32 04 -51 02.5 15 m 103a - O none   Mintz/Blanco 20 08 69 1620 Geographos    
145   12 58 03 -56 42.4 15 m 103a - O none   Mintz/Blanco 21 08 69 1620 Geographos    
146   12 58 03 -56 42.4 15 m 103a - O none   Mintz/Blanco 21 08 69 1620 Geographos    
147   12 58 03 -56 42.4 05 m 103a - O none   Mintz/Blanco 21 08 69 1620 Geographos    

 

Last Updated on 8/27/99

Jorge Marin


 

 

September

September 1969 Plate logs for 1.5-m telescope

Plate N. N. R. A. Dec Exp.Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
148   17 58 36 - 25 00 35 m 103a - O UG 2   Hiltner / Blanco 04 09 69 GX 5 - 1    
149   17 58 36 - 25 00 117 m 103a - O UG 2   Hiltner / Blanco 06 09 69 GX 5 - 1    
150   17 58 36 - 25 00 20 m 103a - E GG 385   Hiltner / Blanco 06 09 69 GX 5 - 1    
151   00 51 15 - 26 56.3 20 m lla - O UG 2   Hiltner / Blanco 06 09 69 NGC 288    
152   00 51 15 - 26 56.3 10 m 103a - D GG 495   Hiltner / Blanco 06 09 69 NGC 288    
153   00 51 15 - 26 56.3 20 m lla - O UG 2   Figueroa 06 09 69 NGC 288    
154   00 51 15 - 26 56.3 10 m 103a - D GG 495 3" Figueroa 06 09 69 NGC 288    
155   00 13 30 - 39 23 45 m lla - O none   Figueroa 06 09 69 NGC 55    
156   05 39 06 - 69 09 45 m lla - O UG 2   Figueroa 06 09 69 30 Dor.    

 

Last Updated on 8/27/99

By Guerra & Marin

October

October 1969 Plate logs for 1.5-m telescope

Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
157   01 01 23 - 73 54 30 m 103a - O GG 385   Landi 07 10 69 S M C RF Broken Ok"  
158   01 01 23 - 73 54 30 m 103a - O GG 385   Landi 07 10 69 S M C RF    
159   23 16 00 - 72 00 30 m 103a - O GG 385   Landi 07 10 69 Center Zona F1    
160   01 01 23 - 73 54 30 m 103a - O GG 385   Landi 07 10 69 S M C RF    
161   01 01 23 - 73 54 30 m 103a - D GG 495   Landi 07 10 69 S M C RF    
162   01 07 00 - 73 02 30 m 103a - D GG 495   Landi 07 10 69 SMC cum 419    
163   01 01 23 - 73 54 30 m 103a - D GG 495   Landi 07 10 69 S M C RF    
164   01 01 23 - 73 54 30 m 103a - O GG 385   Landi 07 10 69 S M C RF    
165   02 17 00 - 70 40 30 m 103a - O GG 385   Landi 07 10 69 Zona A II    
166   01 01 23 - 73 54 30 m 103a - O GG 385   Landi 07 10 69 S M C RF    
167   23 16 00 - 72 00 30 m 103a - O GG 385   Landi 08 10 69 Zona CF l Broken Ok"  
168   01 01 23 - 73 54 40 m 103a - O GG 385   Landi 08 10 69 S M C RF    
169   01 01 23 - 73 54 40 m 103a - D GG 495   Landi 08 10 69 S M C RF    
170   23 16 00 - 72 00 30 m 103a - O GG 385   Landi 08 10 69 Zona CF l    
171   01 01 23 - 73 54 35 m 103a - D GG 495   Landi 08 10 69 S M C RF    
172   01 07 00 - 73 02 35 m 103a - O GG 385   Landi 08 10 69 SMC cum 419    
173   01 07 00 - 73 02 25 m 103a - O GG 385   Landi 08 10 69 SMC cum 419    
174   01 01 23 - 73 54 25 m 103a - O GG 385   Landi 08 10 69 S M C RF    
175   01 01 23 - 73 54 30 m 103a - D GG 495   Landi 08 10 69 S M C RF    
176   01 07 00 - 73 02 30 m 103a - D GG 495   Landi 08 10 69 SMC cum 419    
177   01 01 23 - 73 54 25 m 103a - O GG 385   Landi 08 10 69 S M C RF    
178   17 59 42 - 20 32 106 m 103a - O UG 2   Landi 10 10 69 GX 9 + 1    
179   17 59 42 - 20 32 10 m 103a - D GG 495   Landi 10 10 69 GX 9 + 1    
180   17 59 48 - 25 20 96 m 103a - O UG 2   Landi 11 10 69 GX 5 - l    
181   17 59 48 - 25 20 10 m 103a - D GG 495   Landi 11 10 69 GX 5 - l    
182   01 01 23 - 73 54 35 m 103a - O GG 385 3" Landi 11 10 69 S M C RF    
183   01 07 00 - 73 02 35 m 103a - O GG 385   Landi 11 10 69 SMC cum 419    
184   01 07 00 - 73 02 25 m 103a - O GG 385   Landi 11 10 69 SMC cum 419    
185   01 01 23 - 73 54 25 m 103a - O GG 385   Landi 11 10 69 S M C RF    
186   23 16 00 - 72 00 30 m 103a - O GG 385   Landi 11 10 69 Zona CF l    
187   02 17 00 - 70 40 30 m 103a - O GG 385   Landi 11 10 69 Zona A II    
188   01 01 23 - 73 54 30 m 103a - O GG 385   Landi 11 10 69 S M C RF    
189   01 01 23 - 73 54 35 m 103a - O GG 385 4" Landi 11 10 69 S M C RF    
190   01 01 23 - 73 54 35 m 103a - O GG 385   Landi 13 10 69 S M C RF    
191   23 16 00 - 72 00 30 m 103a - O GG 385   Landi 13 10 69 Zona CF l    
192   01 01 23 - 73 54 35 m 103a - D GG 495   Landi 13 10 69 S M C RF    
193   01 07 21 - 73 02 35 m 103a - D GG 495   Landi 13 10 69 SMC cum 419    
194   01 07 21 - 73 02 40 m 103a - O UG 2   Landi 13 10 69 SMC cum 419    
195   01 01 23 - 73 54 40 m 103a - O UG 2   Landi 13 10 69 S M C RF    
196   01 01 23 - 73 54 35 m 103a - O GG 385   Landi 13 10 69 S M C RF    
197   01 07 21 - 73 02 35 m 103a - O GG 385   Landi 13 10 69 SMC cum 419    
198   01 01 23 - 73 54 35 m 103a - O GG 385   Landi 13 10 69 S M C RF    

 

Last Updated on 8/27/99

By Guerra & Marin

 

November

November 1969 Plate logs for 1.5-m telescope.

Plate N. N. R. A. Dec Exp.Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
199   00 25 42 - 71 41 60 m 103a - O GG 385   J. Graham 02 11 69 NGC 121    
200   01 49 06 - 73 51 60 m 103a - O GG 385   J. Graham 02 11 69 Lindsay 133    
201   03 44 36 - 71 45 60 m 103a - O GG 385   J. Graham 02 11 69 NGC 1466    
202   02 25 42 - 71 41 60 m 103a - O GG 385   J. Graham 02 11 69 NGC 121    
203   02 25 42 - 71 41 60 m 103a - O GG 385   J. Graham 03 11 69 NGC 121    
204   01 49 06 - 73 51 60 m 103a - O GG 385   J. Graham 03 11 69 Lindsay 133    
205   03 44 36 - 71 45 60 m 103a - O GG 385   J. Graham 03 11 69 NGC 1466    
206   02 25 42 - 71 41 70 m 103a - O GG 385   J. Graham 03 11 69 NGC 121    
207   01 49 06 - 73 51 60 m 103a - O GG 385   J. Graham 03 11 69 Lindsay 133    
208   03 44 36 - 71 45 60 m 103a - O GG 385   J. Graham 03 11 69 NGC 1466    
209   18 00 24 - 30 02 30 m lla - O GG 385   J. Hesser 04 11 63 NGC 6522   CTIO
210   20 52 30 - 12 34.5 30 m lla - O GG 385   J. Hesser 04 11 63 NGC 6994    
211   20 52 30 - 12 34.5 30 m 103a - D GG 495   J. Hesser 04 11 63 NGC 6994    
212   03 27 00 - 53 00 100 m 103a - D GG 495   J. Hesser 04 11 63 Klemola 8    
213   07 48 42 - 38 17 30 m 103a - D GG 495   J. Hesser 04 11 63 NGC 2447    
214   07 48 42 - 38 17 30 m lla - O GG 385   J. Hesser 04 11 63 NGC 2447    
215   07 48 42 - 38 17 30 m lla - O GG 385   J. Hesser 04 11 63 NGC 2447    
216   07 48 42 - 38 17 30 m 103a - D GG 495   J. Hesser 04 11 63 NGC 2447    
217   18 00 24 - 30 02 45 m 103a - O GG 385   J. Hesser 05 11 63 NGC 6522 Broken Ok" CTIO
218   20 52 30 - 12 34.5 30 m 103a - O GG 385   J. Hesser 05 11 63 NGC 6994    
219   20 52 30 - 12 34.5 16 m 103a - D GG 495   J. Hesser 05 11 63 NGC 6994    
220   00 23 00 - 72 00 15 m 103a - D GG 495   J. Hesser 05 11 63 47 Tuc    
221   00 23 00 - 72 00 15 m lla - O GG 385   J. Hesser 05 11 63 47 Tuc    
222   00 23 00 - 72 00 15 m 103a - D GG 495   J. Hesser 05 11 63 47 Tuc    
223   00 23 00 - 72 00 15 m 103a - O GG 385   J. Hesser 05 11 63 47 Tuc Destroyed  
224   07 48 42 - 38 17 30 m 103a - O GG 385   J. Hesser 05 11 63 NGC 2447    
225   07 48 42 - 38 17 30 m 103a - O GG 385   J. Hesser 05 11 63 NGC 2447    
226   07 48 42 - 38 17 30 m 103a - D GG 495   J. Hesser 05 11 63 NGC 2447    
227   00 25 42 - 71 41 60 m 103a - O GG 385   J. Graham 07 11 69 NGC 121    
228   01 49 06 - 73 51 15 m 103a - O GG 385   J. Graham 07 11 69 Lindsay 133    
229   00 25 42 - 71 41 60 m 103a - O GG 385   J. Graham 07 11 69 NGC 121    
230   18 00 24 - 30 02 30 m 103a - O GG 385   J. Hesser 09 11 69 NGC 6522 Destroyed CTIO
231   20 52 30 - 12 34.5 30 m 103a - O GG 385   J. Hesser 09 11 69 NGC 6994    
232   20 52 30 - 12 34.5 30 m 103a - D GG 495   J. Hesser 09 11 69 NGC 6994    
233   03 27 00 - 53 00 90 m 103a - O GG 385   J. Hesser 09 11 69 Klemola 8    
234   07 48 42 - 38 17 60 m 103a - O GG 385   J. Hesser 09 11 69 NGC 2447    
235   07 48 42 - 38 17 60 m 103a - D GG 495   J. Hesser 09 11 69 NGC 2447    
236   07 48 42 - 38 17 10 m 103a - O GG 385   J. Hesser 09 11 69 NGC 2447    
237   01 09 06 - 32 19 45 m 103a - O GG 385   M. Smith 10 11 69 Klemola 1    
238   01 09 06 - 32 19 90 m 103a - D GG 495   M. Smith 10 11 69 Klemola 1    
239   03 15 42 - 54 18 120 m 103a - D GG 495   M. Smith 10 11 69 Klemola 7    
240   02 45 30 - 35 19 90 m 103a - D GG 495   M. Smith 10 11 69 Klemola 3    
241   02 45 30 - 35 19 90 m 103a - O GG 385   M. Smith 11 11 69 Klemola 3    
242   03 15 42 - 54 18 48 m 103a - O GG 385   M. Smith 11 11 69 Klemola 7    
243   00 25 42 - 71 41 60 m 103a - O GG 385   J. Graham 12 11 69 NGC 121    
244   01 49 06 - 73 51 60 m 103a - O GG 385   J. Graham 12 11 69 Lindsay 133    
245   04 59 00 - 66 01 60 m 103a - O GG 385   J. Graham 12 11 69 NGC 1783    
246   00 25 42 - 71 41 60 m 103a - O GG 385   J. Graham 12 11 69 NGC 121 bad plate  
247   03 44 36 - 71 45 55 m 103a - O GG 385   J. Graham 12 11 69 NGC 1466    
248   04 59 00 - 66 01 55 m 103a - O GG 385   J. Graham 12 11 69 NGC 1783    
249   00 47 56 - 25 25 45 m 103a - O none   V. Blanco 14 11 69 NGC 2453 Plate 11 X 14  
250   02 38 18 - 34 39 45 m 103a - O none   V. Blanco 14 11 69 Fornax Plate 11 X 14  
251   05 39 00 - 69 06.8 20 m 103a - O none   V. Blanco 14 11 69 Tarantula Plate 11 X 14  
252   05 39 00 - 69 06.8 20 m 103a - O none   V. Blanco 14 11 69 Tarantula Plate 11 X 14  
253   05 22 28 - 68 00.3 20 m 103a - O none   V. Blanco 14 11 69 NGC 1927 Plate 11 X 14  
219                        

 

Last Updated on 8/27/99

By Guerra & Marin

 

December

December 1969 Plate logs for 1.5-m telescope

Plate N. N. R. A. Dec Exp.Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
254   05 39 00 - 69 11.9 15 m lla - O UG 2 2" - 3" Mendoza 02 12 69 R 136    
255   05 39 00 - 69 11.9 85 m I N hip. RG 695 2" - 3" Mendoza 02 12 69 R 136    
256   05 39 00 - 69 11.9 45 m I N hip. RG 695 3" Mendoza 02 12 69 R 136    
257   04 59 00 - 66 01 30 m 103a - O none 2" Graham 03 12 69 NGC 1783    
258   05 09 00 - 69 00 30 m 103a - O none 2" Graham 03 12 69 Boktifft    
259   04 59 00 - 66 01 30 m 103a - O none 1.5" Graham 03 12 69 NGC 1783    
260   05 09 00 - 69 00 30 m 103a - O none 1.5" Graham 03 12 69 Boktifft    
261   04 59 00 - 66 01 30 m 103a - O none 1.5" Graham 03 12 69 NGC 1783    
262   05 09 00 - 69 00 30 m 103a - O none 1" Graham 03 12 69 Boktifft    
263   04 59 00 - 66 01 30 m 103a - O none 1" Graham 03 12 69 NGC 1783    
264   05 09 00 - 69 00 30 m 103a - O none 2.5" Graham 03 12 69 Boktifft    
265   04 59 00 - 66 01 30 m 103a - O none 2.5" Graham 04 12 69 NGC 1783    
266   05 09 00 - 69 00 30 m 103a - O none 2" Graham 04 12 69 Boktifft    
267   04 59 00 - 66 01 30 m 103a - O none 2" Graham 04 12 69 NGC 1783    
268   05 09 00 - 69 00 30 m 103a - O none 2" Graham 04 12 69 Boktifft    
269   04 59 00 - 66 01 30 m 103a - O none 2" Graham 04 12 69 NGC 1783    
270   05 09 00 - 69 00 30 m 103a - O none 2" Graham 04 12 69 Boktifft    
271   04 59 00 - 66 01 30 m 103a - O none 1" Graham 04 12 69 NGC 1783    
272   05 09 00 - 69 00 31 m 103a - O none 1" Graham 04 12 69 Boktifft    
273   04 59 00 - 66 01 30 m 103a - O none 1" Graham 04 12 69 NGC 1783    
274   00 22 36 - 72 14 40 m 103a - O none 2" Graham 05 12 69 47 Tucan    
275   04 59 00 - 66 01 30 m 103a - O none 2" Graham 05 12 69 NGC 1783    
276   05 09 00 - 69 00 30 m 103a - O none 2" Graham 05 12 69 Boktifft    
277   04 59 00 - 66 01 30 m 103a - O none 2" - 3" Graham 05 12 69 NGC 1783    
278   05 09 00 - 69 00 30 m 103a - O none 2" - 3" Graham 05 12 69 Boktifft    
279   04 59 00 - 66 01 30 m 103a - O none 2" - 3" Graham 05 12 69 NGC 1783    
280   05 09 00 - 69 00 30 m 103a - O none 1.5" Graham 05 12 69 Boktifft    
281   04 59 00 - 66 01 30 m 103a - O none 1.5" Graham 05 12 69 NGC 1783    
282   05 09 00 - 69 00 30 m 103a - O none 1.5" Graham 05 12 69 Boktifft    
283   04 59 00 - 66 01 30 m 103a - O none 1.5" Graham 05 12 69 NGC 1783    
284   03 10 54 - 55 25 10 m 103a - D GG 495   Contreras 14 12 69 NGC 1261    
285   03 10 54 - 55 25 30 m 103a - O GG 385   Contreras 14 12 69 NGC 1261    
286   03 13 23 - 55 21 20 m 103a - O GG 385   Contreras 14 12 69 NGC 1261    
287   03 13 23 - 55 21 20 m 103a - D GG 495   Contreras 14 12 69 NGC 1261    
288   07 17 00 - 24 50 05 m 103a - O GG 385   Contreras 14 12 69 NGC 2362    
289   07 17 00 - 24 50 20 m 103a - O GG 385   Contreras 15 12 69 NGC 2362    
290   07 17 00 - 24 50 20 m 103a - D GG 495   Contreras 15 12 69 NGC 2362    
291   07 17 00 - 24 50 20 m 103a - D GG 495   Contreras 15 12 69 NGC 2362    
292   07 17 00 - 24 50 20 m 103a - O GG 385   Contreras 15 12 69 NGC 2362    
293   07 17 00 - 24 50 20 m 103a - D GG 495   Contreras 15 12 69 NGC 2362    
294   05 12 24 - 40 05 20 m 103a - O GG 385   Contreras 15 12 69 NGC 1851    
295   05 12 24 - 40 05 20 m 103a - D GG 495   Contreras 15 12 69 NGC 1851    
296   13 25 00 - 47 09 20 m 103a - O GG 385   Contreras 15 12 69 Omega Cen    
297   03 10 54 - 55 25 10 m 103a - O GG 385   Contreras 15 12 69 NGC 1261    
298   03 10 54 - 55 25 20 m 103a - D GG 495   Contreras 16 12 69 NGC 1261    
299   03 10 54 - 55 25 10 m 103a - O GG 385   Contreras 16 12 69 NGC 1261    
300   03 10 54 - 55 25 20 m 103a - D GG 495   Contreras 16 12 69 NGC 1261    
301   05 12 00 - 44 05 10 m 103a - O GG 385   Contreras 16 12 69 NGC 1851    
302   05 12 00 - 44 05 20 m 103a - D GG 495   Contreras 16 12 69 NGC 1851    
303   05 12 00 - 44 05 10 m 103a - O GG 385   Contreras 16 12 69 NGC 1851    
304   07 17 00 - 24 50 05 m 103a - O GG 385   Contreras 16 12 69 NGC 2362    
305   07 17 00 - 24 50 15 m 103a - O UG 2   Contreras 16 12 69 NGC 2362    
306   07 17 00 - 24 50 10 m 103a - D GG 495   Contreras 16 12 69 NGC 2362    
307   09 10 54 - 64 39 20 m 103a - D GG 495   Contreras 16 12 69 NGC 2808    
308   09 10 54 - 64 39 10 m 103a - O GG 385   Contreras 16 12 69 NGC 2808    

 

Last Updated on 8/27/99

By Jorge Marin

1970

1970 Plate logs for 1.5-m

January

January 1970 Plate log for 1.5-m telescope

Plate N.N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
309   04 59 00 -66 01 40 m 103a - O none   Graham 27 01 70 NGC 1783    
310   04 59 00 -66 01 40 m 103a - O none   Graham 29 01 70 NGC 1783    

Fields N.N; Seeing, Remarks and CTIO empty

Last Updated on 8/27/99
By Guerra & Marin

February

February 1970 Plate logs for 1.5-m telescope

Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
311   04 59 00 - 66 01 30 m 103a - O none   Graham 04 02 70 NGC 1783    
312   05 09 00 - 69 00 30 m 103a - O none   Graham 04 02 70 Bok tifft    
313   04 59 00 - 66 01 30 m 103a - O none   Graham 04 02 70 NGC 1783    
314   05 09 00 - 69 00 30 m 103a - O none   Graham 04 02 70 Bok tifft    
315   04 59 00 - 66 01 30 m 103a - O none   Graham 04 02 70 NGC 1783    
316   08 56 30 - 28 41 15 m 103a - O GG 385   Graham 04 02 70 K 1 - 2    
317   09 40 00 - 54 00 04 m lla - O GG 385   Graham 04 02 70 Field    
318   09 40 00 - 54 00 05 m 103a - D GG 495   Graham 04 02 70 Field    
319   11 12 00 - 61 05 60 m 103a - E RG 610   Graham 04 02 70 NGC 3603    
320   10 44 00 -59 26 20 m 103a - E RG 610   Graham 04 02 70 Eta Carina    
321   04 59 00 - 66 01 30 m 103a - O none   Graham 05 02 70 NGC 1783    
322   05 05 30 - 69 26 30 m 103a - O none   Graham 05 02 70 NGC 1835    
323   04 59 00 - 66 01 30 m 103a - O none   Graham 05 02 70 NGC 1783    
324   05 09 00 - 69 00 30 m 103a - O none   Graham 05 02 70 Bok tifft    
325   04 59 00 - 66 01 30 m 103a - O none   Graham 05 02 70 NGC 1783    
326   08 56 30 - 28 41 20 m lla - D GG 495   J Graham 05 02 70 K 1 - 2 Numeracion correcta  
327   09 40 00 - 54 00 05 m lla - O GG 385   J Graham 05 03 70 Vela Field Numeracion correcta  
328   09 40 00 - 54 00 05 m 103a - D GG 495   J Graham 05 02 70 Vela Field Numeracion correcta  
329   11 00 00 - 62 00 60 m lla - O none   J Graham 05 02 70 Carina Numeracion correcta  
330   13 23 27 - 42 45.7 20 m 103a - O none   Smith 09 02 70 NGC 5128 Numeracion correcta  
331   13 23 27 - 42 45.7 10 m 103a - O none   Smith 09 02 70 NGC 5128 Numeracion correcta  
332   13 23 27 - 42 45.7 160 m 103a - O none   Smith 09 02 70 NGC 5128 Numeracion correcta  
326   09 25 18 - 52 50.8 04 m 103a - D GG 495   Miller 08 02 70 HD 81848 Numeracion ???  
327   09 25 18 - 52 50.8 04 m 103a - D GG 495   Miller 08 02 70 HD 81848    
328   09 25 18 - 52 50.8 20 m 103a - D GG 495   Miller 08 02 70 HD 81848    
329   09 25 18 - 52 50.8 15 m 103a - O GG 385   Miller 08 02 70 HD 81848    
330   09 25 18 - 52 50.8 45 m 103a - O UG 2   Miller 08 02 70 HD 81848    
331   10 58 54 - 60 17 45 m 103a - O UG 2   Miller 08 02 70 HD 95414    
332   10 58 54 - 60 17 15 m 103a - O GG 385   Miller 08 02 70 HD 95414    
333   10 58 54 - 60 17 20 m 103a - D GG 495   Miller 08 02 70 HD 95414    
334   12 10 42 - 62 47 20 m 103a - D GG 495   Miller 08 02 70 HD 106068    
335   12 10 42 - 62 47 15 m 103a - O GG 385   Miller 08 02 70 HD 106068    
336   12 10 42 - 62 47 45 m 103a - O UG 2   Miller 08 02 70 HD 106068    
337   15 50 48 - 53 04 45 m 103a - O UG 2   Miller 08 02 70 Norma lll    
338   15 50 48 - 53 04 15 m 103a - O GG 385   Miller 08 02 70 Norma lll    
339   15 50 48 - 53 04 20 m 103a - D GG 495   Miller 08 02 70 Norma lll    
340   15 50 48 - 53 04 10 m 103a - D GG 495   Miller 08 02 70 Norma lll    
341   15 50 48 - 53 04 15 m 103a - O UG 2   Miller 08 02 70 Norma lll    
342   09 25 00 - 52 51 05 m 103a - O GG 385   Miller 09 02 70 HD 81848    
343   09 25 00 - 52 51 10 m 103a - D GG 495   Miller 09 02 70 HD 81848    
344   09 25 00 - 52 51 15 m 103a - O UG 2   Miller 09 02 70 HD 81848    
345   09 40 12 - 53 58 45 m 103a - O UG 2   Miller 09 02 70 HD 84092    
346   09 40 12 - 53 58 15 m 103a - O GG 385   Miller 09 02 70 HD 84092    
347   09 40 12 - 53 58 20 m 103a - D GG 495   Miller 09 02 70 HD 84092    
348   09 40 12 - 53 58 15 m 103a - O UG 2   Miller 09 02 70 HD 84092    
349   11 30 12 - 60 31 60 m lla - O UG 2   Miller 09 02 70 SA 193 Broken Ok" CTIO
350   11 30 12 - 60 31 20 m lla - O GG 385   Miller 09 02 70 SA 193   CTIO
351   11 30 12 - 60 31 15 m 103a - D GG 495   Miller 09 02 70 SA 193   CTIO
352   11 30 12 - 60 31 04 m 103a - D GG 495   Miller 09 02 70 SA 193    
353   12 11 00 - 62 47 30 m lla - O UG 2   Miller 09 02 70 HD 106068    
354   12 11 00 - 62 47 10 m lla - O GG 385   Miller 09 02 70 HD 106068    
355   12 11 00 - 62 47 04 m 103a - D GG 495   Miller 09 02 70 HD 106068    
356   15 50 48 - 53 04 10 m 103a - D GG 495   Miller 09 02 70 Norma lll    
357   15 50 48 - 53 04 04 m lla - O GG 385   Miller 09 02 70 Norma lll    
358   15 50 48 - 53 04 20 m lla - O UG 2   Miller 09 02 70 Norma lll    
359   15 50 06 - 56 14.4 30 m lla - O UG 2   Miller 09 02 70 Norma ll    
360   09 39 18 - 54 04.7 60 m lla - O UG 2   Miller 10 02 70 HD 84092    
361   10 19 54 - 55 55.6 30 m lla - O UG 2   Miller 10 02 70 HD 89890    
362   10 19 54 - 55 55.6 10 m lla - O GG 385   Miller 10 02 70 HD 89890    
363   10 19 54 - 55 55.6 04 m 103a - D GG 495   Miller 10 02 70 HD 89890   CTIO
364   10 58 48 - 60 16.6 04 m 103a - D GG 495   Miller 10 02 70 HD 95414    
365   10 58 48 - 60 16.6 10 m lla - O GG 385   Miller 10 02 70 HD 95414    
366   10 58 48 - 60 16.6 30 m lla - O UG 2   Miller 10 02 70 HD 95414    
367   11 30 12 - 60 32 30 m lla - O UG 2   Miller 10 02 70 SA 193    
368   11 30 12 - 60 32 10 m lla - O GG 385   Miller 10 02 70 SA 193    
369   12 10 42 - 62 32 10 m 103a - D GG 495   Miller 10 02 70 HD 106068    
370   14 19 00 - 60 48 05 m 103a - D GG 495   Miller 10 02 70 HD 125206    
371   14 19 00 - 60 48 10 m lla - O GG 385   Miller 10 02 70 HD 125206    
372   14 19 00 - 60 48 30 m lla - O UG 2   Miller 10 02 70 HD 125206    
373   15 55 30 - 54 15.7 30 m lla - O UG 2   Miller 10 02 70 Norma l    
374   15 55 30 - 54 15.7 10 m lla - O GG 385   Miller 10 02 70 Norma l    
375   15 55 30 - 54 15.7 05 m 103a - D GG 495   Miller 10 02 70 Norma l    
376   15 50 06 - 56 14.4 20 m 103a - D GG 495   Miller 10 02 70 Norma ll    
377   15 50 06 - 56 14.4 30 m lla - O GG 385   Miller 10 02 70 Norma ll    
378   15 50 06 - 56 14.4 53 m lla - O UG 2   Miller 10 02 70 Norma ll    
379   12 23 54 - 72 24.5 30 m 103a - O GG 385   J. Hesser 14 02 70 NGC 4372    
380   17 23 35 - 48 23.5 45 m 103a - O GG 385   J. Hesser 14 02 70 NGC 6352    
381   17 23 35 - 48 23.5 45 m 103a - D GG 495   J. Hesser 14 02 70 NGC 6352    
382   17 23 35 - 48 23.5 45 m 103a - O GG 385   J. Hesser 14 02 70 NGC 6352    
383   17 23 35 - 48 23.5 22 m 103a - D GG 495   J. Hesser 14 02 70 NGC 6352    
384   07 50 32 - 38 26 30 m lla - O GG 385   J. Hesser 16 02 70 NGC 2477    
385   12 22 42 - 72 29.5 30 m lla - O GG 385   J. Hesser 16 02 70 NGC 4372    
386   12 22 42 - 72 29.5 30 m 103a - D GG 495   J. Hesser 16 02 70 NGC 4372    
387   12 22 42 - 72 29.5 30 m lla - O GG 385   J. Hesser 16 02 70 NGC 4372    
388   17 12 00 - 29 26.7 30 m lla - O GG 385   J. Hesser 16 02 70 NGC 6304    
389   17 12 00 - 29 26.7 30 m 103a - D GG 495   J. Hesser 16 02 70 NGC 6304    
390   17 22 30 - 48 24.2 45 m lla - O GG 385   J. Hesser 16 02 70 NGC 6352    
391   17 22 30 - 48 24.2 45 m 103a - D GG 495   J. Hesser 16 02 70 NGC 6352    
392   17 22 30 - 48 24.2 60 m lla - O GG 385   J. Hesser 16 02 70 NGC 6352    
393   07 50 24 - 38 25.8 15 m lla - O GG 385   J. Hesser 17 02 70 NGC 2477    
394   07 50 24 - 38 25.8 15 m 103a - D GG 495   J. Hesser 17 02 70 NGC 2477    
395   07 50 24 - 38 25.8 15 m lla - O GG 385   J. Hesser 17 02 70 NGC 2477    
396   07 50 24 - 38 25.8 15 m 103a - D GG 495   J. Hesser 17 02 70 NGC 2477    
397   07 50 24 - 38 25.8 15 m 103a - D GG 495   J. Hesser 17 02 70 NGC 2477    
398       30 m lla - O GG 385   J. Hesser 17 02 70 NGC 2260    
399       30 m 103a - D GG 495   J. Hesser 17 02 70 NGC 2260    
400   12 22 15 - 72 28.8 30 m 103a - D GG 495   J. Hesser 17 02 70 NGC 4372    
401   12 22 15 - 72 28.8 30 m lla - O GG 385   J. Hesser 17 02 70 NGC 4372    
402   17 12 00 - 29 26.7 30 m lla - O GG 385   J. Hesser 17 02 70 NGC 6304    
403   17 12 00 - 29 26.7 30 m 103a - D GG 495   J. Hesser 17 02 70 NGC 6304    
404   17 12 00 - 29 26.7 15 m 103a - D GG 495   J. Hesser 17 02 70 NGC 6304    
405   17 12 00 - 29 26.7 15 m lla - O GG 385   J. Hesser 17 02 70 NGC 6304    
406   17 12 00 - 29 26.7 30 m lla - O GG 385   J. Hesser 17 02 70 NGC 6304    
407   17 12 00 - 29 26.7 30 m 103a - D GG 495   J. Hesser 17 02 70 NGC 6304    
408   17 23 35 - 48 23.5 45 m 103a - D GG 495   J. Hesser 17 02 70 NGC 6352    
409   18 00 24 - 30 02 40 m lla - O GG 385   J. Hesser 17 02 70 NGC 6522   CTIO
410   09 10 54 - 64 39 18 m lla - O GG 385   G. Alcaino 23 02 70 NGC 2808    
411   09 10 54 - 64 39 18 m lla - O GG 385   G. Alcaino 23 02 70 NGC 2808    
412   09 10 54 - 64 39 18 m lla - O GG 385   G. Alcaino 23 02 70 NGC 2808    
413   09 10 54 - 64 39 18 m lla - O GG 385   G. Alcaino 23 02 70 NGC 2808    
414   09 10 54 - 64 39 18 m lla - O GG 385   G. Alcaino 23 02 70 NGC 2808    
415   09 10 54 - 64 39 18 m 103a - D GG 495   G. Alcaino 23 02 70 NGC 2808    
416   09 10 54 - 64 39 18 m 103a - D GG 495   G. Alcaino 23 02 70 NGC 2808    
417   09 10 54 - 64 39 18 m 103a - D GG 495   G. Alcaino 23 02 70 NGC 2808    
418   12 56 00 - 70 36 18 m lla - O GG 385   G. Alcaino 23 02 70 NGC 4833    
419   12 56 00 - 70 36 18 m lla - O GG 385   G. Alcaino 23 02 70 NGC 4833    
420   12 56 00 - 70 36 18 m lla - O GG 385   G. Alcaino 23 02 70 NGC 4833    
421   12 56 00 - 70 36 18 m 103a - D GG 495   G. Alcaino 23 02 70 NGC 4833    
422   12 56 00 - 70 36 18 m 103a - D GG 495   G. Alcaino 23 02 70 NGC 4833    
423   12 56 00 - 70 36 18 m 103a - D GG 495   G. Alcaino 23 02 70 NGC 4833    
424   17 21 36 - 48 26 18 m 103a - D GG 495   G. Alcaino 23 02 70 NGC 6352    
425   17 21 36 - 48 26 18 m 103a - D GG 495   G. Alcaino 23 02 70 NGC 6352    
426   17 21 36 - 48 26 18 m 103a - D GG 495   G. Alcaino 23 02 70 NGC 6352    
427   17 21 36 - 48 26 18 m lla - O GG 385   G. Alcaino 23 02 70 NGC 6352    
428   17 21 36 - 48 26 18 m lla - O GG 385   G. Alcaino 23 02 70 NGC 6352    
429   17 21 36 - 48 26 18 m lla - O GG 385   G. Alcaino 23 02 70 NGC 6352    
430   19 06 24 - 60 04 18 m lla - O GG 385   G. Alcaino 23 02 70 NGC 6752    
431   19 06 24 - 60 04 18 m lla - O GG 385   G. Alcaino 23 02 70 NGC 6752    
432   05 12 24 - 40 05 18 m 103a - D GG 495   G. Alcaino 24 02 70 NGC 1851    
433   05 12 24 - 40 05 18 m 103a - D GG 495   G. Alcaino 24 02 70 NGC 1851    
434   12 23 00 - 72 24 25 m lla - O GG 385   G. Alcaino 24 02 70 NGC 4372    
435   12 23 00 - 72 24 25 m lla - O GG 385   G. Alcaino 24 02 70 NGC 4372    
436   12 23 00 - 72 24 25 m 103a - D GG 495   G. Alcaino 24 02 70 NGC 4372    
437   12 23 00 - 72 24 25 m 103a - D GG 495   G. Alcaino 24 02 70 NGC 4372    
438   13 43 00 - 51 07 25 m lla - O GG 385   G. Alcaino 24 02 70 NGC 5286    
439   13 43 00 - 51 07 25 m 103a - D GG 495   G. Alcaino 24 02 70 NGC 5286    
440   13 43 00 - 51 07 35 m lla - O GG 385   G. Alcaino 24 02 70 NGC 5286    
441   13 43 00 - 51 07 35 m 103a - D GG 495   G. Alcaino 24 02 70 NGC 5286    
442   13 25 00 - 47 09 25 m lla - O GG 385   G. Alcaino 24 02 70 NGC 5139    
443   13 25 00 - 47 09 25 m 103a - D GG 495   G. Alcaino 24 02 70 NGC 5139    
444   05 12 24 - 40 05 25 m lla - O GG 385   G. Alcaino 25 02 70 NGC 1851    
445   05 12 24 - 40 05 30 m lla - O GG 385   G. Alcaino 25 02 70 NGC 1851    
446   05 12 24 - 40 05 23 m 103a - D GG 495   G. Alcaino 25 02 70 NGC 1851    
447   10 44 00 - 59 33 05 m 103a - D GG 495   G. Alcaino 25 02 70 Eta Carina    
448   12 23 00 - 72 24 25 m 103a - D GG 495   G. Alcaino 25 02 70 NGC 4372    
449   12 23 00 - 72 24 20 m 103a - D GG 495   G. Alcaino 25 02 70 NGC 4372    
450   12 23 00 - 72 24 25 m lla - O GG 385   G. Alcaino 25 02 70 NGC 4372    
451   12 23 00 - 72 24 35 m lla - O GG 385   G. Alcaino 25 02 70 NGC 4372    
452   13 43 00 - 51 07 30 m lla - O GG 385   G. Alcaino 25 02 70 NGC 5286    
453   13 43 00 - 51 07 30 m 103a - D GG 495   G. Alcaino 25 02 70 NGC 5286    
454   13 43 00 - 51 07 40 m 103a - D GG 495   G. Alcaino 25 02 70 NGC 5286    
455   13 43 00 - 51 07 40 m 103a - D GG 495   G. Alcaino 25 02 70 NGC 5286    
456   05 12 24 - 40 05 30 m lla - O GG 385   G. Alcaino 26 02 70 NGC 1851    
457   05 12 24 - 40 05 22 m 103a - D GG 495   G. Alcaino 26 02 70 NGC 1851    
458   10 44 00 - 59 33 04 m 103a - D GG 495   G. Alcaino 26 02 70 Eta Carina    
459   10 44 00 - 59 33 06 m 103a - D GG 495   G. Alcaino 26 02 70 Eta Carina    
460   10 44 00 - 59 33 09 m 103a - D GG 495   G. Alcaino 26 02 70 Eta Carina    
461   10 44 00 - 59 33 06 m lla - O GG 385   G. Alcaino 26 02 70 Eta Carina    
462   10 44 00 - 59 33 08 m lla - O GG 385   G. Alcaino 26 02 70 Eta Carina    
463   10 44 00 - 59 33 12 m lla - O GG 385   G. Alcaino 26 02 70 Eta Carina    
464   10 44 00 - 59 33 15 m lla - O U G 2   G. Alcaino 26 02 70 Eta Carina    
465   10 44 00 - 59 33 30 m lla - O GG 385   G. Alcaino 26 02 70 Eta Carina    
466   13 43 00 - 51 07 25 m 103a - D GG 495   G. Alcaino 26 02 70 NGC 5286    
467   13 43 00 - 51 07 30 m lla - O GG 385   G. Alcaino 26 02 70 NGC 5286    
468   13 43 00 - 51 07 35 m lla - O GG 385   G. Alcaino 26 02 70 NGC 5286    
469   17 21 36 - 48 26 30 m lla - O GG 385   G. Alcaino 26 02 70 NGC 6352    
470   17 26 36 - 67 01 20 m lla - O GG 385   G. Alcaino 26 02 70 NGC 6362    
471   17 26 36 - 67 01 30 m lla - O GG 385   G. Alcaino 26 02 70 NGC 6362    
472   17 26 36 - 67 01 18 m 103a - D GG 495   G. Alcaino 26 02 70 NGC 6362    
473   17 26 36 - 67 01 25 m 103a - D GG 495   G. Alcaino 26 02 70 NGC 6362    
474   18 04 24 - 43 44 18 m 103a - D GG 495   G. Alcaino 26 02 70 NGC 6541    
475   18 04 24 - 43 44 20 m 103a - D GG 495   G. Alcaino 26 02 70 NGC 6541    
476   18 04 24 - 43 44 20 m lla - O GG 385   G. Alcaino 26 02 70 NGC 6541    
477   18 04 24 - 43 44 30 m lla - O GG 385   G. Alcaino 26 02 70 NGC 6541    
478   18 04 24 - 43 44 16 m 103a - D GG 495   G. Alcaino 26 02 70 NGC 6541    
479   19 06 24 - 60 04 18 m 103a - D GG 495   G. Alcaino 26 02 70 NGC 6752    
480   19 06 24 - 60 04 15 m 103a - D GG 495   G. Alcaino 26 02 70 NGC 6752    
481 01 al 40 481 al 520   (*)                
521   ¿                    
522   ¿                    
523   ¿                    
524   ¿                    

(*) Numeración correspondiente a tubo imagen

 

Last updated on 8/27/99

By Guerra & Marin



 

March

March 1970 Plate log for 1.5-m telescope

Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
525   08 56 30 - 28 41 20 m lla - D GG 495   J Graham 05 03 70 K 1 - 2    
526   09 40 00 - 54 00 05 m lla - O GG 385   J Graham 05 03 70 Vela Field    
527   09 40 00 - 54 00 05 m 103a - D GG 495   J Graham 05 03 70 Vela Field    
528   11 00 00 - 62 00 60 m lla - O none   J Graham 05 03 70 Carina    
529   13 23 27 - 42 45.7 20 m 103a - O none   Smith 05 03 70 NGC 5128    
530   13 23 27 - 42 45.7 10 m 103a - O none   Smith 05 03 70 NGC 5128    
531   13 23 27 - 42 45.7 160 m 103a - O none   Smith 05 03 70 NGC 5128    
  41-42 532 - 533  (*)                  

 

 (*) Numeración correspondiente a tubo imagen

 

 

Last Updated on 8/27/99

By Guerra & Marin

April

 April 1970 Plate logs for 1.5-m telescope

Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
534   05 35 29 - 49 45.3 15 m 103a - O none   Kunkel /Smith 02 04 70 PKS 0534-49    
  ´43 535 (*)                  
536   07 19 37 - 55 21.8 15 m 103a - O none   Kunkel /Smith 02 04 70 PKS 0719-55    
  ´44 537 (*)                  
538   07 43 26 - 67 22 15 m 103a - O none   Kunkel /Smith 02 04 70 PKS 0743-67    
    539 (*)                  
540   10 11 25 - 64 49 15 m 103a - O none   Kunkel /Smith 02 04 70 PKS 1010-64    
    541 (*)                  
542   10 37 33 -69 53.7 15 m 103a - O none   Kunkel /Smith 02 04 70 PKS 1036-69    
    543 - 544 (*)                  
545   17 20 06 - 80 03.4 15 m 103a - O none   Kunkel /Smith 02 04 70 PKC 1716-80    
    546 - 547 (*)                  
548   17 56 25 - 59 46.8 15 m 103a - O none   Kunkel /Smith 02 04 70 PKS 1754-59    
549   17 55 30 - 26 33 30 m 103a - O none   Kunkel /Smith 02 04 70 GX 3 + 1    
550   17 59 30 - 25 05 30 m 103a - O none   Kunkel /Smith 02 04 70 GX 5 - 1    
551   17 59 48 - 20 31 25 m 103a - O none   Kunkel /Smith 02 04 70 GX 9 - 1    

(*) Numeración correspondiente a tubo imagen

Last Updated on 8/27/99

By Jorge Marin

May

 

May 1970 Plate log for 1.5-m telescope

 

Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
658       15 m 103a - O none   Kunkel /Smith 02 05 70 PKS 0719-55    
659   09 10 36 - 64 35 40 m lla - O GG 385   White 01 05 70 NGC 2808    
660   09 10 36 - 64 35 30 m 103a - D GG 495   White 01 05 70 NGC 2808    
661   10 14 48 - 46 05 30 m 103a - D GG 495   White 01 05 70 NGC 3201    
662   10 14 48 - 46 05 30 m 103a - D GG 495   White 01 05 70 NGC 3201    
663   10 14 48 - 46 05 20 m lla - O GG 385   White 01 05 70 NGC 3201    
664   14 50 24 - 81 58 40 m 103a - D GG 495   White 01 05 70 I C 4499    
665   15 23 18 - 50 26 30 m 103a - D GG 495   White 01 05 70 NGC 5927    
666   15 23 18 - 50 26 30 m 103a - D GG 495   White 01 05 70 NGC 5927    
667   15 23 18 - 50 26 40 m lla - O GG 385   White 01 05 70 NGC 5927    
668   15 23 18 - 50 26 40 m lla - O GG 385   White 01 05 70 NGC 5927    
669   17 31 30 - 44 42 40 m lla - O GG 385   White 01 05 70 NGC 6388    
670   17 31 30 - 44 42 30 m 103a - D GG 495   White 01 05 70 NGC 6388    
671   17 31 30 - 44 42 30 m 103a - D GG 495   White 01 05 70 NGC 6388    
672   17 31 30 - 44 42 25 m 103a - D GG 495   White 01 05 70 NGC 6388    
673   09 10 36 - 64 35 40 m lla - O GG 385   White 02 05 70 NGC 3201    
674   09 10 36 - 64 35 75 m lla - O U G 2   White 02 05 70 NGC 3201    
675   15 23 18 - 50 26 30 m 103a - D GG 495   White 02 05 70 NGC 5927    
676   15 23 18 - 50 26 75 m lla - O U G 2   White 02 05 70 NGC 5927    
677   15 23 18 - 50 26 75 m lla - O U G 2   White 02 05 70 NGC 5927    
678   15 23 18 - 50 26 40 m lla - O GG 385   White 02 05 70 NGC 5927    
679   17 31 30 - 44 42 40 m lla - O GG 385   White 02 05 70 NGC 6388    
680   17 31 30 - 44 42 40 m lla - O GG 385   White 02 05 70 NGC 6388    
681   17 31 30 - 44 42 40 m lla - O GG 385   White 02 05 70 NGC 6388    
682   17 31 30 - 44 42 75 m lla - O U G 2   White 02 05 70 NGC 6388    
683   17 31 30 - 44 42 30 m 103a - D GG 495   White 02 05 70 NGC 6388    
684   09 10 36 - 64 35 60 m lla - O GG 385   White 03 05 70 NGC 2808    
685   10 14 48 - 46 05 60 m lla - O GG 385   White 03 05 70 NGC 3201    
686   15 23 18 - 50 26 45 m 103a - D GG 495   White 03 05 70 NGC 5927    
687   15 41 48 - 37 34 40 m 103a - D GG 495   White 03 05 70 NGC 5986    
688   15 41 48 - 37 34 50 m lla - O GG 385   White 03 05 70 NGC 5986    
689   16 57 06 - 30 02 50 m lla - O GG 385   White 03 05 70 NGC 6266    
690   16 57 06 - 30 02 40 m 103a - D GG 495   White 03 05 70 NGC 6266    
691   17 12 30 - 28 04 40 m 103a - D GG 495   White 03 05 70 NGC 6316    
692   17 12 30 - 28 04 50 m lla - O GG 385   White 03 05 70 NGC 6316    
693   17 31 30 - 44 42 50 m lla - O GG 385   White 03 05 70 NGC 6388    
694   17 31 30 - 44 42 40 m 103a - D GG 495   White 03 05 70 NGC 6388    
695   09 10 36 - 64 35 90 m lla - O GG 385   White 04 05 70 NGC 2808    
696   13 25 0 - 47 09 15 m 103a - D GG 495   White 04 05 70 NGC 5139    
697   04 59 55 - 66 01 10 m 103a - D GG 495   Graham 15 05 70 NGC 1783    
698   04 59 55 - 66 01 10 m 103a - O GG 385   Graham 15 05 70 NGC 1783    
699   10 44 00 - 59 33 20 m 098 - 02 R G 610   Graham 15 05 70 Eta Carina    
700   12 47 12 - 41 08 60 m 098 - 02 R G 610   Graham 15 05 70 NGC 4696    
701   13 35 24 - 29 43 60 m 098 - 02 R G 610   Graham 15 05 70 M 83    
702   13 35 24 - 29 43 30 m 103a - D GG 495   Graham 15 05 70 M 83    
703   18 17 12 - 13 48 60 m 103a - O none   Graham 15 05 70 M 16    
704   18 01 48 - 24 23 30 m 103a - D none   Graham 15 05 70 M 8    
705   18 01 48 - 24 23 30 m III a - J bkd none   Graham 15 05 70 M 8    
706   18 01 48 - 24 23 30 m III a - J none   Graham 15 05 70 M 8    
707   12 23 19 - 72 31.5 15 m 103a - O GG 385   Hesser /Hartwick 27 05 70 NGC 4372    
708   17 48 00 - 37 03.7 30 m 103a - D GG 495   Hesser /Hartwick 27 05 70 NGC 6441    
709   17 48 00 - 37 03.7 30 m 103a - D GG 495   Hesser /Hartwick 27 05 70 NGC 6533    
710   12 23 19 - 72 31.5 15 m 103a - O GG 385 5" Hartwick / Hesser 28 05 70 NGC 4372    
711   12 23 19 - 72 31.5 15 m 103a - D GG 495 5" Hartwick / Hesser 28 05 70 NGC 4372    
712   12 23 19 - 72 31.5 15 m 103a - D GG 495 5" Hartwick / Hesser 28 05 70 NGC 4372    
713   08 41 33 - 47 05.9 15 m 103a - D GG 495 5" Hartwick / Hesser 30 05 70 NGC 2660    
714   08 41 33 - 47 05.9 15 m 103a - O GG 385 5" Hartwick / Hesser 30 05 70 NGC 2660    
715   08 41 33 - 47 05.9 05 m 103a - O GG 385 5" Hartwick / Hesser 30 05 70 NGC 2660    
716   08 41 33 - 47 05.9 05 m 103a - D GG 495 5" Hartwick / Hesser 30 05 70 NGC 2660    
717   17 44 42 - 37 42.7 15 m 103a - O GG 385   Hartwick / Hesser 30 05 70 NGC 5986    
718   17 44 42 - 37 42.7 15 m 103a - D GG 495   Hartwick / Hesser 30 05 70 NGC 5986    
719   18 01 41 - 30 03.1 30 m 103a - O GG 385   Hartwick / Hesser 30 05 70 NGC 6522 BROKEN OK" CTIO
720   18 01 41 - 30 03.1 30 m 103a - O GG 385   Hartwick / Hesser 30 05 70 NGC 6522 BROKEN OK" CTIO
721   18 01 41 - 30 03.1 30 m 103a - O GG 385   Hartwick / Hesser 30 05 70 NGC 6522 BROKEN OK" CTIO
722   18 01 41 - 30 03.1 30 m 103a - O GG 385   Hartwick / Hesser 30 05 70 NGC 6522    
723   18 01 41 - 30 03.1 45 m 103a - O GG 385   Hartwick / Hesser 30 05 70 NGC 6522 BROKEN OK" CTIO
724   18 01 41 - 30 03.1 45 m 103a - O GG 385   Hartwick / Hesser 30 05 70 NGC 6522   CTIO
725   18 01 41 - 30 03.1 45 m 103a - O GG 385   Hartwick / Hesser 30 05 70 NGC 6522   CTIO
726   18 01 41 - 30 03.1 45 m 103a - O GG 385   Hartwick / Hesser 30 05 70 NGC 6522   CTIO
727   18 01 41 - 30 03.1 45 m 103a - O GG 385   Hartwick / Hesser 30 05 70 NGC 6522 BROKEN OK" CTIO
728   18 01 41 - 30 03.1 30 m 103a - O GG 385   Hartwick / Hesser 30 05 70 NGC 6522 BROKEN OK" CTIO
729   18 01 41 - 30 03.1 30 m 103a - O GG 385   Hartwick / Hesser 30 05 70 NGC 6522 BROKEN OK" CTIO
730   18 01 41 - 30 03.1 45 m 103a - O GG 385   Hartwick / Hesser 30 05 70 NGC 6522    

 

Last Updated on 8/27/99

By Guerra & Marin

 

June

June 1970 Plate log for 1.5-m telescope

Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
730   12 23 19 - 72 31.5 15 m 103a - O GG 385 4" - 5" Hesser /Hartwicki 03 06 70 NGC 4372    
731   12 23 19 - 72 31.5 15 m 103a - D GG 495 4" - 5" Hesser /Hartwicki 03 06 70 NGC 4372    
732   12 23 19 - 72 31.5 15 m 103a - D GG 495   Hesser /Hartwicki 07 06 70 NGC 2660    
733   08 41 33 - 47 05.9 15 m 103a - O GG 385   Hesser /Hartwicki 07 06 70 NGC 2660    
734   08 41 33 - 47 05.9 05 m 103a - O GG 385   Hesser /Hartwicki 07 06 70 NGC 2660    
735   08 41 33 - 47 05.9 05 m 103a - D GG 495   Hesser /Hartwicki 07 06 70 NGC 2660    
736   18 02 33 - 30 43.6 30 m 103a - O GG 385   Hesser /Hartwicki 07 06 70 NGC 6522   CTIO
737   18 02 33 - 30 43.6 30 m 103a - O GG 385   Hesser /Hartwicki 07 06 70 NGC 6522   CTIO
738   18 02 33 - 30 43.6 30 m 103a - O GG 385   Hesser /Hartwicki 07 06 70 NGC 6522    
739   18 02 33 - 30 43.6 30 m 103a - O GG 385   Hesser /Hartwicki 07 06 70 NGC 6522   CTIO
740   18 02 33 - 30 43.6 30 m 103a - O GG 385   Hesser /Hartwicki 07 06 70 NGC 6522   CTIO
741   18 02 33 - 30 43.6 30 m 103a - O GG 385   Hesser /Hartwicki 07 06 70 NGC 6522   CTIO
742   18 02 33 - 30 43.6 30 m 103a - O GG 385   Hesser /Hartwicki 07 06 70 NGC 6522   CTIO
743   18 02 33 - 30 43.6 30 m 103a - O GG 385   Hesser /Hartwicki 07 06 70 NGC 6522   CTIO
744   18 02 33 - 30 43.6 30 m 103a - O GG 385   Hesser /Hartwicki 07 06 70 NGC 6522   CTIO
745   18 02 33 - 30 43.6 30 m 103a - O GG 385   Hesser /Hartwicki 07 06 70 NGC 6522   CTIO
746   18 02 33 - 30 43.6 30 m 103a - O GG 385   Hesser /Hartwicki 07 06 70 NGC 6522   CTIO
747   18 02 33 - 30 43.6 30 m 103a - O GG 385   Hesser /Hartwicki 07 06 70 NGC 6522   CTIO
748   18 02 33 - 30 43.6 27 m 103a - O GG 385   Hesser /Hartwicki 07 06 70 NGC 6522   CTIO
749   18 02 33 - 30 43.6 25 m 103a - O GG 385   Hesser /Hartwicki 07 06 70 NGC 6522 BROKEN OK" CTIO
750   18 02 33 - 30 43.6 25 m 103a - O GG 385   Hesser /Hartwicki 07 06 70 NGC 6522    
751   13 23 36 - 42 52 30 m Iia - O GG 385 2" Vanderberg 09 06 70 Centaurus A    
752   13 23 36 - 42 52 30 m 103a - D GG 495   Vanderberg 09 06 70 Centaurus A    
753   13 23 36 - 42 52 60 m 103a - O U G - 2   Vanderberg 09 06 70 Centaurus A    
754   18 01 18 - 30 02 25 m 103a - D GG 495   Vanderberg 09 06 70 NGC 6522    
755   18 01 18 - 30 02 35 m 103a - O GG 385   Vanderberg 09 06 70 NGC 6522    
756   18 01 18 - 30 02 120 m 103a - O U G - 2   Vanderberg 10 06 70 NGC 6522    
757   18 01 18 - 30 02 35 m 103a - O GG 385   Vanderberg 10 06 70 NGC 6522    
758   18 01 18 - 30 02 25 m 103a - D GG 495   Vanderberg 10 06 70 NGC 6522    
759   22 00 54 - 51 26 60 m 103a - O GG 385   Vanderberg 10 06 70 I C 5152    
760   22 00 54 - 51 26 60 m 103a - D GG 495   Vanderberg 10 06 70 I C 5152    
761   22 00 54 - 51 26 100 m 103a - O U G - 2   Vanderberg 10 06 70 I C 5152    
762   13 23 36 - 42 52 120 m 098 -02 RG 630   Vanderberg 13 06 70 Centaurus A    
763   18 02 15 - 30 02 10 m 103a - O GG 385   Vanderberg 13 06 70 NGC 6522    
764   11 17 24 - 29 24 15 m 103a - D GG 495   Hesser /Hartwicki 15 06 70 NGC 6304    
765   11 17 24 - 29 24 15 m 103a - O GG 385   Hesser /Hartwicki 15 06 70 NGC 6304    
766   11 17 24 - 29 24 15 m 103a - D GG 495   Hesser /Hartwicki 15 06 70 NGC 6304    
767   11 17 24 - 29 24 15 m 103a - O GG 385   Hesser /Hartwicki 15 06 70 NGC 6304    
768   17 46 48 - 37 02 30 m 103a - D GG 495   Hesser /Hartwicki 15 06 70 NGC 6441    
769   17 46 48 - 37 02 10 m 103a - O GG 385   Hesser /Hartwicki 15 06 70 NGC 6441    
770   17 46 48 - 37 02 10 m 103a - D GG 495   Hesser /Hartwicki 15 06 70 NGC 6441    
771   17 46 48 - 37 02 07 m 103a - D GG 495   Hesser /Hartwicki 15 06 70 NGC 6441    
772   17 46 48 - 37 02 07 m 103a - O GG 385   Hesser /Hartwicki 15 06 70 NGC 6441    
773   17 46 48 - 37 02 05 m 103a - O GG 385   Hesser /Hartwicki 15 06 70 NGC 6441    
774   17 46 48 - 37 02 05 m 103a - D GG 495   Hesser /Hartwicki 15 06 70 NGC 6441    
775   17 46 48 - 37 02 02 m 103a - D GG 495   Hesser /Hartwicki 15 06 70 NGC 6441    
776   17 46 48 - 37 02 02 m 103a - O GG 385   Hesser /Hartwicki 15 06 70 NGC 6441    
777   18 39 52 - 49 08.7 15 m 103a - D GG 495   Hesser /Hartwicki 15 06 70 Stack Cluster    
778   18 39 52 - 49 08.7 15 m 103a - O GG 385   Hesser /Hartwicki 15 06 70 Stack Cluster    
779   10 42 08 - 70 03 15 m 103a - D GG 495   Hesser /Hartwicki 16 06 70 Stack Cluster    
780   10 42 08 - 70 03 15 m 103a - O GG 385   Hesser /Hartwicki 16 06 70 Stack Cluster Destroyed  
781   16 51 54 - 41 45 05 m 103a - O GG 385   Hesser /Hartwicki 16 06 70 NGC 6231    
782   11 12 12 - 61 05 60 m 103a - O nones 3" - 4" Graham 23 06 70 NGC 3603    
783   15 52 00 - 54 24 40 m 103a - O nones   Graham 23 06 70 Norma lll    
784   15 52 00 - 54 24 10 m lla - O GG 385   Graham 23 06 70 Norma lll    
785   15 52 00 - 54 24 04 m lla - O GG 385   Graham 23 06 70 Norma lll    
786   15 52 00 - 54 24 01 m lla - O GG 385   Graham 23 06 70 Norma lll    
787   15 52 00 - 54 24 68 m I Z sensiv R G 695   Graham 23 06 70 Norma lll    
788   15 52 00 - 54 24 60 m I N sensiv R G 695   Graham 23 06 70 Norma lll    
789   18 59 30 - 37 29 55 m I Z sensiv R G 695   Graham 23 06 70 R Coron.Australis    
790   18 59 30 - 37 29 50 m I N sensiv R G 695   Graham 23 06 70 R Coron.Australis    
791       02 m I Z R G 695   Figueroa 23 06 70 Moon    
792       04 m I Z R G 695   Figueroa 23 06 70 Moon    
793       08 m I Z R G 695   Figueroa 23 06 70 Moon    
794       30 m 103a - O nones   Graham 24 06 70 G L 275    
795   12 47 12 - 41 08 60 m 103a - O nones   Graham 24 06 70 NGC 4696    
796   15 55 00 - 54 18 10 m lla - O GG 385   Graham 24 06 70 Norma l    
797   15 45 00 - 56 06 10 m lla - O GG 385   Graham 24 06 70 Norma ll    
798   15 52 00 - 54 24 10 m lla - O GG 385   Graham 24 06 70 Norma lll    
799   15 52 00 - 54 24 60 m 098 - 04 RG 610   Graham 24 06 70 Norma lll    
800   15 45 00 - 56 06 60 m 098 - 04 RG 610   Graham 24 06 70 Norma ll    
801   00 25 42 - 71 41 40 m 103a - O nones   Graham 24 06 70 NGC 121    
802   01 02 00 - 71 20 40 m 103a - O nones   Graham 24 06 70 Gascoigne    
803   00 25 42 - 71 41 40 m 103a - O nones   Graham 24 06 70 NGC 121    
804   01 02 00 - 71 20 40 m 103a - O nones   Graham 24 06 70 Gascoigne    
805   10 43 35 - 59 32.7 15 m 103a - E R G 630   Smith 25 06 70 Carina Nebula    
806   10 43 35 - 59 32.7 15 m 103a - E R G 630   Smith 25 06 70 Carina Nebula    
807   10 43 35 - 59 32.7 30 m 103a - E R G 630   Smith 25 06 70 Carina Nebula    
808   16 32 57 - 48 02.7 30 m 103a - E R G 630   Smith 25 06 70 Wester    
809   18 15 44 - 51 58.8 15 m 103a - E R G 630   Smith 25 06 70 PKS 1814-51    
810   18 16 42 - 63 45.6 15 m 103a - O nones   Smith 25 06 70 PKS 1814-63    
811   18 45 54 - 69 00.0 15 m 103a - O nones   Smith 25 06 70 PKS 1843-69    
812   18 57 58 - 66 17.5 15 m 103a - O nones   Smith 25 06 70 PKS 1855-66    
813   19 11 53 - 53 09.1 15 m 103a - O nones   Smith 25 06 70 PKS 1910-55    
814   19 15 18 - 45 33.8 15 m 103a - O nones   Smith 25 06 70 PKS 1914-45    
815   19 19 28 - 52 35.3 15 m 103a - O nones   Smith 25 06 70 PKS 1917-52    
816   18 20 27 - 16 08.6 30 m 103a - E R G 630   Smith 25 06 70 M 17    
817   18 18 15 - 13 58.8 50 m 103a - E R G 630   Smith 25 06 70 M 16    
818   19 19 28 - 54 35.3 15 m 103a - O nones   Smith 25 06 70 PKS 1917-52    

 

Last Updated on 8/27/99

By Guerra & Marin

July

July 1970 Plate log for 1.5-m telescope

Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
819   12 47 12 - 41 08 120 m 103a - O U G 1   Graham 02 07 70 NGC 4696    
820   15 55 30 - 54 15.7 20 m 103a - D GG 495   Graham 02 07 70 Norma l    
821   15 55 30 - 54 15.7 30 m 103a - O U G 2   Graham 02 07 70 Norma ll    
822   15 55 30 - 54 15.7 10 m 103a - O G G 385   Graham 02 07 70 Norma lll    
823   15 50 06 - 54 30 10 m 103a - O G G 385   Graham 02 07 70 NGC 6397    
824   15 50 54 - 54 30 10 m 103a - O G G 385   Graham 02 07 70 NGC 121    
825   17 38 24 - 53 40 60 m 103a - O nones   Graham 02 07 70 Gascoigne    
826   00 25 42 - 71 41 40 m 103a - O nones   Graham 02 07 70 NGC 121    
827   01 02 00 - 71 30 60 m 103a - O nones   Graham 02 07 70 Gascoigne    
828   00 25 42 - 71 41 40 m 103a - O nones   Graham 02 07 70 NGC 121    
829   01 02 00 - 71 30 40 m 103a - O nones   Graham 02 07 70 Gascoigne    
830   00 25 42 - 71 41 60 m 103a - O nones   Graham 03 07 70 NGC 121    
831   01 02 00 - 71 30 60 m 103a - O nones   Graham 03 07 70 Gascoigne    
832   00 25 42 - 71 41 35 m 103a - O nones   Graham 04 07 70 NGC 121    
833   01 02 00 - 71 30 40 m 103a - O nones   Graham 04 07 70 Gascoigne    
834   00 25 42 - 71 41 40 m 103a - O nones   Graham 04 07 70 NGC 121    
835   11 37 00 - 63 10 30 m 103a - E R G 630   Smith 06 07 70 I C 2944    
836   18 17 00 - 12 10 30 m 103a - E R G 630   Smith 06 07 70 NGC 6604    
837   19 24 42 - 62 43.1 15 m 103a - O nones   Smith 06 07 70 1922-62    
838   19 33 41 - 46 25.9 15 m 103a - O nones   Smith 06 07 70 1932-46    
839   20 04 16 - 50 16.9 15 m 103a - O nones   Smith 06 07 70 2002-50    
840   20 11 03 - 52 23.8 15 m 103a - O nones   Smith 06 07 70 2009-52    
841   20 21 56 - 57 29.6 15 m 103a - O nones   Smith 06 07 70 2020-57   CTIO

 

Last Updated on 8/27/99

By Guerra & Marin

August

August 1970 Plate logs for 1.5-m telescope

Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
842   at 875 (*)                  
876   15 50 06 - 56 14.4 30 m 103a - O U G 2   Graham 04 08 70 Norma lll    
877   15 50 06 - 56 14.4 20 m 103a - D GG 495   Graham 04 08 70 Norma lll    
878   15 50 06 - 56 14.4 10 m 103a - O GG 385   Graham 04 08 70 Norma lll    
879   19 36 36 - 63 46.8 90 m 103a - O nones   Graham 04 08 70 Radio Sourse    
880   00 25 42 - 71 41 40 m 103a - O GG 385   Graham 04 08 70 NGC 121    
881   01 02 00 - 71 30 40 m 103a - O GG 385   Graham 04 08 70 Gascoigne    
882   00 25 42 - 71 41 40 m 103a - O GG 385   Graham 04 08 70 NGC 121    
883   01 02 00 - 71 30 40 m 103a - O GG 385   Graham 04 08 70 Gascoigne    
884   00 25 42 - 71 41 40 m 103a - O GG 385   Graham 04 08 70 NGC 121    
885   01 02 00 - 71 30 40 m 103a - O GG 385   Graham 04 08 70 Gascoigne    
886   04 59 00 - 66 01 43 m 103a - O GG 385   Graham 04 08 70 NGC 1783    
887   15 55 40 - 54 16 10 m 103a - O GG 385   Graham 05 08 70 Norma l    
888   15 50 48 - 54 30 10 m 103a - O GG 385   Graham 05 08 70 Norma lll    
889   19 36 36 - 63 46.8 180 m 103a - O nones   Graham 05 08 70 Radio Sourse    
890   00 25 42 - 71 41 40 m 103a - O nones   Graham 05 08 70 NGC 121    
891   01 02 00 - 71 30 40 m 103a - O nones   Graham 05 08 70 Gascoigne    
892   00 25 42 - 71 41 40 m 103a - O nones   Graham 05 08 70 NGC 121    
893   01 02 00 - 71 30 40 m 103a - O nones   Graham 05 08 70 Gascoigne    
894   00 25 42 - 71 41 40 m 103a - O nones   Graham 05 08 70 NGC 121    
895   01 02 00 - 71 30 40 m 103a - O nones   Graham 05 08 70 Gascoigne    
896   00 25 42 - 71 41 40 m 103a - O nones   Graham 05 08 70 NGC 121    
897   05 05 18 - 69 26 30 m 103a - O nones   Graham 05 08 70 NGC 1835    
898   15 55 40 - 54 16 20 m 103a - D GG 495   Graham 06 08 70 Norma l    
899   15 55 40 - 54 16 10 m 103a - O GG 385   Graham 06 08 70 Norma l    
900   15 55 40 - 54 16 30 m 103a - O U G 2   Graham 07 08 70 Norma l    
901   15 55 40 - 54 16 20 m 103a - D GG 495   Graham 07 08 70 Norma l    
902   15 50 48 - 54 30 10 m 103a - O GG 385   Graham 07 08 70 Norma lll    
903   19 36 36 - 63 46.8 59 m 103a - O U G 2   Graham 07 08 70 Radio Sourse    
904   00 25 42 - 71 41 40 m 103a - O nones   Graham 07 08 70 NGC 121    
905   01 02 00 - 71 30 40 m 103a - O nones   Graham 07 08 70 Gascoigne    
906   00 25 42 - 71 41 40 m 103a - O nones   Graham 07 08 70 NGC 121    
907   01 02 00 - 71 30 40 m 103a - O nones   Graham 07 08 70 Gascoigne    
908   00 25 42 - 71 41 40 m 103a - O nones   Graham 07 08 70 NGC 121    
909   01 02 00 - 71 30 40 m 103a - O nones   Graham 07 08 70 Gascoigne    
910   00 25 42 - 71 41 40 m 103a - O nones   Graham 07 08 70 NGC 121    
911   01 02 00 - 71 30 40 m 103a - O nones   Graham 07 08 70 Gascoigne    
912   16 03 06 - 16 56 30 m 103a - O nones   Blanco / Mintz 21 08 70 Comet 1941 Vll   CTIO
913   16 03 06 - 16 56 30 m 103a - O nones   Blanco / Mintz 21 08 70 Comet 1941 Vll   CTIO
914   19 38 00 - 30 58 20 m 103a - O nones   Gomez 21 08 70 M 55 BROKEN OK" CTIO
915   22 27 00 - 21 02 20 m 103a - O nones   Gomez 21 08 70 NGC 7293   CTIO
916   22 29 00 - 21 00 20 m 103a - O nones   Gomez 21 08 70 NGC 7293   CTIO
917   00 21 54 - 72 21 20 m 103a - O nones   Gomez 21 08 70 47 Tucan    
918   00 21 54 - 72 21 20 m 103a - O nones   Gomez 21 08 70 47 Tucan   CTIO
919   00 16 00 - 39 30 20 m 103a - O nones   Gomez 21 08 70 NGC 55   CTIO
920   00 13 18 - 39 12 20 m 103a - O nones   Gomez 21 08 70 NGC 55   CTIO
921   17 30 42 - 47 56 66 m 103a - O U G - 2   Wek 25 08 70 GX 342 - 8   CTIO
922   17 30 42 - 47 56 15 m 103a - O GG 385   Wek 25 08 70 GX 342 - 8   CTIO
923   02 38 18 - 34 39 110 m 103a - O GG 385   Wek 25 08 70 Fornax    
924   17 30 42 - 47 56 30 m 103a - O GG 385   Figueroa 26 08 70 GX 342 - 8   CTIO
925   22 29 00 - 21 00 60 m 098 - 02 R G 610   Figueroa 26 08 70 NGC 7293    
926   00 21 54 - 72 21 40 m 103a - O nones   Figueroa 26 08 70 47 Tucan    
927   22 29 00 - 21 00 60 m 098 - 02 R G 610   Figueroa 26 08 70 NGC 7293    
928   02 38 18 - 34 39 60 m 103a - O GG 385   Figueroa 26 08 70 Fornax    
929 a   02 38 18 - 34 39 30 m 103a - O GG 385   Kunkel 27 08 70 GX 342 - 8   CTIO
929 b   02 38 18 - 34 39 120 m 103a - O U G 2   Kunkel 27 08 70 GX 342 - 8   CTIO
930   16 17 12 - 41 36 45 m 103a - O U G 2   Kunkel 27 08 70 S A 1    
931   18 59 30 - 37 29 40 m 103a - O U G 2   Kunkel 27 08 70 R Cor A    
932   17 48 06 - 37 02 30 m 103a - D GG 495   Graham 29 08 70 NGC 6441    
933   00 02 48 - 73 37 40 m 103a - O nones   Graham 29 08 70 Lindsay    
934   00 25 42 - 71 41 40 m 103a - O nones   Graham 29 08 70 NGC 121    
935   01 30 00 - 71 30 40 m 103a - O nones   Graham 29 08 70 Gascoigne    
936   00 25 42 - 71 41 40 m 103a - O nones   Graham 29 08 70 NGC 121    
937   01 30 00 - 71 30 40 m 103a - O nones   Graham 29 08 70 Gascoigne    
938   00 25 42 - 71 41 40 m 103a - O nones   Graham 29 08 70 NGC 121    
939   01 30 00 - 71 30 40 m 103a - O nones   Graham 29 08 70 Gascoigne    
940   05 05 18 - 69 26 30 m 103a - O nones   Graham 29 08 70 NGC 1835    
941   04 59 00 - 66 01 30 m 103a - O nones   Graham 29 08 70 NGC 1783    
942   15 55 30 - 54 15.7 20 m 103a - D GG 495   Graham 30 08 70 Norma l    
943   15 55 30 - 54 15.7 30 m 103a - O U G 2   Graham 30 08 70 Norma l    
944   15 55 30 - 54 15.7 10 m 103a - O GG 385   Graham 30 08 70 Norma l    
945   00 25 42 - 71 41 45 m 103a - O nones   Graham 30 08 70 NGC 121    
946   01 30 00 - 71 30 40 m 103a - O nones   Graham 30 08 70 Gascoigne    
947   00 25 42 - 71 41 40 m 103a - O nones   Graham 30 08 70 NGC 121    
948   01 30 00 - 71 30 40 m 103a - O nones   Graham 30 08 70 Gascoigne    
949   00 25 42 - 71 41 40 m 103a - O nones   Graham 30 08 70 NGC 121    
950   01 30 00 - 71 30 40 m 103a - O nones   Graham 30 08 70 Gascoigne    
951   00 25 42 - 71 41 40 m 103a - O nones   Graham 30 08 70 NGC 121    
952   05 05 18 - 69 26 30 m 103a - O nones   Graham 30 08 70 NGC 1835    
953   04 59 00 - 66 01 30 m 103a - O nones   Graham 30 08 70 NGC 1783    
954   17 05 06 - 36 28 36 m 103a - O U G 2   Graham 31 08 70 GX 349 + 2   CTIO
955   16 44 54 - 45 56 36 m 103a - O GG 385   Graham 31 08 70 GX 340 + 0   CTIO
956   15 55 30 - 54 15.7 10 m 103a - O GG 385   Graham 31 08 70 Norma l    
957   00 25 42 - 71 41 45 m 103a - O nones   Graham 31 08 70 NGC 121    
958   01 30 00 - 71 30 40 m 103a - O nones   Graham 31 08 70 Gascoigne    
959   00 25 42 - 71 41 40 m 103a - O nones   Graham 31 08 70 NGC 121    
960   01 30 00 - 71 30 40 m 103a - O nones   Graham 31 08 70 Gascoigne    
961   00 25 42 - 71 41 40 m 103a - O nones   Graham 31 08 70 NGC 121    
962   01 30 00 - 71 30 40 m 103a - O nones   Graham 31 08 70 Gascoigne    
963   00 25 42 - 71 41 40 m 103a - O nones   Graham 31 08 70 NGC 121    
964   04 59 00 - 66 01 30 m 103a - O nones   Graham 31 08 70 NGC 1783    

(*) corresponde al tubo imagen

Last Updated on 8/27/99

By Angel Guerra & Jorge Marin

September

 

September 1970 Plate log for 1.5-m telescope

 

Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
964   15 55 30 - 54 15.7 10 m 103a - O GG 385   Graham 01 09 70 Norma l    
965   15 55 30 - 54 15.7 04 m 103a - O GG 385   Graham 01 09 70 Norma l    
966   15 55 30 - 54 15.7 12 m 103a - O U G 2   Graham 01 09 70 Norma l    
967   15 55 30 - 54 15.7 05 m 103a - D GG 495   Graham 01 09 70 Norma l    
968   00 25 42 - 71 41 50 m 103a - O nones   Graham 01 09 70 NGC 121    
969   01 30 00 - 71 30 40 m 103a - O nones   Graham 01 09 70 Gascoigne    
970   00 25 42 - 71 41 40 m 103a - O nones   Graham 01 09 70 NGC 121    
971   01 30 00 - 71 30 40 m 103a - O nones   Graham 01 09 70 Gascoigne    
972   00 25 42 - 71 41 40 m 103a - O nones   Graham 01 09 70 NGC 121    
973   01 30 00 - 71 30 45 m 103a - O nones   Graham 01 09 70 Gascoigne    
974   00 25 42 - 71 41 45 m 103a - O nones   Graham 01 09 70 NGC 121    
975   05 05 18 - 69 26 30 m 103a - O nones   Graham 01 09 70 NGC 1835    
976   17 43 30 - 29 00 30 m 103a - O nones   Blanco 05 09 70 S A G - A   CTIO
977   19 36 42 - 63 47 210 m 103a - O nones   Blanco 05 09 70 PSR 1934 - 63 BROKEN OK" CTIO
978   00 13 30 - 39 23.7 180 m 103a - O nones   Blanco 05 09 70 NGC 55   CTIO
979   03 45 36 + 24 00 03 m 103a - O nones   Blanco 05 09 70 Alcyone   CTIO
980   22 28 03 - 21 00 140 m 098 - 02 RG 610   Blanco 06 09 70 NGC 7293 BROKEN OK" CTIO
981   17 05 06 - 36 28 20 m 103a - O GG 385   Kunkel 07 09 70 GX 349+2 BROKEN OK" CTIO
982   16 44 54 - 45 56 20 m 103a - O GG 385   Kunkel 07 09 70 GX 340 + 0   CTIO
983   16 17 12 - 41 36 20 m 103a - O GG 385   Kunkel 07 09 70 SA 1   CTIO
984   16 44 54 - 45 56 35 m 103a - O UG 2   Kunkel 07 09 70 GX 340 + 0 BROKEN OK" CTIO
985   22 01 00 - 60 13 108 m 103a - O UG 2   Kunkel 07 09 70 U V objeto   CTIO
986   02 38 18 - 34 39 120 m 103a - O GG 385   Kunkel 07 09 70 Fornax    
987   02 38 18 - 34 39 120 m 103a - O GG 385   Kunkel 07 09 70 Fornax    
988   14 27 40 - 62 33 10 m 103a - D GG 495   Kunkel 08 09 70 Proxima a Cen.   CTIO
989   19 15 00 + 05 06 15 m 103a - D GG 495   Kunkel 08 09 70 BD + 4 4048 B   CTIO
990   22 01 00 - 60 13 90 m 103a - O nones   Kunkel 08 09 70 U V objeto   CTIO
991   00 46 18 - 25 28 80 m 103a - O nones   Kunkel 08 09 70 NGC 253 BROKEN OK" CTIO
992   02 38 18 - 34 39 120 m 103a - O GG 385   Kunkel 08 09 70 Fornax    
993   02 38 18 - 34 39 120 m 103a - O GG 385   Kunkel 08 09 70 Fornax    
994   22 28 00 - 21 00 90 m 098 - 02 RG 610   Kunkel 09 09 70 NGC 7293 BROKEN OK" CTIO
995   00 46 18 - 25 28 115 m 098 - 02 RG 610   Kunkel 09 09 70 NGC 253   CTIO
996   02 38 18 - 34 39 120 m 103a - D GG 495   Kunkel 09 09 70 Fornax    
997   02 38 18 - 34 39 125 m 103a - O GG 385   Kunkel 09 09 70 Fornax    
998   02 38 18 - 34 39 150 m 103a - O GG 385   Kunkel 10 09 70 Fornax    
999   00 25 42 - 71 41 40 m 103a - O nones   Graham 19 09 70 NGC 121    
1000   01 30 00 - 71 30 30 m 103a - O nones   Graham 19 09 70 Gascoigne    
1001   00 13 0 - 39 23 40 m Sp. RG 610   Graham 19 09 70 NGC 55 Plate 11 X 14  
1002   00 46 06 - 25 27 60 m Sp. RG 610   Graham 19 09 70 NGC 253 Plate 11 X 14  
1003   05 39 00 - 69 06 50 m Sp. RG 610   Graham 19 09 70 30 Doradus Plate 11 X 14  
1004   00 25 42 - 71 41 40 m 103a - O nones   Graham 27 09 70 NGC 121    
1005   01 30 00 - 71 30 40 m 103a - O nones   Graham 27 09 70 Gascoigne    
1006   00 25 42 - 71 41 40 m 103a - O nones   Graham 27 09 70 NGC 121    
1007   01 30 00 - 71 30 40 m 103a - O nones   Graham 27 09 70 Gascoigne    
1008   00 25 42 - 71 41 40 m 103a - O nones   Graham 27 09 70 NGC 121    
1009   01 30 00 - 71 30 40 m 103a - O nones   Graham 27 09 70 Gascoigne    
1010   04 59 00 - 66 01 30 m 103a - O nones   Graham 27 09 70 NGC 1783    
1011   05 05 18 - 69 26 30 m 103a - O nones   Graham 27 09 70 NGC 1835    
1012   04 59 00 - 66 01 29 m 103a - O nones   Graham 27 09 70 NGC 1783    
1013   00 25 42 - 71 41 45 m 103a - O nones   Graham 28 09 70 NGC 121    
1014   01 30 00 - 71 30 40 m 103a - O nones   Graham 28 09 70 Gascoigne    
1015   00 25 42 - 71 41 40 m 103a - O nones   Graham 28 09 70 NGC 121    
1016   01 30 00 - 71 30 40 m 103a - O nones   Graham 28 09 70 Gascoigne    

Last Updated on 8/27/99

By Guerra & Marin 

October

 

October 1970 Plate log for 1.5-m telescope

Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
1017   01 30 00 - 71 30 40 m 103a - O nones   Graham 28 09 70 Gascoigne    
1018   22 05 50 - 53 56.5 10 m 103a - O nones   Smith 01 10 70 PKS 2204-52   CTIO
1019   22 08 27 - 45 52 10 m 103a - O nones   Smith 01 10 70 PKS 2207-45   CTIO
1020   22 15 02 - 45 15.1 10 m 103a - O nones   Smith 01 10 70 PKS 2213-45   CTIO
1021   22 25 06 - 52 42.9 10 m 103a - O nones   Smith 01 10 70 PKS 2223-52   CTIO
1022   22 55 00 - 52 55.5 10 m 103a - O nones   Smith 01 10 70 PKS 2252-53   CTIO
1023   00 14 36 - 63 19.9 10 m 103a - O nones   Smith 01 10 70 PKS 0013-63   CTIO
1024 1024 to 1033   (*)                
1034   00 25 42 - 71 41 30 m 103a - O nones   Graham / M.T.Ruiz 30 10 70 NGC 121    
1035   00 23 48 - 72 56 30 m 103a - O nones   Graham / M.T.Ruiz 30 10 70 Kron 3    
1036   05 05 18   30 m 103a - O nones   Graham / M.T.Ruiz 30 10 70 NGC 1835    
1037   04 59 00 - 66 01 30 m 103a - O nones   Graham / M.T.Ruiz 30 10 70 NGC 1783    
1038   05 05 18 - 69 26 30 m 103a - O nones   Graham / M.T.Ruiz 30 10 70 NGC 1835    
1039   04 59 00 - 66 01 30 m 103a - O nones   Graham / M.T.Ruiz 30 10 70 NGC 1783    
1040   05 05 18 - 69 26 30 m 103a - O nones   Graham / M.T.Ruiz 30 10 70 NGC 1835    
1041   04 59 00 - 66 01 30 m 103a - O nones   Graham / M.T.Ruiz 30 10 70 NGC 1783    
1042   05 05 18 - 69 26 30 m 103a - O nones   Graham / M.T.Ruiz 30 10 70 NGC 1835    
1043   04 59 00 - 66 01 30 m 103a - O nones   Graham / M.T.Ruiz 30 10 70 NGC 1783    
1044   05 05 18 - 69 26 30 m 103a - O nones   Graham / M.T.Ruiz 31 10 70 NGC 1835    
1045   04 59 00 - 66 01 30 m 103a - O nones   Graham / M.T.Ruiz 31 10 70 NGC 1783    
1046   05 05 18 - 69 26 30 m 103a - O nones   Graham / M.T.Ruiz 31 10 70 NGC 1835    
1047   04 59 00 - 66 01 30 m 103a - O nones   Graham / M.T.Ruiz 31 10 70 NGC 1783    
1048   05 05 18 - 69 26 30 m 103a - O nones   Graham / M.T.Ruiz 31 10 70 NGC 1835    

(*) Corresponde al Tubo Imagen

 

Last Updated on 8/27/99

By Guerra & Marin

November

 

November 1970 Plate log for 1.5-m telescope

Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
1049   00 25 42 - 71 41 30 m 103a - O nones   Graham / M.T.Ruiz 01 11 70 NGC 121    
1050   00 23 48 - 72 56 30 m 103a - O nones   Graham / M.T.Ruiz 01 11 70 Kron 3    
1051   00 25 42 - 71 41 30 m 103a - O nones   Graham / M.T.Ruiz 01 11 70 NGC 121    
1052   05 05 18 - 69 26 30 m 103a - O nones   Graham / M.T.Ruiz 01 11 70 NGC 1835    
1053   04 59 00 - 66 01 30 m 103a - O nones   Graham / M.T.Ruiz 01 11 70 NGC 1783    
1054   05 05 18 - 69 26 30 m 103a - O nones   Graham / M.T.Ruiz 01 11 70 NGC 1835    
1055   04 59 00 - 66 01 30 m 103a - O nones   Graham / M.T.Ruiz 01 11 70 NGC 1783    
1056   05 05 18 - 69 26 30 m 103a - O nones   Graham / M.T.Ruiz 01 11 70 NGC 1835    
1057   04 59 00 - 66 01 30 m 103a - O nones   Graham / M.T.Ruiz 01 11 70 NGC 1783    
1058   05 05 18 - 69 26 30 m 103a - O nones   Graham / M.T.Ruiz 01 11 70 NGC 1835    
1059   04 59 00 - 66 01 30 m 103a - O nones   Graham / M.T.Ruiz 01 11 70 NGC 1783    
1060   05 05 18 - 69 26 30 m 103a - O nones   Graham / M.T.Ruiz 01 11 70 NGC 1835    
1061   04 59 00 - 66 01 30 m 103a - O nones   Graham / M.T.Ruiz 01 11 70 NGC 1783    
1062   00 25 42 - 71 41 30 m 103a - O nones   Graham / M.T.Ruiz 02 11 70 NGC 121    
1063   00 23 48 - 72 56 30 m 103a - O nones   Graham / M.T.Ruiz 02 11 70 Kron 3    
1064   00 25 42 - 71 41 30 m 103a - O nones   Graham / M.T.Ruiz 02 11 70 NGC 121    
1065   05 05 18 - 69 26 30 m 103a - O nones   Graham / M.T.Ruiz 02 11 70 NGC 1835    
1066   04 59 00 - 66 01 30 m 103a - O nones   Graham / M.T.Ruiz 02 11 70 NGC 1783    
1067   05 05 18 - 69 26 30 m 103a - O nones   Graham / M.T.Ruiz 02 11 70 NGC 1835    
1068   04 59 00 - 66 01 30 m 103a - O nones   Graham / M.T.Ruiz 02 11 70 NGC 1783    
1069   05 05 18 - 69 26 30 m 103a - O nones   Graham / M.T.Ruiz 02 11 70 NGC 1835    
1070   04 59 00 - 66 01 30 m 103a - O nones   Graham / M.T.Ruiz 02 11 70 NGC 1783    
1071   05 05 18 - 69 26 30 m 103a - O nones   Graham / M.T.Ruiz 02 11 70 NGC 1835    
1072   04 59 00 - 66 01 30 m 103a - O nones   Graham / M.T.Ruiz 02 11 70 NGC 1783    
1073   05 05 18 - 69 26 30 m 103a - O nones   Graham / M.T.Ruiz 02 11 70 NGC 1835    
1074   04 59 00 - 66 01 25 m 103a - O nones   Graham / M.T.Ruiz 02 11 70 NGC 1783    
1075   05 05 18 - 69 26 30 m 103a - O nones   Graham / M.T.Ruiz 02 11 70 NGC 1835    
1076   22 28 00 - 21 00 30 m 103a - O nones   Smith 03 11 70 NGC 7293    
1077   22 28 00 - 21 00 180 m 098 - 02 nones   Smith 03 11 70 NGC 7293    
1078+A10   (1)       (2)            
1088   al 1097   (*)                
1098   00 14 36 - 63 19.9 105 seg lla - D nones   Smith 03 11 70 PKS 0013-63    
1099   01 10 42 - 69 09.5 105 seg lla - D nones   Smith 03 11 70 Pks 0110-69   CTIO
1100   01 20 36 - 63 18.4 105 seg lla - D nones   Smith 03 11 70 PKS 0119-63    
1101   01 30 00 - 51 10.8 105 seg lla - D nones   Smith 03 11 70 PKS 0129-51    
1102   02 23 36 - 71 07.8 105 seg lla - D nones   Smith 03 11 70 PKS 0223-71    
1103   02 31 18 - 66 34.6 105 seg lla - D nones   Smith 03 11 70 PKS 0230-66    
1104   03 54 36 - 48 28.2 105 seg lla - D nones   Smith 03 11 70 PKS 0354-48    
1105   04 20 33 - 62 21.8 105 seg lla - D nones   Smith 03 11 70 PKS 0420-62    
1106   04 43 46 - 59 28.1 105 seg lla - D nones   Smith 03 11 70 PKS 0443-59    
1107   05 35 29 - 49 45.2 105 seg lla - D nones   Smith 03 11 70 PKS 0534-49    
1108   05 06 44 - 37 33 30 m lla - D nones   Smith 03 11 70 NGC 1808    
1109   05 39 42 - 69 09 2 m lla - D nones   Smith 03 11 70 30 Doradus    
1110   05 39 42 - 69 09 5 m lla - D nones   Smith 03 11 70 30 Doradus    
1111   22 28 00 - 21 00 180 m lla - D nones   Smith 04 11 70 NGC 7293    
1102   al 1107   (*)                
1108   05 06 44 - 37 33 30 m lla - D nones   Smith 04 11 70 NGC 1808    
1109   05 06 44 - 37 33 30 m llla - j GG 385   Smith 04 11 70 NGC 1808    
1110   05 06 44 - 37 33 30 m 098 - 02 RG 610   Smith 04 11 70 NGC 1808    
1111   05 06 44 - 37 33 5 m 098 - 02 RG 610   Smith 04 11 70 NGC 1808    
1112   21 03 00 - 51 27.5 30 m 103a -O GG 385   Hesser 05 11 70 IC 5152    
1113   23 08 39 - 35 36 30 m 103a -O GG 385   Hesser 05 11 70 Field    
1114   23 08 39 - 35 36 30 m 103a - D GG 495   Hesser 05 11 70 Field    
1115   21 03 00 - 51 27.5 30 m 103a -O GG 385   Hesser 05 11 70 IC 5152    
1116   23 08 39 - 35 36 30 m 103a -O GG 385   Hesser 05 11 70 Field    
1117   23 08 39 - 35 36 30 m 103a - D GG 495   Hesser 05 11 70 Field    
1118   03 11 00 - 55 23 30 m 103a - D GG 495   Hesser 05 11 70 NGC 1261    
1119   23 08 39 - 35 36 30 m 103a - D GG 495   Hesser 05 11 70 Field    
1120   23 08 39 - 35 36 30 m 103a -O GG 385   Hesser 05 11 70 Field    
1121   22 00 54 - 51 26 30 m 103a -O GG 385   Hesser 06 11 70 IC 5152    
1122   22 00 54 - 51 26 45 m 103a -O GG 385   Hesser 06 11 70 IC 5152    
1123   22 00 54 - 51 26 60 m 103a -O GG 385   Hesser 06 11 70 IC 5152    
1124   05 36 00 - 70 52 05 m 103a -O GG 385   Hesser 06 11 70 L M C    
1125   03 11 00 - 55 23 30 m 103a -O GG 385   Hesser 06 11 70 NGC 1261    
1126   03 11 00 - 55 23 30 m 103a - D GG 495   Hesser 06 11 70 NGC 1261    
1127   04 49 30 - 83 59.3 30 m 103a - D GG 495   Hesser 06 11 70 NGC 1841    
1128   04 49 30 - 83 59.3 30 m 103a -O GG 385   Hesser 06 11 70 NGC 1841    
1129   07 51 09 - 38 27 30 m 103a -O GG 385   Hesser 06 11 70 NGC 2477    
1130   07 51 09 - 38 27 30 m 103a - D GG 495   Hesser 06 11 70 NGC 2477    
1131   08 41 33 - 47 06 30 m 103a - D GG 495   Hesser 06 11 70 NGC 2660    
1132   08 41 33 - 47 06 30 m 103a -O GG 385   Hesser 06 11 70 NGC 2660    
1133   02 57 00 - 71 41 40 m 103a -O nones   Gonzalez 25 11 70 NGC 121    
1134   01 02 00 - 71 30 40 m 103a -O nones   Gonzalez 25 11 70 Gascoigne Field    

(1) al 1087 error de anotación

(2) debiera ser 1078 y no 1088

(*) corresponde a tubo imagen

 

Last Updated on 8/27/99

By Guerra & Marin

December

December 1970 Plate logs for 1.5-m telescope

Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
1135   05 58 24 - 68 32.6 1 m 103a - D GG 495   P. Lucke 02 12 70 NGC 2164    
1136   05 58 24 - 68 32.6 10 m 103a - D GG 495   P. Lucke 02 12 70 NGC 2164    
1137   05 58 24 - 68 32.6 60 m 103a - D GG 495   P. Lucke 02 12 70 NGC 2164    
1138   05 58 24 - 68 32.6 10 m 103a - D GG 495   P. Lucke 02 12 70 NGC 2164    
1139   05 58 24 - 68 32.6 60 m 103a - D GG 495   P. Lucke 02 12 70 NGC 2164    
1140   05 58 24 - 68 32.6 2 m 103a - D GG 495   P. Lucke 02 12 70 NGC 2164    
1141   05 58 24 - 68 32.6 2 m 103a - D GG 495   P. Lucke 02 12 70 NGC 2164    
1142   02 38 48 - 34 41 60 m 103a - O GG 385   P. Lucke 03 12 70 Fornax    
1143   05 58 24 -68 32.6 1 m 103a - O GG 385   P. Lucke 03 12 70 NGC 2164    
1144   05 58 24 -68 32.6 10 m 103a - O GG 385   P. Lucke 03 12 70 NGC 2164    
1145   05 58 24 -68 32.6 60 m 103a - O GG 385   P. Lucke 03 12 70 NGC 2164    
1146   05 58 24 -68 32.6 10 m 103a - O GG 385   P. Lucke 03 12 70 NGC 2164    
1147   05 58 24 -68 32.6 1 m 103a - O GG 385   P. Lucke 03 12 70 NGC 2164    
1148   05 58 24 -68 32.6 60 m 103a - O GG 385   P. Lucke 03 12 70 NGC 2164    
1149   05 58 24 -68 32.6 1 m 103a - O GG 385   P. Lucke 03 12 70 NGC 2164    
1150   05 39 00 - 69 06 15 m 103a - O GG 385   P. Lucke 03 12 70 30 Doradus    
1151   05 58 24 - 68 32.6 60 m 103a - D GG 495   P. Lucke 03 12 70 NGC 2164    
1152   al 1160   (*)                
1161   05 26 06 - 68 37.5 25 m 103a - D GG 495   Demers 26 12 70 L M C    
1162   05 26 06 - 68 37.5 15 m 103a - O GG 385   Demers 26 12 70 L M C    
1163   00 15 48 - 68 37.5 30 m 103a - D GG 495   Demers 26 12 70 L M C    
1164   00 15 48 - 68 37.5 20 m 103a - O GG 385   Demers 26 12 70 L M C    
1165   05 06 42 - 69 05 30 m 103a - D GG 495   Demers 26 12 70 L M C    
1166   05 06 42 - 69 05 15 m 103a - O GG 385   Demers 26 12 70 L M C    
1167   04 57 00 - 69 38 30 m 103a - D GG 495   Demers 26 12 70 L M C    
1168   04 57 00 - 69 38 15 m 103a - O GG 385   Demers 26 12 70 L M C    
1169   05 08 12 - 67 55 30 m 103a - D GG 495   Demers 26 12 70 L M C    
1170   05 08 12 - 67 55 15 m 103a - O GG 385   Demers 26 12 70 L M C    
1171   05 10 00 - 68 42 30 m 103a - D GG 495   Demers 26 12 70 L M C    
1172   05 26 06 - 68 37.5 30 m 103a - D GG 495   Demers 27 12 70 L M C    
1173   05 26 06 - 68 37.5 15 m 103a - O GG 385   Demers 27 12 70 L M C    
1174   05 15 42 - 68 37.5 30 m 103a - D GG 495   Demers 27 12 70 L M C    
1175   05 15 42 - 68 37.5 30 m 103a - D GG 495   Demers 27 12 70 L M C    
1176   05 15 42 - 68 37.5 15 m 103a - O GG 385   Demers 27 12 70 L M C    
1177   05 08 12 - 67 55 30 m 103a - D GG 495   Demers 27 12 70 L M C    
1178   05 08 12 - 67 55 15 m 103a - O GG 385   Demers 27 12 70 L M C    
1179   05 10 00 - 68 42 30 m 103a - D GG 495   Demers 27 12 70 L M C    
1180   05 10 00 - 68 42 15 m 103a - O GG 385   Demers 27 12 70 L M C    
1181   05 10 00 - 68 42 15 m 103a - O GG 385   Demers 27 12 70 L M C    
1182   05 32 12 - 68 12 30 m 103a - D GG 495   Demers 27 12 70 L M C    
1183   05 32 12 - 68 12 15 m 103a - O GG 385   Demers 27 12 70 L M C    
1184   05 06 42 - 69 05 30 m 103a - D GG 495   Demers 27 12 70 L M C    
1185   05 06 42 - 69 05 15 m 103a - O GG 385   Demers 27 12 70 L M C    
1186   04 57 00 - 69 38 10 m 103a - D GG 495   Demers 27 12 70 L M C    

 

(*) corresponde a tubo imagen

 

Last Updated on 8/27/99

By Jorge Marin

1971

1971 Plate logs for 1.5-m telescope

January

 

January 1971 Plate logs for 1.5-m telescope

Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
1187   05 39 30 - 69 20 30 m 098 - 02 RG 610   Weedman / Smith 02 01 71 L M C    
1188   04 51 00 - 66 20 15 m 098 - 02 RG 610   Weedman / Smith 02 01 71 L M C    
1189   05 32 00 - 67 20 30 m 098 - 02 RG 610   Weedman / Smith 02 01 71 L M C BROKEN OK" CTIO
1190   05 25 00 - 67 40 30 m 098 - 02 RG 610   Weedman / Smith 02 01 71 L M C BROKEN OK" CTIO
1191   05 27 00 - 68 50 30 m 098 - 02 RG 610   Weedman / Smith 02 01 71 L M C   CTIO
1192   05 10 00 - 68 50 30 m 098 - 02 RG 610   Weedman / Smith 02 01 71 L M C   CTIO
1193   05 19 00 - 69 30 30 m 098 - 02 RG 610   Weedman / Smith 02 01 71 L M C   CTIO
1194   02 38 18 - 34 39 120 m 103a - O GG 385   Kunkel / Bradt 18 01 71 Fornax    
1195   11 20 00 - 61 03 20 m 103a - O GG 385   Kunkel / Bradt 18 01 71 Centaurus 3   CTIO
1196   11 20 00 - 61 03 120 m 103a - O U G 2   Kunkel / Bradt 18 01 71 Centaurus 3   CTIO
1197   15 19 18 - 56 47 30 m 103a - O GG 385   Kunkel / Bradt 18 01 71 Norman 2   CTIO
1198   02 38 18 - 34 39 166 m 103a - D GG 495   Kunkel / Bradt 19 01 71 Fornax    
1199   07 52 25 - 26 21.3 94 m 098 - 02 RG 610   Kunkel / Bradt 19 01 71 Nebula   CTIO
1200   04 59 00 - 66 01 30 m 103a - O nones   J. Graham 23 01 71 NGC 1783    
1201   05 05 18 - 69 26 20 m 103a - O nones   J. Graham 23 01 71 NGC 1835    
1202   04 59 00 - 66 01 30 m 103a - O nones   J. Graham 23 01 71 NGC 1783    
1203   05 05 18 - 69 26 30 m 103a - O nones   J. Graham 23 01 71 NGC 1835    
1204   00 25 42 - 71 41 45 m 103a - O nones   J. Graham 24 01 71 NGC 121    
1205   06 30 12 - 64 18 30 m 103a - O nones   J. Graham 24 01 71 NGC 2257    
1206   04 59 00 - 66 01 30 m 103a - O nones   J. Graham 24 01 71 NGC 1783    
1207   05 36 00 - 70 48 30 m 103a - O nones   J. Graham 24 01 71 Nova LMC    
1208   05 05 18 - 69 26 30 m 103a - O nones   J. Graham 24 01 71 NGC 1835    
1209   04 59 00 - 66 01 30 m 103a - O nones   J. Graham 24 01 71 NGC 1783    
1210   05 05 18 - 69 26 30 m 103a - O nones   J. Graham 24 01 71 NGC 1835    
1211   06 30 12 - 64 18 30 m 103a - O nones   J. Graham 24 01 71 NGC 2257    
1212   06 20 54 - 67 31 30 m 103a - O nones   J. Graham 24 01 71 NGC 2231    
1213   08 34 18 - 45 04 10 m 103a - O GG 385   J. Graham 24 01 71 Pulsar Field    
1214   08 56 30 - 28 41 10 m 103a - O GG 385   J. Graham 24 01 71 K 1 - 2    
1215   00 25 42 - 71 41 45 m 103a - O nones   J. Graham 25 01 71 NGC 121    
1216   04 59 00 - 66 01 30 m 103a - O nones   J. Graham 25 01 71 NGC 1783    
1217   04 49 00 - 68 50 2 m 103a - O nones   J. Graham 25 01 71 Schm plate defect    
1218   05 05 18 - 69 26 30 m 103a - O nones   J. Graham 25 01 71 NGC 1835    
1219   06 30 12 - 64 18 30 m 103a - O nones   J. Graham 25 01 71 NGC 2257    
1220   06 20 54 - 67 31 30 m 103a - O nones   J. Graham 25 01 71 NGC 2231    
1221   04 59 00 - 66 01 40 m 103a - O nones   J. Graham 25 01 71 NGC 1783    
1222   05 05 18 - 69 26 40 m 103a - O nones   J. Graham 25 01 71 NGC 1835    
1223   06 30 12 - 64 18 40 m 103a - O nones   J. Graham 25 01 71 NGC 2257    
1224   08 56 30 - 28 41 10 m 103a - O GG 385   J. Graham 25 01 71 K 1 - 2    

Last Updated on 8/27/99

By Guerra & Marin

February

 

February 1971 Plate logs for 1.5-m telescope

Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
1225   al 1278   (*)                
1279   04 59 00 - 66 01 12 m 103a - O nones   J. Graham 26 02 71 NGC 1783    
1280   04 59 00 - 66 01 2 m 103a - O GG 385   J. Graham 26 02 71 NGC 1783    
1281   04 59 00 - 66 01 2 m 103a - D GG 495   J. Graham 26 02 71 NGC 1783    
1282   04 59 00 - 66 01 30 m 103a - O nones   J. Graham 26 02 71 NGC 1783    
1283   05 05 18 - 69 26 30 m 103a - O nones   J. Graham 26 02 71 NGC 1835    
1284   06 20 54 - 67 31 30 m 103a - O nones   J. Graham 26 02 71 NGC 2231    
1285   06 30 12 - 64 18 30 m 103a - O nones   J. Graham 26 02 71 NGC 2257    
1286   08 56 30 - 28 41 10 m 103a - O GG 385   J. Graham 26 02 71 K 1 - 2    
1287   11 34 00 - 62 48 60 m 103a - O nones   J. Graham 26 02 71 IC 2944    
1288   13 24 54 - 47 09 30 m 103a - O nones   J. Graham 26 02 71 Omega Cen.    
1289   13 35 24 - 29 43 90 m 103a - O nones   J. Graham 26 02 71 NGC 5236    
1290   04 59 00 - 66 01 3 m 103a - O GG 385   J. Graham 27 02 71 NGC 1783    
1291   04 58 24 - 68 08 3 m 103a - O GG 385   J. Graham 27 02 71 Nova 2    
1292   04 59 00 - 66 01 30 m 103a - O nones   J. Graham 27 02 71 NGC 1783    
1293   05 05 18 - 69 26 30 m 103a - O nones   J. Graham 27 02 71 NGC 1835    
1294   05 35 48 - 70 18 30 m 103a - O nones   J. Graham 27 02 71 Nova 1    
1295   04 59 00 - 66 01 30 m 103a - O nones   J. Graham 27 02 71 NGC 1783    
1296   05 05 18 - 69 26 30 m 103a - O nones   J. Graham 27 02 71 NGC 1835    
1297   06 30 12 - 64 18 30 m 103a - O nones   J. Graham 27 02 71 NGC 2257    
1298   10 43 54 - 59 31 60 m llla - j nones   J. Graham 27 02 71 NGC 3372    
1299   13 23 30 - 42 51 80 m llla - j nones   J. Graham 27 02 71 NGC 5128    
1300   13 23 30 - 42 51 80 m 103a - O nones   J. Graham 27 02 71 NGC 5128    
1301   05 35 48 - 70 18 30 m 103a - O nones   J. Graham 28 02 71 NGC 1783    
1302   04 59 00 - 66 01 30 m 103a - O nones   J. Graham 28 02 71 NGC 1835    
1303   05 35 48 - 70 18 30 m 103a - O nones   J. Graham 28 02 71 NGC 1783    
1304   04 59 00 - 66 01 30 m 103a - O nones   J. Graham 28 02 71 NGC 1835    
1305   05 35 48 - 70 18 30 m 103a - O nones   J. Graham 28 02 71 NGC 1783    
1306   06 30 12 - 64 18 30 m 103a - O nones   J. Graham 28 02 71 NGC 2257    
1307   08 09 00 - 35 15 20 m 103a - D GG 495   J. Graham 28 02 71 Nova pufh    
1308   08 09 00 - 35 15 10 m 103a - O GG 385   J. Graham 28 02 71 Nova pufh    
1309   08 56 30 - 28 41 10 m 103a - O GG 385   J. Graham 28 02 71 K 1 - 2    
1310   10 43 54 - 59 31 50 m llla - j nones   J. Graham 28 02 71 NGC 3372    
1311   11 37 06 - 63 15 120 m llla - j nones   J. Graham 28 02 71 IC 2944    

(*)corresponde a tubo imagen

 

Last Updated on 8/27/99

By Guerra & Marin

March

 March 1971 Plate logs for 1.5-m telescope

Plate N. N R . A Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
1312   al 1339   (*)                
1340   10 26 33 - 43 44 57 m lla - O nones   Burbigel 25 03 71 NGC 3256    
1341   12 41 39 - 40 37 45 m 103a - O nones   Burbigel 25 03 71 Assoc. cent.    
1342   12 47 13 - 41 08.2 60 m 103a - O nones   Burbigel 25 03 71 NGC 4696    
1343   14 01 37 - 41 16 60 m 103a - O nones   Burbigel 25 03 71 NGC 5408    
1344   18 10 42 - 85 24 60 m 103a - O nones   Burbigel 25 03 71 NGC 6438    
1345   18 10 42 - 85 24 20 m 103a - O nones   Burbigel 25 03 71 NGC 6438    
1346   al 1350   (*)                
1351   09 01 01 - 40 26.4 72 m 103a - O UG 2   Burbigel 26 03 71 SAO 220767   CTIO
1352   13 35 13 - 33 49 60 m 103a - O nones   Burbigel 26 03 71 IC 4296    
1353   10 35 13 - 42 45 60 m 103a - D nones   Burbigel 26 03 71 Klemola    
1354   13 35 29 - 29 43 5 m 103a - O nones   Burbigel 26 03 71 NGC 5236    
1355   13 38 17 - 31 30 5 m 103a - O nones   Burbigel 26 03 71 NGC 5253    
1356   12 48 17 - 41 07.3 60 m 103a - D nones   Burbigel 26 03 71 NGC 4696    
1357   14 01 56 - 33 50 60 m 103a - O nones   Burbigel 26 03 71 NGC 5419    
1358   al 1368   (*)                

(*) corresponde a tubo imagen

Last Updated on 8/27/99

By Guerra & Marin

April

 

April 1971 Plate logs for 1.5-m telescope

Plate N. N R . A Dec Exp.Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
1369   09 01 26 - 40 25 180 m 103a - O U G 2   Kunkel 02 04 71 Vela XR - 1    
1369   09 01 26 - 40 25 36 m 103a - O GG 385   Kunkel 02 04 71 Vela XR - 1   CTIO
1370a   15 18 25 - 57 03 36 m 103a - O GG 385   Kunkel 02 04 71 Circinus X - 1 BROKEN OK" CTIO
1370b   15 18 25 - 57 03 180 m 103a - O U G 2   Kunkel 02 04 71 Circinus X - 1 BROKEN OK" CTIO
1371   15 18 25 - 57 03 36 m 103a - O GG 385   Kunkel 02 04 71 Circinus X - 1   CTIO
1372   15 18 25 - 57 03 36 m 103a - O GG 385   Kunkel 02 04 71 Circinus X - 1   CTIO
1373   09 25 14 - 52 42 45 m lla - O U G 2   Bok 03 04 71 Vela 1    
1374   09 25 14 - 52 42 45 m 103a - O U G 2   Bok 03 04 71 Vela 1    
1374   09 25 14 - 52 42 05 m 103a - O GG 385   Bok 03 04 71 Vela 1    
1374   09 25 14 - 52 42 08 m 103a - O GG 385   Bok 03 04 71 Vela 1    
1374   09 25 14 - 52 42 12 m 103a - O GG 385   Bok 03 04 71 Vela 1    
1375   09 25 14 - 52 42 07 m lla - O GG 385   Bok 03 04 71 Vela 1    
1376   09 25 14 - 52 42 10 m 103a D GG 495   Bok 03 04 71 Vela 1    
1376   09 25 14 - 52 42 01 m 103a D GG 495   Bok 03 04 71 Vela 1    
1377   09 25 14 - 52 42 45 m 103a - O U G 2   Bok 03 04 71 Vela 1    
1377   09 25 14 - 52 42 09 m 103a - O GG 385   Bok 03 04 71 Vela 1    
1377   09 25 14 - 52 42 03 m 103a - O GG 385   Bok 03 04 71 Vela 1    
1378   13 26 06 - 63 42 45 m 103a - O U G 2   Bok 03 04 71 Centaurus ll    
1378   13 26 06 - 63 42 09 m 103a - O GG 385   Bok 03 04 71 Centaurus ll    
1378   13 26 06 - 63 42 03 m 103a - O GG 385   Bok 03 04 71 Centaurus ll    
1379   13 26 06 - 63 42 07 m lla - O GG 385   Bok 03 04 71 Centaurus ll    
1380   13 26 06 - 63 42 10 m 103a D GG 495   Bok 03 04 71 Centaurus ll    
1381   15 23 48 - 59 27 45 m 103a - O U G 2   Bok 03 04 71 Circinus    
1381   15 23 48 - 59 27 06 m 103a - O GG 385   Bok 03 04 71 Circinus    
1381   15 23 48 - 59 27 10 m 103a - O GG 385   Bok 03 04 71 Circinus    
1382   15 23 48 - 59 27 07 m lla - O GG 385   Bok 03 04 71 Circinus    
1382   15 23 48 - 59 27 45 seg lla - O GG 385   Bok 03 04 71 Circinus    
1383   15 23 48 - 59 27 10 m 103a D GG 495   Bok 03 04 71 Circinus    
1384   09 25 39 - 52 42 10 m 103a D GG 495   Bok 04 04 71 Vela 1    
1384   09 25 39 - 52 42 01 m 103a D GG 495 3 Bok 04 04 71 Vela 1    
1385   09 25 39 - 52 42 10 m lla - O GG 385 3 Bok 04 04 71 Vela 1    
1385   09 25 39 - 52 42 01 m lla - O GG 385 2.5 Bok 04 04 71 Vela 1    
1386   09 25 39 - 52 42 20 m lla - O U G 2 3 Bok 04 04 71 Vela 1    
1386   09 25 39 - 52 42 04 m lla - O GG 385 3 Bok 04 04 71 Vela 1    
1386   09 25 39 - 52 42 02 m lla - O GG 385 4 Bok 04 04 71 Vela 1    
1387   09 25 39 - 52 42 50 m lla - O U G 2 5 Bok 04 04 71 Vela 1    
1387   09 25 39 - 52 42 05 m lla - O U G 2 4 Bok 04 04 71 Vela 1    
1388   09 25 39 - 52 42 50 m lla - O U G 2 4 Bok 04 04 71 Vela 1    
1388   09 25 39 - 52 42 15 m lla - O GG 385 ´4 - 10 Bok 04 04 71 Vela 1    
1388   09 25 39 - 52 42 07 m lla - O GG 385 ´4 - 10 Bok 04 04 71 Vela 1    
1389   13 27 18 - 63 42 10 m lla - O GG 385 ´4 - 10 Bok 04 04 71 Centaurus ll    
1389   13 27 18 - 63 42 01 m lla - O GG 385 ´4 - 10 Bok 04 04 71 Centaurus ll    
1390   13 27 18 - 63 42 10 m 103a - D GG 495 ´4 - 10 Bok 04 04 71 Centaurus ll    
1390   13 27 18 - 63 42 01 m 103a - D GG 495 2 Bok 04 04 71 Centaurus ll    
1391   13 27 18 - 63 42 20 m lla - O U G 2 2 Bok 04 04 71 Centaurus ll    
1391   13 27 18 - 63 42 04 m lla - O GG 385 2 Bok 04 04 71 Centaurus ll    
1391   13 27 18 - 63 42 02 m lla - O GG 385 2.5 Bok 04 04 71 Centaurus ll    
1392   13 27 18 - 63 42 60 m lla - O U G 2 2.5 Bok 04 04 71 Centaurus ll    
1392   13 27 18 - 63 42 12 m lla - O GG 385 4 Bok 04 04 71 Centaurus ll    
1392   13 27 18 - 63 42 06 m lla - O GG 385 3 Bok 04 04 71 Centaurus ll    
1393   15 18 25 - 57 03 36 m 103a - O GG 385 3 Bok 04 04 71 Circinus X - 1 BROKEN OK" CTIO
1394   15 23 43 - 59 25 60 m lla - O U G 2 3 Bok 04 04 71 Circinus    
1394   15 23 43 - 59 25 10 m lla - O GG 385 3 Bok 04 04 71 Circinus    
1395   10 58 48 - 60 17 10 m 103a - D GG 495 3 Bok 05 04 71 HD 95540    
1395   10 58 48 - 60 17 01 m 103a - D GG 495 4 Bok 05 04 71 HD 95540    
1396   10 58 48 - 60 17 10 m lla - O GG 385 4 Bok 05 04 71 HD 95540    
1396   10 58 48 - 60 17 01 m lla - O GG 385 4 Bok 05 04 71 HD 95540    
1397   10 58 48 - 60 17 20 m lla - O U G 2 4 Bok 05 04 71 HD 95540    
1397   10 58 48 - 60 17 05 m lla - O GG 385 4 Bok 05 04 71 HD 95540    
1397   10 58 48 - 60 17 02 m lla - O GG 385 3 Bok 05 04 71 HD 95540    
1398   10 58 48 - 60 17 10 m lla - O GG 385 3 Bok 05 04 71 HD 95540    
1398   10 58 48 - 60 17 01 m lla - O GG 385 3 Bok 05 04 71 HD 95540    
1399   10 58 48 - 60 17 10 m 103a - D GG 495 2 Bok 05 04 71 HD 95540    
1399   10 58 48 - 60 17 01 m 103a - D GG 495 2 Bok 05 04 71 HD 95540    
1400   10 58 48 - 60 17 60 m lla - O U G 2 2 Bok 05 04 71 HD 95540    
1400   10 58 48 - 60 17 06 m lla - O U G 2 1.5 Bok 05 04 71 HD 95540    
1401   10 58 48 - 60 17 60 m lla - O U G 2 1.5 Bok 05 04 71 HD 95540    
1401   10 58 48 - 60 17 06 m lla - O U G 2 3 Bok 05 04 71 HD 95540    
1402   10 58 48 - 60 17 60 m lla - O U G 2 1.5 Bok 05 04 71 HD 95540    
1402   10 58 48 - 60 17 12 m lla - O GG 385 1.5 Bok 05 04 71 HD 95540    
1402   10 58 48 - 60 17 01 m lla - O GG 385 1.5 Bok 05 04 71 HD 95540    
1403   10 58 48 - 60 17 10 m 103a - D GG 495 1.5 Bok 05 04 71 HD 95540    
1403   10 58 48 - 60 17 01 m 103a - D GG 495 1.5 Bok 05 04 71 HD 95540    
1404   15 18 25 - 57 03 36 m 103a - O GG 385 3 Bok 05 04 71 Circinus X - 1 BROKEN OK" CTIO
1405   15 23 43 - 59 25 60 m lla - O U G 2 2.5 Bok 05 04 71 Circinus    
1405   15 23 43 - 59 25 12 m lla - O GG 385 2.5 Bok 05 04 71 Circinus    
1405   15 23 43 - 59 25 01 m lla - O GG 385 2.5 Bok 05 04 71 Circinus    
1406   09 26 36 - 52 50 60 m lla - O U G 2 4 Bok 06 04 71 Vela 1    
1406   09 26 36 - 52 50 07 m lla - O GG 385 4 Bok 06 04 71 Vela 1    
1406   09 26 36 - 52 50 02 m lla - O GG 385 4 Bok 06 04 71 Vela 1    
1407   09 26 36 - 52 50 10 m 103a - D GG 495 4 Bok 06 04 71 Vela 1    
1407   09 26 36 - 52 50 01 m 103a - D GG 495 4 Bok 06 04 71 Vela 1    
1408   10 58 48 - 60 17 20 m lla - O U G 2 4 Bok 06 04 71 HD 95540    
1408   10 58 48 - 60 17 20 m lla - O U G 2 4 Bok 06 04 71 HD 95540    
1408   10 58 48 - 60 17 2.5 m lla - O GG 385 3 Bok 06 04 71 HD 95540    
1408   10 58 48 - 60 17 2.5 m lla - O GG 385 1.5 Bok 06 04 71 HD 95540    
1408   10 58 48 - 60 17 30 seg lla - O GG 385 1.5 Bok 06 04 71 HD 95540    
1409   10 58 48 - 60 17 10 m lla - O GG 385 1.5 Bok 06 04 71 HD 95540    
1409   10 58 48 - 60 17 01 m lla - O GG 385 2 Bok 06 04 71 HD 95540    
1410   10 58 48 - 60 17 20 m lla - O U G 2 2 Bok 06 04 71 HD 95540    
1410   10 58 48 - 60 17 2.5 m lla - O GG 385 1.5 Bok 06 04 71 HD 95540    
1410   10 58 48 - 60 17 30 seg lla - O GG 385 1.5 Bok 06 04 71 HD 95540    
1411   10 58 48 - 60 17 10 m 103a - D GG 495 1.5 Bok 06 04 71 HD 95540    
1411   10 58 48 - 60 17 01 m 103a - D GG 495 1.5 Bok 06 04 71 HD 95540    
1412   10 58 48 - 60 17 10 m 103a - D GG 495 3.5 Bok 06 04 71 HD 95540    
1412   10 58 48 - 60 17 01 m 103a - D GG 495 2 Bok 06 04 71 HD 95540    
1413   13 26 06 - 63 42 60 m lla - O U G 2 2 Bok 06 04 71 Centaurus ll    
1413   13 26 06 - 63 42 7.5 m lla - O GG 385 2 Bok 06 04 71 Centaurus ll    
1413   13 26 06 - 63 42 02 m lla - O GG 385 2 Bok 06 04 71 Centaurus ll    
1414   13 26 06 - 63 42 60 m lla - O U G 2 2 Bok 06 04 71 Centaurus ll    
1414   13 26 06 - 63 42 06 m lla - O U G 2 4 Bok 06 04 71 Centaurus ll    
1415   13 26 06 - 63 42 10 m 103a - D GG 495 4 Bok 06 04 71 Centaurus ll    
1415   13 26 06 - 63 42 01 m 103a - D GG 495 4 Bok 06 04 71 Centaurus ll    
1416   15 18 25 - 57 03 36 m 103a - O GG 385 4 Bok 06 04 71 Centaurus ll   CTIO
1417   15 55 30 - 54 16 20 m lla - O U G 2 4 Bok 06 04 71 Norma l    
1417   15 55 30 - 54 16 03 m lla - O GG 385 4 Bok 06 04 71 Norma l    
1417   15 55 30 - 54 16 40 seg lla - O GG 385 4 Bok 06 04 71 Norma l    
1418   10 58 48 - 60 17 10 m 103a - D GG 495 3 Bok 07 04 71 HD 95540    
1418   10 58 48 - 60 17 01 m 103a - D GG 495 3 Bok 07 04 71 HD 95540    
1419   10 58 48 - 60 17 10 m 103a - D GG 495 2 Bok 07 04 71 HD 95540    
1419   10 58 48 - 60 17 01 m 103a - D GG 495 2 Bok 07 04 71 HD 95540    
1420   10 58 48 - 60 17 10 m 103a - D GG 495 1.5 Bok 07 04 71 HD 95540    
1420   10 58 48 - 60 17 01 m 103a - D GG 495 1.5 Bok 07 04 71 HD 95540    
1421   15 18 25 - 57 03 12 m 103a - O GG 385 2 Bok 07 04 71 Cir. XR - 1    
1421   15 18 25 - 57 03 12 m 103a - O GG 385 2 Bok 07 04 71 Cir. XR - 1    
1421   15 18 25 - 57 03 12 m 103a - O GG 385 2 Bok 07 04 71 Cir. XR - 1   CTIO
1421   15 18 25 - 57 03 12 m 103a - O GG 385 2 Bok 07 04 71 Cir. XR - 1    
1421   15 18 25 - 57 03 12 m 103a - O GG 385 2 Bok 07 04 71 Cir. XR - 1    
1422   15 24 42 - 59 33 20 m lla - O U G 2 2 Bok 07 04 71 Circinus    
1422   15 24 42 - 59 33 2.5 m lla - O GG 385 2 Bok 07 04 71 Circinus    
1422   15 24 42 - 59 33 30 seg lla - O GG 385 2 Bok 07 04 71 Circinus    
1423   15 55 24 - 54 15.8 50 m lla - O U G 2 3 Bok 07 04 71 Norma l    
1423   15 55 24 - 54 15.8 06 m lla - O GG 385 3 Bok 07 04 71 Norma l    
1423   15 55 24 - 54 15.8 01 m lla - O GG 385 3 Bok 07 04 71 Norma l    
1424   10 58 48 - 60 17 10 m 103a - D GG 495 2 Bok 08 04 71 HD 95540    
1424   10 58 48 - 60 17 01 m 103a - D GG 495 2 Bok 08 04 71 HD 95540    
1425   11 30 12 - 60 31 10 m 103a - D GG 495 1.5 Bok 08 04 71 SA 193    
1425   11 30 12 - 60 31 01 m 103a - D GG 495 1.5 Bok 08 04 71 SA 193    
1426   11 30 12 - 60 31 10 m lla - O GG 385 1.5 Bok 08 04 71 SA 193    
1426   11 30 12 - 60 31 01 m lla - O GG 385 1.5 Bok 08 04 71 SA 193    
1427   11 30 12 - 60 31 60 m lla - O U G 2 1.5 Bok 08 04 71 SA 193    
1427   11 30 12 - 60 31 07.5 m lla - O GG 385 1.5 Bok 08 04 71 SA 193    
1427   11 30 12 - 60 31 01.5 m lla - O GG 385 1.5 Bok 08 04 71 SA 193    
1428   11 30 12 - 60 31 20 m lla - O U G 2 1.5 Bok 08 04 71 SA 193    
1428   11 30 12 - 60 31 02.5 m lla - O GG 385 1.5 Bok 08 04 71 SA 193    
1428   11 30 12 - 60 31 30 seg lla - O GG 385 3 Bok 08 04 71 SA 193    
1429   15 24 42 - 59 33 10 m 103a - D GG 495 3 Bok 08 04 71 Circinus    
1429   15 24 42 - 59 33 01 m 103a - D GG 495 3 Bok 08 04 71 Circinus    
1430   15 24 42 - 59 33 20 m lla - O U G 2 3 Bok 08 04 71 Circinus    
1430   15 24 42 - 59 33 02.5 m lla - O GG 385 3 Bok 08 04 71 Circinus    
1430   15 24 42 - 59 33 30 m lla - O GG 385 3 Bok 08 04 71 Circinus    
1431   15 55 24 - 54 15.8 60 m lla - O U G 2 3 Bok 08 04 71 Norma l    
1431   15 55 24 - 54 15.8 60 m lla - O U G 2 3 Bok 08 04 71 Norma l    
1432   15 55 24 - 54 15.8 20 m lla - O U G 2 2 Bok 08 04 71 Norma l    
1432   15 55 24 - 54 15.8 02.5 m lla - O GG 385 2 Bok 08 04 71 Norma l    
1432   15 55 24 - 54 15.8 30 seg lla - O GG 385 2 Bok 08 04 71 Norma l    
1433   15 55 24 - 54 15.8 10 m 103a - D GG 495 3 Bok 08 04 71 Norma l    
1433   15 55 24 - 54 15.8 01 m 103a - D GG 495 3 Bok 08 04 71 Norma l    
1434   15 55 24 - 54 15.8 10 m lla - O GG 385 3 Bok 08 04 71 Norma l    
1434   15 55 24 - 54 15.8 01 m lla - O GG 385 3 Bok 08 04 71 Norma l    
1435   15 55 24 - 54 15.8 10 m 103a - D GG 495 3 Bok 08 04 71 Norma l    
1435   15 55 24 - 54 15.8 01 m 103a - D GG 495 2.5 Bok 08 04 71 Norma l    
1436   09 40 00 - 54 00 20 m lla - O U G 2 2.5 Bok 09 04 71 Vela 2    
1436   09 40 00 - 54 00 02.5 m lla - O GG 385 1.5 Bok 09 04 71 Vela 2    
1436   09 40 00 - 54 00 30 seg lla - O GG 385 1.5 Bok 09 04 71 Vela 2    
1437   09 40 00 - 54 00 10 m 103a - D GG 495 1.5 Bok 09 04 71 Vela 2    
1437   09 40 00 - 54 00 01 m 103a - D GG 495 2 Bok 09 04 71 Vela 2    
1438   09 40 00 - 54 00 10 m lla - O GG 385 3.5 Bok 09 04 71 Vela 2    
1438   09 40 00 - 54 00 01 m lla - O GG 385 1.5 - 3 Bok 09 04 71 Vela 2    
1439   09 40 00 - 54 00 60 m lla - O U G 2 1.5 - 3 Bok 09 04 71 Vela 2    
1439   09 40 00 - 54 00 07.5 m lla - O GG 385 2.5 Bok 09 04 71 Vela 2    
1439   09 40 00 - 54 00 01.5 m lla - O GG 385 2 Bok 09 04 71 Vela 2    
1440   09 40 00 - 54 00 10 m 103a - D GG 495 1.5 Bok 09 04 71 Vela 2    
1440   09 40 00 - 54 00 01 m 103a - D GG 495 1.5 Bok 09 04 71 Vela 2    
1441   11 30 12 - 60 31 10 m 103a - D GG 495 1.5 Bok 09 04 71 SA 193    
1441   11 30 12 - 60 31 01 m 103a - D GG 495 1.5 Bok 09 04 71 SA 193    
1442   15 24 42 - 59 33 10 m 103a - D GG 495 1 Bok 09 04 71 Circinus    
1442   15 24 42 - 59 33 01 m 103a - D GG 495 1 Bok 09 04 71 Circinus    
1443   16 22 54 - 52 06 10 m 103a - D GG 495 1.5 Bok 09 04 71 Norma lV    
1443   16 22 54 - 52 06 01 m 103a - D GG 495 1.5 Bok 09 04 71 Norma lV    
1444   16 22 54 - 52 06 10 m lla - O GG 385 1.5 Bok 09 04 71 Norma lV    
1444   16 22 54 - 52 06 01 m lla - O GG 385 1.5 Bok 09 04 71 Norma lV    
1445   16 22 54 - 52 06 20 m lla - O U G 2 1.5 Bok 09 04 71 Norma lV    
1445   16 22 54 - 52 06 02.5 m lla - O GG 385 1.5 Bok 09 04 71 Norma lV    
1445   16 22 54 - 52 06 30 seg lla - O GG 385 1.5 Bok 09 04 71 Norma lV    
1446   16 22 54 - 52 06 10 m 103a - D GG 495 1.5 Bok 09 04 71 Norma lV    
1446   16 22 54 - 52 06 1 m 103a - D GG 495 1.5 Bok 09 04 71 Norma lV    
1447   16 22 54 - 52 06 60 m lla - O U G 2 2 Bok 09 04 71 Norma lV    
1447   16 22 54 - 52 06 07.5 m lla - O GG 385 2 Bok 09 04 71 Norma lV    
1447   16 22 54 - 52 06 1.5 m lla - O GG 385 2 Bok 09 04 71 Norma lV    
1448   14 18 18 - 60 47 10 m lla - O GG 385 5 Bok 15 04 71 Centaurus    
1448   14 18 18 - 60 47 1 m lla - O GG 385 5 Bok 15 04 71 Centaurus    
1449   14 18 18 - 60 47 15 m 103a - D GG 495 6 Bok 15 04 71 Centaurus    
1449   14 18 18 - 60 47 1.5 m 103a - D GG 495 6 Bok 15 04 71 Centaurus    
1450   14 18 18 - 60 47 30 m lla - O U G 2 4 Bok 15 04 71 Centaurus    
1450   14 18 18 - 60 47 4 m lla - O GG 385 4 Bok 15 04 71 Centaurus    
1450   14 18 18 - 60 47 45 seg lla - O GG 385 6 Bok 15 04 71 Centaurus    
1451   14 18 18 - 60 47 75 m lla - O U G 2 4--6 Bok 15 04 71 Centaurus    
1451   14 18 18 - 60 47 2.5 m lla - O U G 2 4--6 Bok 15 04 71 Centaurus    
1452   15 49 42 - 56 16 15 m 103a - D GG 495 4--8 Bok 15 04 71 Norma ll    
1452   15 49 42 - 56 16 1.5 m 103a - D GG 495 4--8 Bok 15 04 71 Norma ll    
1453   15 49 42 - 56 16 12 m lla - O GG 385 3.5 Bok 15 04 71 Norma ll    
1453   15 49 42 - 56 16 1 m lla - O GG 385 3.5 Bok 15 04 71 Norma ll    
1454   15 49 42 - 56 16 60 m lla - O U G 2 3 Bok 15 04 71 Norma ll    
1454   15 49 42 - 56 16 6 m lla - O U G 2 6 Bok 15 04 71 Norma ll    
1455   09 40 00 - 53 57 75 m lla - O U G 2 8--10 Bok 15 04 71 Vela ll    
1455   09 40 00 - 53 57 7.5 m lla - O U G 2 12 Bok 15 04 71 Vela ll    
1456   12 56 00 - 61 30 75 m lla - O GG 385 3.5 Bok 16 04 71 Saco de Carbon a    
1457   13 15 00 - 61 30 75 m lla - O GG 385 4 Bok 16 04 71 Saco de Carbon b    
1458   14 18 18 - 60 47 60 m lla - O U G 2 3.5 Bok 16 04 71 Centaurus l    
1458   14 18 18 - 60 47 7.5 m lla - O GG 385 3.5 Bok 16 04 71 Centaurus l    
1458   14 18 18 - 60 47 1 5 m lla - O GG 385 3.5 Bok 16 04 71 Centaurus l    
1459   16 23 24 - 51 59.2 60 m lla - O U G 2 3 Bok 16 04 71 Norma lV    
1459   16 23 24 - 51 59.2 6 m lla - O U G 2 3 Bok 16 04 71 Norma lV    
1460   11 30 12 - 60 31 60 m lla - O U G 2 1 Bok 16 04 71 SA 193    
1460   11 30 12 - 60 31 07.5 m lla - O GG 385 1.5 Bok 16 04 71 SA 193    
1460   11 30 12 - 60 31 01.5 m lla - O GG 385 1.5 Bok 16 04 71 SA 193    
1460   11 30 12 - 60 31 6 m lla - O U G 2 1.5 Bok 16 04 71 SA 193    
1461   12 56 00 - 61 30 90 m 098 - 0 2 RG - 610 1.5 Bok 16 04 71 Coal Sack a    
1462   13 15 00 -61 29.7 90 m 098 - 0 2 RG - 610 1.5 Bok 17 04 71 Coal Sack b    
1463   13 15 00 -61 29.7 30 m 103a - D GG 495 1.5 Bok 17 04 71 Coal Sack b    
1464   12 56 00 - 61 30 30 m 103a - D GG 495 1 Bok 17 04 71 Coal Sack a    
1465   14 18 18 - 60 47 10 m lla - O GG 385 1.5 Bok 17 04 71 Centaurus l    
1465   14 18 18 - 60 47 01 m lla - O GG 385 1.5 Bok 17 04 71 Centaurus l    
1466   15 49 42 - 56 16 60 m lla - O U G 2 1.5 Bok 17 04 71 Norma ll    
1466   15 49 42 - 56 16 7.5 m lla - O GG 385 1.5 Bok 17 04 71 Norma ll    
1466   15 49 42 - 56 16 1.5 m lla - O GG 385 1.5 Bok 17 04 71 Norma ll    
1466   15 49 42 - 56 16 6 m lla - O U G 2 1.5 Bok 17 04 71 Norma ll    
1467   15 49 42 - 56 16 10 m 103a - D GG 495 1.5 Bok 17 04 71 Norma ll    
1467   15 49 42 - 56 16 01 m 103a - D GG 495 1.5 Bok 17 04 71 Norma ll    
1468   15 49 42 - 56 16 10 m lla - O GG 385 1.5 Bok 17 04 71 Norma ll    
1468   15 49 42 - 56 16 01 m lla - O GG 385 1.5 Bok 17 04 71 Norma ll    

Last Updated on 8/27/99

By Jorge Marin

May

 

May 1971 Plate logs for 1.5-m telescope

Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
1469   08 25 18 - 68 01 5 m 103a - O NO 4--5 Rubin, Smith 01 05 71 NGC 2601    
1470   08 25 18 - 68 01 60 m 103a - O NO 4--5 Rubin, Smith 01 05 71 NGC 2601    
1471   08 25 18 - 68 01 5 m 103a - O NO 4--5 Rubin, Smith 01 05 71 NGC 2601    
1472   09 58 48 - 31 24 5 m 103a - O NO 2--3 Rubin, Smith 01 05 71 NGC 3095    
1473   Focus plate         Rubin, Smith 01 05 71 Focus Plate    
1474   11 52 30 - 23 01 20 m 103a - O NO 1 Rubin, Smith 01 05 71 NGC 3955    
1475   17 16 18 - 39 17.5 60 m 103a - O NO 1--2 Rubin, Smith 01 05 71 H 2 - 6    
1476   17 16 18 - 39 17.5 20 m 103a - O NO 2--3 Rubin, Smith 01 05 71 H 2 - 6    
1477   17 16 18 - 39 17.5 44 m 098 - 0 2 RG - 610 2--3 Rubin, Smith 01 05 71 H 2 - 6    
1478   17 16 18 - 39 17.5 60 m 098 - 0 2 RG - 610 3 Rubin, Smith 01 05 71 H 2 - 6    
1479   17 07 24 - 41 33.9 60 m 098 - 0 2 RG - 610 3--4 Rubin, Smith 01 05 71 M 2    
1480   10 44 00 - 59 33 60 m 098 - 02 RG - 610 2 Blanco 23 05 71 Eta Carina BROKEN OK" CTIO
1481   13 04 06 - 49 21 120 m 103a - O NO 2 Blanco 23 05 71 NGC 4945   CTIO
1482   12 52 06 - 60 13 30 m 103a - O GG 385 3--2 Landolt 25 05 71 K Crusis/ NGC 4755    
1483   12 52 06 - 60 13 30 m 103a - D GG 495 3--2 Landolt 25 05 71 K Crusis/ NGC 4755    
1484   13 36 36 - 00 31.2 5 m 103a - D GG 495 3--2 Landolt 25 05 71 SA 105    
1485   12 33 00 - 72 24 30 m 103a - D GG 495 3--2 Landolt 25 05 71 NGC 4372    
1486   12 33 00 - 72 24 30 m 103a - O GG 385 3--2 Landolt 25 05 71 NGC 4372    
1487   16 21 48 - 26 27 30 m 103a - O GG 385 3--2 Landolt 25 05 71 NGC 6121    
1488   16 21 48 - 26 27 30 m 103a - D GG 495 3--2 Landolt 25 05 71 NGC 6121    
1489   16 21 48 - 26 27 60 m 103a - O U G 2 3--2 Landolt 25 05 71 NGC 6121    
1490   16 21 48 - 26 27 83 m 103a - O U G 2 3--2 Landolt 25 05 71 NGC 6121    
1491   12 52 30 - 60 13 10 m 103a - O GG 385 3--2 Landolt 26 05 71 K Crusis/ NGC 4755    
1492   12 52 30 - 60 13 30 m 103a - O GG 385 3--2 Landolt 26 05 71 K Crusis/ NGC 4755    
1493   12 52 30 - 60 13 60 m 103a - O U G 2 3--2 Landolt 26 05 71 K Crusis/ NGC 4755    
1494   16 21 48 - 26 27 60 m 103a - O U G 2 2.5 Landolt 26 05 71 NGC 6121    
1495   16 21 48 - 26 27 30 m 103a - O U G 2 2.5 Landolt 26 05 71 NGC 6121    
1496   16 21 48 - 26 27 12 m 103a - O GG 385 3.5 Landolt 26 05 71 NGC 6121    
1497   16 21 48 - 26 27 12 m 103a - O GG 385 3.5 Landolt 26 05 71 NGC 6121    
1498   16 21 48 - 26 27 12 m 103a - O GG 385 3.5 Landolt 26 05 71 NGC 6121    
1499   16 21 48 - 26 27 60 m 103a - D GG 495 3.5 Landolt 26 05 71 NGC 6121    
1500   16 21 48 - 26 27 15 m 103a - D GG 495 3.5 Landolt 26 05 71 NGC 6121    
1501   16 21 48 - 26 27 15 m 103a - D GG 495 3.5 Landolt 26 05 71 NGC 6121    
1502   16 21 48 - 26 27 15 m 103a - D GG 495 3.5 Landolt 26 05 71 NGC 6121    
1503   16 21 48 - 26 27 30 m 103a - D GG 495 3.5 Landolt 26 05 71 NGC 6121    
1504   16 21 48 - 26 27 12 m 103a - O GG 385 3.5 Landolt 26 05 71 NGC 6121    
1505   16 21 48 - 26 27 30 m 103a - D GG 495 3.5 Landolt 26 05 71 NGC 6121    
1506   17 48 30 - 37 02 30 m 103a - D GG 495 3.5 Landolt 26 05 71 NGC 6441    
1507   17 48 30 - 37 02 15 m 103a - O GG 385 3.5 Landolt 26 05 71 NGC 6441    
1508   13 36 36 - 00 31.2 5 m 103a - D GG 495 3 Landolt 27 05 71 SA 105    
1509   12 52 30 - 60 13 30 m 103a - D GG 495 3 Landolt 27 05 71 K Crusis/ NGC 4755    
1510   12 52 30 - 60 13 30 m 103a - O U G 2 3 Landolt 27 05 71 K Crusis/ NGC 4755    
1511   12 52 30 - 60 13 30 m 103a - O U G 2 1.5 Landolt 27 05 71 K Crusis/ NGC 4755    
1512   12 52 30 - 60 13 50 m 103a - D GG 495 3 Landolt 27 05 71 K Crusis/ NGC 4755    
1513   16 21 48 - 26 27 60 m 103a - D GG 495 3 Landolt 27 05 71 NGC 6121    
1514   16 21 48 - 26 27 60 m 103a - D GG 495 3 Landolt 27 05 71 NGC 6121    
1515   16 21 48 - 26 27 30 m 103a - O GG 385 3 Landolt 27 05 71 NGC 6121    
1516   16 21 48 - 26 27 30 m 103a - O GG 385 2--4 Landolt 27 05 71 NGC 6121    
1517   16 21 48 - 26 27 60 m 103a - O GG 385 2--4 Landolt 27 05 71 NGC 6121    
1518   16 21 48 - 26 27 60 103a - O GG 385 3 Landolt 27 05 71 NGC 6121    
1519   16 21 48 - 26 27 30 m 103a - O U G 2 3 Landolt 27 05 71 NGC 6121    
1520   16 21 48 - 26 27 30 m 103a - O U G 2 3 Landolt 27 05 71 NGC 6121    
1521   17 48 30 - 37 02 15 m 103a - O GG 385 3 Landolt 27 05 71 NGC 6441    
1522   17 48 30 - 37 02 30 m 103a - D GG 495 3 Landolt 27 05 71 NGC 6441    
1523   12 52 30 - 60 13 60 m 103a - O U G 2 3 Landolt 31 05 71 NGC 4755    
1524   12 52 30 - 60 13 15 m 103a - O U G 2 3 Landolt 31 05 71 NGC 4755    
1525   12 52 30 - 60 13 15 m 103a - O U G 2 3 Landolt 31 05 71 NGC 4755    
1526   12 52 30 - 60 13 6 m 103a - O U G 2 3 Landolt 31 05 71 NGC 4755    
1527   12 52 30 - 60 13 6 m 103a - O U G 2 3 Landolt 31 05 71 NGC 4755    
1528   12 52 30 - 60 13 10 m 103a - O GG 385 3 Landolt 31 05 71 NGC 4755    
1529   12 52 30 - 60 13 4 m 103a - O GG 385 3 Landolt 31 05 71 NGC 4755    
1530   12 52 30 - 60 13 4 m 103a - O GG 385 3 Landolt 31 05 71 NGC 4755    
1531   12 52 30 - 60 13 10 m 103a - D GG 495 4 Landolt 31 05 71 NGC 4755    
1532   12 52 30 - 60 13 10 m 103a - D GG 495 4 Landolt 31 05 71 NGC 4755    
1533   12 52 30 - 60 13 50 m 103a - D GG 495 4 Landolt 31 05 71 NGC 4755    
1534   12 52 30 - 60 13 4 m 103a - D GG 495 4 Landolt 31 05 71 NGC 4755    
1535   12 52 30 - 60 13 4 m 103a - D GG 495 4 Landolt 31 05 71 NGC 4755    
1536   12 52 30 - 60 13 50 m 103a - O GG 385 4 Landolt 31 05 71 NGC 4755    
1537   12 52 30 - 60 13 50 m 103a - O GG 385 4--6 Landolt 31 05 71 NGC 4755    
1538   16 21 48 - 26 27 60 m 103a - O GG 385 4 Landolt 31 05 71 NGC 6121    
1539   16 21 48 - 26 27 6 m 103a - O U G 2 4 Landolt 31 05 71 NGC 6121    
1540   16 21 48 - 26 27 6 m 103a - O U G 2 4 Landolt 31 05 71 NGC 6121    
1541   16 21 48 - 26 27 6 m 103a - O U G 2 4 Landolt 31 05 71 NGC 6121    

Last Updated on 8/27/99

By Guerra & Marin 

June

 

June 1971 Plate logs for 1.5-m telescope

Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
1542   16 21 48 - 26 27 4 m 103a - O GG 385 3 Landolt 01 06 71 NGC 6121    
1543   16 21 48 - 26 27 4 m 103a - O GG 385 3 Landolt 01 06 71 NGC 6121    
1544   16 21 48 - 26 27 5 m 103a - D GG 495 3 Landolt 01 06 71 NGC 6121    
1545   16 21 48 - 26 27 5 m 103a - D GG 495 3 Landolt 01 06 71 NGC 6121    
1546   16 21 48 - 26 27 60 m 098 - 02 RG 610 3 Landolt 01 06 71 NGC 6121    
1547   16 21 48 - 26 27 2 m 103a - O GG 385 3 Landolt 01 06 71 NGC 6121    
1548   16 21 48 - 26 27 2 m 098 - 02 GG 385 3 Landolt 01 06 71 NGC 6121    
1549   16 21 48 - 26 27 2:30 m 103a - D GG 495 3 Landolt 01 06 71 NGC 6121    
1550   16 21 48 - 26 27 2:30 m 103a - D GG 495 3 Landolt 01 06 71 NGC 6121    
1551   16 21 48 - 26 27 18 m 103a - O U G 2 4 Landolt 01 06 71 NGC 6121    
1552   16 21 48 - 26 27 18 m 103a - O U G 2 4 Landolt 01 06 71 NGC 6121    
1553   16 15 12 - 22 55 30 m 103a - D GG 495 2--3 Landolt 01 06 71 NGC 6093    
1554   16 25 24 - 25 59 20 m 103a - O GG 385 4 Landolt 01 06 71 NGC 6144    
1555   17 46 14 - 24 45.9 60 m 098 - 02 RG 610 4 Landolt 01 06 71 IRC 20385    
1556   (*)                    

(*) Corresponde a Tubo Imagen

Last Updated on 8/27/99

By Guerra & Marin

July

 

July 1971 Plate logs for 1.5-m telescope

Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
1557   13 36 00 - 29 43 30 m II a - O NO 2 Smith 22 07 71 NGC 5236    
1558    (1)                    
1563   22 14 36 - 36 59 30 m II a - O NO 1 Smith 22 07 71 IC 5186    
1564   22 55 30 - 41 13.6 30 m II a - O NO 1--2 Smith 22 07 71 NGC 7424    
1565   23 14 36 - 42 46 30 m II a - O NO 1--2 Smith 22 07 71 NGC 7552    
1566   01 32 54 - 29 34 30 m II a - O NO 1--2 Smith 22 07 71 NGC 613    
1567   13 35 30 - 29 43 5 m II a - O NO 1--2 Smith 23 07 71 NGC 5236    
1568   13 35 30 - 29 43 10 m II a - O NO 1--2 Smith 23 07 71 NGC 5236    
1569   13 02 42 - 10 11 45 m II a - O NO 1--2 Smith 23 07 71 NGC 4939    
1570   (2)                    
1581   17 18 24 - 38 55 85 m 098 - 02 RG 610 2--3 Graham 31 07 71 RCW 122    
1582   ?               ? No figura    
1583   00 25 42 - 71 41 40 m 103a - O ? 2--3 Graham 31 07 71 NGC 121 Field    
1584   00 25 42 - 71 41 40 m 103a - O ? 2--3 Graham 31 07 71 NGC 121 Field    
1585   00 25 42 - 71 41 40 m 103a - O ? 2--3 Graham 31 07 71 NGC 121 Field    
1586   00 25 42 - 71 41 40 m 103a - O ? 2--3 Graham 31 07 71 NGC 121 Field    

(1) Al 1562 corresponde a Tubo Imagen

(2) Al 1580 corresponde a Tubo Imagen

 

Last Updated on 8/27/99

By Guerra & Marin

August

August 1971 Plate logs for 1.5-m telescope

Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
1587   13 44 00 - 47 06 01 seg II a - D GG 495 2--3 Graham 02 08 71 NGC 5139    
1588   13 44 00 - 47 06 15 seg II a - O U G 2 2--3 Graham 02 08 71 NGC 5139    
1589   13 44 00 - 47 06 7 seg II a - O U G 2 2--3 Graham 02 08 71 NGC 5139    
1590   13 44 00 - 47 06 5 seg II a - D GG 495 2--3 Graham 02 08 71 NGC 5139    
1591    (1)                    
1602   05 40 06 - 66 39 3 m 103a - O NO 2 Smith 17 08 71 Nova Graham 1971 b    
1603   05 40 06 - 66 39 1 m 103a - O NO 2 Smith 17 08 71 Nova Graham 1971 b    
1604   15 25 06 - 50 31 1 m II a - D GG 495   ? 27 08 71 NGC 5927    
1605   15 25 06 - 50 31 12 m II a - O U G 2   ? 27 08 71 NGC 5927    
1606   15 32 30 - 50 32 24 m II a - O U G 2   ? 27 08 71 NGC 5946    
1607   15 32 30 - 50 32 2 m II a - D GG 495   ? 27 08 71 NGC 5946    
1608   17 22 24 - 48 27 30 sec II a - D GG 495   ? 27 08 71 NGC 6352    
1609   17 22 24 - 48 27 6 m II a - O U G 2   ? 27 08 71 NGC 6352    
1610   17 37 36 - 53 39 2 m II a - O U G 2   ? 27 08 71 NGC 6397    
1611   17 37 36 - 53 39 10 sec II a - D GG 495   ? 27 08 71 NGC 6397    
1612   00 25 42 - 71 41 45 m 103a - O GG 385   ? 27 08 71 NGC 121    
1613   01 00 00 - 33 40 75 m 103a - O GG 385   ? 27 08 71 Sculptor    
1613   00 23 48 - 72 56 75 m 103a - O GG 385   ? 27 08 71 Kron 3    
1614   00 25 42 - 71 41 50 m 103a - O GG 385   ? 27 08 71 NGC 121    
1615   00 25 42 - 71 41 50 m 103a - O GG 385   ? 27 08 71 NGC 121    
1616   00 25 42 - 71 41 0 103a - O GG 385   ? 27 08 71 NGC 121 Bad plate  
1617   05 41 00 - 66 40 5 m 103a - O GG 385   ? 27 08 71 Nova Dor. 1971 l    
1618   23 09 00 - 35 42 15 m 103a - O GG 385   Lasker 28 08 71 Stock Object    
1619   23 09 00 - 35 42 15 m 103a - D GG 495   Lasker 28 08 71 Stock Object    
1620   00 32 00 - 07 29 60 m 103a - O GG 385   Lasker 28 08 71 MP 00 31   CTIO
1621   04 51 00 - 17 57 60 m 103a - O GG 385   Lasker 28 08 71 MP 04 50   CTIO
1622   14 51 10 - 64 37 60 m 103a - O GG 385   Lasker 29 08 71 MP 14 49   CTIO
1623   14 51 10 - 65 33 30 m 103a - O GG 385   Lasker 29 08 71 MP 14 49   CTIO
1624   20 49 18 - 69 21 60 m 103a - D GG 495   Lasker 29 08 71 IC 5152    
1625   20 46 59 - 16 22.7 30 m 103a - O GG 385   Lasker 29 08 71 PSR 2045-16   CTIO
1626   00 53 30 - 37 52 130 m 103a - O GG 385   Lasker 29 08 71 NGC 300 Bad plate  
1627   01 00 00 - 33 40 45 m 103a - O GG 385   ? 27 08 71 Sculptor    
1627   00 23 48 - 72 56 45 m 103a - O GG 385   ? 27 08 71 Kron 3    

(1) Al 1601 corresponde a Tubo Imagen

 

Last Updated on 8/27/99

By Jorge Marin

September

 

September 1971 Plate logs for 1.5-m telescope

Plate N. N R . A Dec Exp.Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
1628    (1)                    
1630   17 11 00 - 29 24 15 m 103a - O GG 385   Smith 17 09 71 NGC 6304    
1631   17 11 00 - 29 24 15 m 103a - D GG 495   Smith 17 09 71 NGC 6304    
1632   17 48 06 - 37 02 15 m 103a - D GG 495 3--4 Smith 17 09 71 NGC 6441    
1633   17 48 06 - 37 02 15 m 103a - D GG 495 3 Smith 17 09 71 NGC 6441    
1634   17 23 00 - 48 21 15 m 103a - O GG 385 3 Smith 17 09 71 NGC 6352    
1635   17 23 00 - 48 21 15 m 103a - D GG 495 3 Smith 17 09 71 NGC 6352    
1636   17 11 24 - 29 24 15 m 103a - D GG 495 3 Smith 17 09 71 NGC 6304    
1637   23 10 15 - 35 29 15 m 103a - D GG 495 4 Smith 17 09 71 Field JEM    
1638   23 10 15 - 35 29 15 m 103a - O GG 385 4 Graham 21 09 71 Field JEM    
1639   00 25 42 - 71 41 60 m 103a - O GG 385 4 Graham 21 09 71 NGC 121    
1640   00 25 42 - 71 41 55 m 103a - O GG 385 4 Graham 21 09 71 NGC 121    
1641   00 25 42 - 71 41 55 m 103a - O GG 385 2 Graham 21 09 71 NGC 121    
1642   00 25 42 - 71 41 60 m 103a - D GG 495   Graham 21 09 71 NGC 121    
1643   00 25 42 - 71 41 55 m 103a - O GG 385   Graham 21 09 71 NGC 121    
1644   00 25 42 - 71 41 55 m 103a - O GG 385   Graham 21 09 71 NGC 121    
1645   00 25 42 - 71 41 55 m 103a - O GG 385   Graham 21 09 71 NGC 121    
1646   00 25 42 - 71 41 55 m 103a - O GG 385   Graham 21 09 71 NGC 121    
1647   05 41 00 - 66 40 10 m 103a - O GG 385   Graham 21 09 71 Nova Dor 1971 b    
1648   00 25 42 - 71 41 60 m 103a - O GG 385   Graham 22 09 71 NGC 121    
1649   00 25 42 - 71 41 60 m 103a - O GG 385   Graham 22 09 71 NGC 121    
1650   00 25 42 - 71 41 60 m 103a - O GG 385   Graham 22 09 71 NGC 121    
1651   00 25 42 - 71 41 60 m 103a - D GG 495   Graham 22 09 71 NGC 121    
1652   00 25 42 - 71 41 60 m 103a - O GG 385   Graham 22 09 71 NGC 121    
1653   00 25 42 - 71 41 60 m 103a - O GG 385   Graham 22 09 71 NGC 121    
1654   00 25 42 - 71 41 60 m 103a - O GG 385   Graham 22 09 71 NGC 121    
1655   02 00 00 - 74 30 10 m 103a - O GG 385   Graham 22 09 71 NGC 121    
1656   05 41 00 - 66 40 10 m 103a - O GG 385   Graham 22 09 71 Nova Dor 1971 b    
1657   00 25 42 - 71 41 60 m 103a - O GG 385   Graham 24 09 71 NGC 121    
1658   00 25 42 - 71 41 60 m 103a - O GG 385   Graham 24 09 71 NGC 121    
1659   00 25 42 - 71 41 60 m 103a - O GG 385   Graham 24 09 71 NGC 121    
1660   00 25 42 - 71 41 60 m 103a - D GG 495   Graham 24 09 71 NGC 121    
1661   00 25 42 - 71 41 60 m 103a - O GG 385   Graham 24 09 71 NGC 121    
1662   00 25 42 - 71 41 60 m 103a - O GG 385   Graham 24 09 71 NGC 121    
1663   00 25 42 - 71 41 60 m 103a - O GG 385   Graham 24 09 71 NGC 121    
1664   02 00 00 - 74 30 10 m 103a - O GG 385   Graham 24 09 71 NGC 121    
1665   00 25 42 - 71 41 60 m 103a - O GG 385   Graham 25 09 71 NGC 121    
1666   00 25 42 - 71 41 60 m 103a - O GG 385   Graham 25 09 71 NGC 121    
1667   00 25 42 - 71 41 60 m 103a - O GG 385   Graham 25 09 71 NGC 121    
1668   00 25 42 - 71 41 60 m 103a - D GG 495   Graham 25 09 71 NGC 121    
1669   00 25 42 - 71 41 60 m 103a - O GG 385   Graham 25 09 71 NGC 121    
1670   00 25 42 - 71 41 60 m 103a - O GG 385   Graham 25 09 71 NGC 121    
1671   00 25 42 - 71 41 60 m 103a - O GG 385   Graham 25 09 71 NGC 121    
1672   00 25 42 - 71 41 60 m 103a - O GG 385   Graham 25 09 71 NGC 121    

 (1) Al 1629 corresponde a Tubo Imagen

 

Last Updated on 8/27/99

By Guerra & Marin

October

 

October 1971 Plate logs for 1.5-m telescope

Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
1673   18 55 36 - 62 09 10 m 103a - O GG 385 2 Graham 14 10 71 Nova IC 4798    
1674   00 25 42 - 71 41 60 m 103a - O GG 385 1.5 Graham 14 10 71 NGC 121    
1675   00 25 42 - 71 41 10 m 103a - O GG 385 1.5 Graham 14 10 71 NGC 121    
1676   00 25 42 - 71 41 60 m 103a - O GG 385 1.5 Graham 14 10 71 NGC 121    
1677   04 59 00 - 66 01 40 m 103a - O GG 385 1.5 Graham 14 10 71 NGC 1783    
1678   04 58 24 - 68 08 40 m 103a - O GG 385 1.5 Graham 14 10 71 1971 b Doradus    
1679   04 59 00 - 66 01 40 m 103a - O GG 385 1.5 Graham 14 10 71 NGC 1783    
1680   04 59 00 - 66 01 40 m 103a - O GG 385 1.5 Graham 14 10 71 NGC 1783    
1681   04 59 00 - 66 01 35 m 103a - O GG 385 1.5 Graham 14 10 71 1971 b Doradus    
1682   04 59 00 - 66 01 35 m 103a - O GG 385 1.5 Graham 14 10 71 NGC 1783    
1683     - 90 00 5 m 103a - O GG 385 1.5 Graham 14 10 71 Pole    
1684   18 55 36 - 62 09 60 m 103a - O GG 385 1.5 Graham 15 10 71 Nova IC 4798    
1685   00 25 42 - 71 41 60 m 103a - O GG 385 1.5 Graham 15 10 71 NGC 121    
1686   00 25 42 - 71 41 60 m 103a - O GG 385 1.5 Graham 15 10 71 NGC 121    
1687   02 00 00 - 74 30 10 m 103a - O GG 385 1.5 Graham 15 10 71 NGC 1783    
1688   04 59 00 - 66 01 40 m 103a - O GG 385 1.5 Graham 15 10 71 NGC 1783    
1689   04 59 00 - 66 01 40 m 103a - O GG 385 1.5 Graham 15 10 71 NGC 121    
1690   00 25 42 - 71 41 40 m 103a - O GG 385 1.5 Graham 15 10 71 NGC 121    
1691   04 59 00 - 66 01 40 m 103a - O GG 385 1.5 Graham 15 10 71 NGC 1783    
1692   04 59 00 - 66 01 40 m 103a - O GG 385 1.5 Graham 15 10 71 NGC 1783    
1693   17 38 00 - 53 40 15 m 103a - O GG 385 3 Hesser 19 10 71 NGC 6397    
1694   17 38 00 - 53 40 15 m 103a - D GG 495 3 Hesser 19 10 71 NGC 6397    
1695   22 00 54 - 51 26 60 m 103a - O GG 385 2--3 Hesser 19 10 71 IC 5152    
1696   00 21 50 - 72 09.7 60 m 103a - D GG 495 3 Hesser 19 10 71 47 Tucana    
1697   00 21 50 - 72 09.7 15 m 103a - D GG 495 2 Hesser 19 10 71 47 Tucana    
1698   00 21 50 - 72 09.7 60 m 103a - O GG 385 2 Hesser 19 10 71 47 Tucana    
1699   00 21 50 - 72 09.7 15 m 103a - O GG 385 2 Hesser 19 10 71 47 Tucana    
1700   00 53 36 - 37 51 60 m 103a - O GG 385 1.5 Hesser 19 10 71 NGC 300   CTIO
1701   00 53 36 - 37 51 60 m 103a - D GG 495 1.5 Hesser 19 10 71 NGC 300   CTIO
1702   04 30 30 - 27 43.6 15 m 103a - D GG 495 1.5 Hesser 19 10 71 Field    
1703   04 30 30 - 27 43.6 15 m 103a - O GG 385 1.5 Hesser 19 10 71 Field    
1704   17 38 00 - 53 40 30 m 103a - D GG 495 3 Hesser 20 10 71 NGC 6397    
1705   17 38 00 - 53 40 15 m 103a - O GG 385 2.5 Hesser 20 10 71 NGC 6397    
1706   18 39 34 - 49 07 10 m 103a - O GG 385 2.5 Hesser 20 10 71 Field    
1707   18 39 34 - 49 07 10 m 103a - D GG 495 2.5 Hesser 20 10 71 Field    
1708   22 00 54 - 51 26 60 m 103a - O GG 385 2.5 Hesser 20 10 71 IC 5152    
1709   00 53 36 - 37 51 120 m 103a - O GG 385 2.5 Hesser 20 10 71 NGC 300   CTIO
1710   00 21 50 - 72 09.7 30 m 103a - O GG 385 2.5 Hesser 20 10 71 47 Tucana    
1711   00 21 50 - 72 09.7 30 m 103a - D GG 495 2.5 Hesser 20 10 71 47 Tucana    
1712   00 21 50 - 72 09.7 15 m 103a - D GG 495 2.5 Hesser 20 10 71 47 Tucana    
1713   00 21 50 - 72 09.7 15 m 103a - O GG 385 2.5 Hesser 20 10 71 47 Tucana    
1714   00 21 50 - 72 09.7 15 m 103a - O GG 385 2.5 Hesser 20 10 71 47 Tucana    
1715   00 21 50 - 72 09.7 15 m 103a - D GG 495 2.5 Hesser 20 10 71 47 Tucana    
1716   05 00 00 - 31 41 15 m 103a - D GG 495 2 Hesser 20 10 71 Field    
1717   05 00 00 - 31 41 15 m 103a - O GG 385 2 Hesser 20 10 71 Field    
1718   23 42 30 - 15 30 60 m 098 - 02 RG 610 1.5 Blanco 28 10 71 R. Acuarium   CTIO
1719   00 13 30 - 39 21 30 m 103a - O GG 385 1.5 Blanco 28 10 71 NGC 55    
1720   00 53 54 - 37 49 20 m 103a - O GG 385 1.5 Blanco 28 10 71 NGC 300 BROKEN OK" CTIO
1721   00 46 18 - 25 25 20 m 103a - O GG 385 1.5 Blanco 28 10 71 NGC 253   CTIO
1722   06 35 30 - 62 36.9 90 m 098 - 02 RG 610 1.5 Blanco 28 10 71 Nova 1925   CTIO
1723   18 24 09 - 31 42 12 m 098 - 02 RG 610 2 Blanco 29 10 71 V455 Sagittarius   CTIO
1724   21 25 47 - 65 24 30 m 098 - 02 RG 610 2 Blanco 29 10 71 AR Pavonis   CTIO
1725   20 08 42 - 53 12 30 m 098 - 02 RG 610 2 Blanco 29 10 71 BL Telescopium   CTIO
1726   23 42 30 - 15 30 30 m 098 - 02 RG 610 2 Blanco 29 10 71 R Aquarius   CTIO
1727   00 24 00 - 72 04 30 m 098 - 02 RG 610 3 Blanco 29 10 71 VW Tucana   CTIO
1728   04 24 40 - 21 12 30 m 098 - 02 RG 610 3 Blanco 29 10 71 UV Eridanus   CTIO
1729   07 15 24 - 26 53 21 m 098 - 02 RG 610 3.5 Blanco 29 10 71 CG C.Ma   CTIO

 

Last Updated on 8/27/99

By Guerra & Marin

November

 

November 1971 Plate logs for 1.5-m telescope

Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
1730   (1)                    
1799   00 21 54 - 72 21 10 m IN + H2O RG 695 3 Spinrad 17 11 71 47 Tucana    
1800   00 21 54 - 72 21 20 m IN + H2O RG 695 2 Spinrad 17 11 71 47 Tucana    
1801   00 21 54 - 72 21 6 m 103a - D GG 495 2 Spinrad 17 11 71 47 Tucana    
1802   00 21 54 - 72 21 6 m 098 - 02 RG 610 2 Spinrad 17 11 71 47 Tucana    
1803   00 25 40 - 71 41 120 m 098 - 02 RG 610 2--3 Spinrad 17 11 71 NGC 121    
1804   00 50 00 - 73 10 90 m 098 - 02 RG 610 2 Spinrad 17 11 71 LMC Center    
1805   05 24 40 - 69 47 90 m 098 - 02 RG 610 1.5 Spinrad 17 11 71 LMC Bar    
1806   05 24 40 - 69 47 40 m 103a - O GG 385 1.5 Spinrad 17 11 71 LMC Bar    
1807   04 19 19 - 55 00 10 m III a - J GG 385 1 Spinrad 17 11 71 NGC 1566    
1808   05 38 00 - 69 00 12 m 098 - 02 RG 610 3 Spinrad 17 11 71 30 Doradus    
1809   00 50 00 - 73 10 40 m 103a - O GG 385 2 Graham 18 11 71 SMC Center    
1810   04 59 00 - 66 01 40 m 103a - O GG 385 2 Graham 18 11 71 NGC 1783    
1811   04 59 00 - 66 01 40 m 103a - O GG 385 1.5 Graham 18 11 71 NGC 1783    
1812   04 59 00 - 66 01 40 m 103a - D GG 495 1.5 Graham 18 11 71 NGC 1783    
1813   04 59 00 - 66 01 40 m 103a - O GG 385 1.5 Graham 18 11 71 NGC 1783    
1814   05 05 00 - 69 26 60 m 103a - D GG 495 1.5 Graham 18 11 71 NGC 1835    
1815   05 05 00 - 69 26 30 m 103a - O GG 385 1.5 Graham 18 11 71 NGC 1835    
1816   04 59 00 - 66 01 40 m 103a - O GG 385 1.5 Graham 18 11 71 NGC 1783    
1817   05 41 00 - 66 40 15 m 103a - O GG 385 1.5 Graham 18 11 71 Nova 1971b    

 (1) Al 1798 corresponde a Tubo Imagen

Last Updated on 8/27/99

By Guerra & Marin

December

 

December 1971 Plate logs for 1.5-m telescope

Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
1818   04 59 00 - 66 01 40 m 103a - O GG 385   Graham 11 12 71 NGC 1783    
1819   05 07 06 - 69 14 40 m 103a - O GG 385   Graham 11 12 71 Bok    
1820   05 07 06 - 69 14 60 m 103a - D GG 495   Graham 11 12 71 Bok    
1821   04 59 00 - 66 01 40 m 103a - O GG 385   Graham 11 12 71 NGC 1783    
1822   05 05 00 - 69 26 40 m 103a - O GG 385   Graham 11 12 71 NGC 1835    
1823   04 59 00 - 66 01 40 m 103a - O GG 385   Graham 11 12 71 NGC 1783    
1824   05 05 00 - 69 26 40 m 103a - O GG 385   Graham 11 12 71 NGC 1835    
1825   04 59 00 - 66 01 40 m 103a - O GG 385   Graham 11 12 71 NGC 1783    
1826   04 59 00 - 66 01 40 m 103a - O GG 385   Graham 12 12 71 NGC 1783    
1827   05 07 06 - 69 14 40 m 103a - O GG 385   Graham 12 12 71 Bok    
1828   04 59 00 - 66 01 40 m 103a - O GG 385   Graham 12 12 71 NGC 1783    
1829   04 59 00 - 66 01 60 m 103a - D GG 495   Graham 12 12 71 NGC 1783    
1830   04 59 00 - 66 01 40 m 103a - O GG 385   Graham 12 12 71 NGC 1783    
1831   05 07 06 - 69 14 10 m 103a - D GG 495   Graham 12 12 71 Bok    
1832   05 07 06 - 69 14 40 m 103a - O GG 385   Graham 12 12 71 Bok    
1833   05 07 06 - 69 14 10 m 103a - O GG 385   Graham 12 12 71 Bok    
1834   04 59 00 - 66 01 30 m 103a - O GG 385   Graham 12 12 71 NGC 1783    
1835   05 07 06 - 69 14 30 m 103a - O GG 385   Graham 12 12 71 Bok    
1836   05 07 06 - 69 14 13 m 103a - O GG 385   Graham 13 12 71 Bok    
1837   05 07 06 - 69 14 40 m 103a - O GG 385   Graham 13 12 71 Bok    
1838   04 59 00 - 66 01 40 m 103a - O GG 385   Graham 13 12 71 NGC 1783    
1839   05 07 06 - 69 14 40 m 103a - O GG 385   Graham 13 12 71 Bok    
1840   04 59 00 - 66 01 40 m 103a - O GG 385   Graham 13 12 71 NGC 1783    
1841   05 07 06 - 69 14 40 m 103a - O GG 385   Graham 13 12 71 Bok   CTIO
1842   04 59 00 - 66 01 40 m 103a - O GG 385   Graham 13 12 71 NGC 1783    
1843   05 07 06 - 69 14 40 m 103a - O GG 385   Graham 13 12 71 Bok    
1844   00 06 00 - 41 48 60 m 103a - O GG 385 1.5 Buarbidge 16 12 71 Anon Trio    
1845   01 17 48 - 41 31 60 m 103a - O GG 385 1.5 Buarbidge 16 12 71 Anon Group    
1846   03 16 18 - 41 13 60 m 103a - O GG 385 1.5 Buarbidge 16 12 71 NGC 1291    
1847   03 54 50 - 42 27 60 m 103a - O GG 385 1.5 Buarbidge 16 12 71 NGC 1487    
1848   04 28 24 - 53 53.4 60 m 103a - O GG 385 1.5 Buarbidge 16 12 71 IC 2082    
1849   06 17 29 - 48 44.1 65 m 103a - O GG 385 1.5 Buarbidge 16 12 71 PKS 0616 - 48    
1850   05 19 00 - 72 33 90 m 098 - 02 RG 610 1.5 Graham 25 12 71 LMC X2    
1851   04 59 00 - 66 01 40 m 103a - O GG 385 1.5 Graham 25 12 71 NGC 1783    
1852   04 59 00 - 66 01 40 m 103a - O GG 385 1.5 Graham 25 12 71 NGC 1783    
1853   04 59 00 - 66 01 40 m 103a - O GG 385 1.5 Graham 25 12 71 NGC 1783    
1854   04 59 00 - 66 01 60 m 103a - O GG 385 1.5 Graham 25 12 71 NGC 1783    
1855   04 59 00 - 66 01 40 m 103a - O GG 385 1.5 Graham 26 12 71 NGC 1783    
1856   04 59 00 - 66 01 40 m 103a - O GG 385 1.5 Graham 26 12 71 NGC 1783    
1857   04 59 00 - 66 01 40 m 103a - O GG 385 1--2 Graham 26 12 71 NGC 1783    
1858   04 59 00 - 66 01 50 m 103a - O GG 385 1--2 Graham 26 12 71 NGC 1783    
1859   05 38 00 - 64 06 90 m 098 - 02 RG 610 1 Graham 26 12 71 LMC X3    
1860   04 59 00 - 66 01 90 m 098 - 02 RG 610 1--3 Graham 26 12 71 NGC 1783    
1861   04 59 00 - 66 01 40 m 103a - O GG 385 1 Graham 26 12 71 NGC 1783    
1862   04 59 00 - 66 01 40 m 103a - O GG 385 1--3 Graham 26 12 71 NGC 1783    
1863   04 59 00 - 66 01 50 m 103a - O GG 385 2--3 Graham 26 12 71 NGC 1783    

Last Updated on 8/27/99

By Jorge Marin

1972

1972 Plate logs for 1.5-m telescope

January

 

January 1972 Plate logs for 1.5-m telescope

Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
1864   01 01 00 - 71 40 35 m 103a - D GG 495 1.5 Alcaino 01 01 72 NGC 361    
1865   03 44 36 - 71 45 35 m 103a - D GG 495 1--2 Alcaino 01 01 72 NGC 1466    
1866   05 12 00 - 40 05 10 m 103a - D GG 495 1.5 Alcaino 01 01 72 NGC 1851    
1867   05 12 00 - 40 05 7 m 103a - D GG 495 1.5 Alcaino 01 01 72 NGC 1851    
1868   05 12 00 - 40 05 3 m 103a - D GG 495 1.5 Alcaino 01 01 72 NGC 1851    
1869   06 47 00 - 35 58 25 m 103a - D GG 495 1.5 Alcaino 01 01 72 NGC 2298    
1870   06 47 00 - 35 58 12 m 103a - D GG 495 1.5 Alcaino 01 01 72 NGC 2298    
1871   06 47 00 - 35 58 6 m 103a - D GG 495 1.5 Alcaino 01 01 72 NGC 2298    
1872   06 47 00 - 35 58 3 m 103a - D GG 495 1.5 Alcaino 01 01 72 NGC 2298    
1872   06 47 00 - 35 58 1.5 m 103a - D GG 495 1.5 Alcaino 01 01 72 NGC 2298    
1873   05 01 00 - 66 21 25 m 103a - D GG 495 1.5 Alcaino 01 01 72 LMC 1783    
1873   05 09 00 - 69 01 20 m 103a - D GG 495 1.5 Alcaino 01 01 72 Bok region    
1874   05 13 00 - 65 30 15 m 103a - D GG 495 2--3 Alcaino 01 01 72 NGC 1866    
1875   05 29 00 - 67 19 15 m 103a - D GG 495 2--3 Alcaino 01 01 72 NGC 2004    
1876   06 20 00 - 67 31 15 m 103a - D GG 495 3--4 Alcaino 01 01 72 NGC 2231    
1877   06 30 00 - 64 18 15 m 103a - D GG 495 4 Alcaino 01 01 72 NGC 2257    
1878   09 10 00 - 64 39 8 m 103a - D GG 495 4 Alcaino 01 01 72 NGC 2808    
1879   09 10 00 - 64 39 4 m 103a - D GG 495 4 Alcaino 01 01 72 NGC 2808    
1880   09 10 00 - 64 39 2 m 103a - D GG 495 4 Alcaino 01 01 72 NGC 2808    
1881   09 10 00 - 64 39 1 m 103a - D GG 495 4 Alcaino 01 01 72 NGC 2808    
1882   00 25 00 - 71 41 30 m 103a - D GG 495 4--5 Alcaino 02 01 72 NGC 121    
1883   00 25 00 - 71 41 30 m 103a - D GG 495 4--5 Alcaino 02 01 72 NGC 121    
1884   00 57 00 - 72 19 30 m 103a - D GG 495 4--5 Alcaino 02 01 72 SMC NGC 330    
1885   01 07 00 - 73 02 30 m 103a - D GG 495 4--5 Alcaino 02 01 72 NGC 419    
1886   04 48 00 - 84 03 20 m 103a - D GG 495 4--5 Alcaino 02 01 72 NGC 1841    
1887   03 11 00 - 55 25 8 m 103a - D GG 495 4--5 Alcaino 02 01 72 NGC 1261    
1888   03 11 00 - 55 25 3 m 103a - D GG 495 4--5 Alcaino 02 01 72 NGC 1261    
1889   03 11 00 - 55 25 1 m 103a - D GG 495 4--5 Alcaino 02 01 72 NGC 1261    
1890   06 48 00 - 35 59 25 m 103a - D GG 495 4--5 Alcaino 02 01 72 NGC 2298    
1891   06 48 00 - 35 59 15 m 103a - D GG 495 4--5 Alcaino 02 01 72 NGC 2298    
1892   06 48 00 - 35 59 6 m 103a - D GG 495 4--5 Alcaino 02 01 72 NGC 2298    
1893   06 48 00 - 35 59 2 m 103a - D GG 495 4--5 Alcaino 02 01 72 NGC 2298    
1894   06 48 00 - 35 59 45 seg 103a - D GG 495 4--5 Alcaino 02 01 72 NGC 2298    
1895   05 13 00 - 40 06 2 m 103a - D GG 495 4--5 Alcaino 02 01 72 NGC 1851    
1896   05 13 00 - 40 06 45 seg 103a - D GG 495 3--4 Alcaino 02 01 72 NGC 1851    
1897   05 01 00 - 66 21 17 m 103a - D GG 495 3--4 Alcaino 02 01 72 NGC 1783    
1898   05 01 00 - 66 21 7 m 103a - D GG 495 3--4 Alcaino 02 01 72 NGC 1783    
1899   05 01 00 - 66 21 3 m 103a - D GG 495 3--4 Alcaino 02 01 72 NGC 1783    
1900   05 01 00 - 66 21 1 m 103a - D GG 495 3--4 Alcaino 02 01 72 NGC 1783    
1901   05 09 00 - 69 01 25 m 103a - D GG 495 3--4 Alcaino 02 01 72 Bok region    
1902   05 09 00 - 69 01 17 m 103a - D GG 495 3--4 Alcaino 02 01 72 Bok region    
1903   05 09 00 - 69 01 7 m 103a - D GG 495 3--4 Alcaino 02 01 72 Bok region    
1904   05 09 00 - 69 01 3 m 103a - D GG 495 3--4 Alcaino 02 01 72 Bok region    
1905   05 09 00 - 69 01 1 m 103a - D GG 495 3--4 Alcaino 02 01 72 Bok region    
1906   05 13 00 - 65 30 25 m 103a - D GG 495 3--4 Alcaino 02 01 72 NGC 1866    
1907   05 13 00 - 65 30 10 m 103a - D GG 495 3--4 Alcaino 02 01 72 NGC 1866    
1908   05 13 00 - 65 30 5 m 103a - D GG 495 3--4 Alcaino 02 01 72 NGC 1866    
1909   05 13 00 - 65 30 2 m 103a - D GG 495 3--4 Alcaino 02 01 72 NGC 1866    
1910   05 29 00 - 67 69 20 m 103a - D GG 495 3--4 Alcaino 02 01 72 NGC 2004    
1911   05 29 00 - 67 69 7 m 103a - D GG 495 3--4 Alcaino 02 01 72 NGC 2004    
1912   05 29 00 - 67 69 3 m 103a - D GG 495 3--4 Alcaino 02 01 72 NGC 2004    
1913   05 29 00 - 67 69 1 m 103a - D GG 495 3--4 Alcaino 02 01 72 NGC 2004    
1914   09 11 00 - 64 46 40 seg 103a - D GG 495 3--4 Alcaino 02 01 72 NGC 2808    
1915   09 11 00 - 64 46 20 seg 103a - D GG 495 3--4 Alcaino 02 01 72 NGC 2808    
1916   00 25 15 - 72 05 30 m II a - O GG 385 2 Alcaino 03 01 72 NGC 121 Field    
1917   00 57 12 - 72 30 30 m II a - O GG 385 2 Alcaino 03 01 72 NGC 330    
1918   03 44 36 - 71 45 30 m II a - O GG 385 2 Alcaino 03 01 72 NGC 1466    
1919   03 10 54 - 55 25 12 m II a - O GG 385 2 Alcaino 03 01 72 NGC 1261   CTIO
1920   03 10 54 - 55 25 7 m II a - O GG 385 2 Alcaino 03 01 72 NGC 1261   CTIO
1921   03 10 54 - 55 25 3 m II a - O GG 385 2 Alcaino 03 01 72 NGC 1261   CTIO
1922   03 10 54 - 55 25 1.5 m II a - O GG 385 2 Alcaino 03 01 72 NGC 1261   CTIO
1923   06 47 42 - 35 58 25 m II a - O GG 385 2 Alcaino 03 01 72 NGC 2298    
1924   06 47 42 - 35 58 17 m II a - O GG 385 2 Alcaino 03 01 72 NGC 2298    
1925   06 47 42 - 35 58 7 m II a - O GG 385 2 Alcaino 03 01 72 NGC 2298    
1926   06 47 42 - 35 58 3 m II a - O GG 385 2 Alcaino 03 01 72 NGC 2298    
1927   06 47 42 - 35 58 1.5 m II a - O GG 385 2 Alcaino 03 01 72 NGC 2298    
1928   06 47 42 - 35 58 35 m II a - O GG 385 2.5 Alcaino 03 01 72 NGC 2298    
1929   05 01 17 - 66 21 35 m II a - O GG 385 2 Alcaino 03 01 72 NGC 1783    
1930   05 01 17 - 66 21 25 m II a - O GG 385 2 Alcaino 03 01 72 NGC 1783    
1931   05 01 17 - 66 21 15 m II a - O GG 385 2 Alcaino 03 01 72 NGC 1783    
1932   05 01 17 - 66 21 5 m II a - O GG 385 2 Alcaino 03 01 72 NGC 1783    
1933   05 01 17 - 66 21 2 m II a - O GG 385 2 Alcaino 03 01 72 NGC 1783    
1934   05 29 00 - 67 69 35 m II a - O GG 385 2 Alcaino 03 01 72 NGC 2004    
1935   05 29 00 - 67 69 25 m II a - O GG 385 2 Alcaino 03 01 72 NGC 2004    
1936   05 29 00 - 67 69 15 m II a - O GG 385 2 Alcaino 03 01 72 NGC 2004    
1937   05 29 00 - 67 69 5 m II a - O GG 385 2 Alcaino 03 01 72 NGC 2004    
1938   05 29 00 - 67 69 2 m II a - O GG 385 2 Alcaino 03 01 72 NGC 2004    
1939   09 11 00 - 64 45 12 m II a - O GG 385 2 Alcaino 03 01 72 NGC 2808    
1940   09 11 00 - 64 45 7 m II a - O GG 385 2 Alcaino 03 01 72 NGC 2808    
1941   09 11 00 - 64 45 3 m II a - O GG 385 2 Alcaino 03 01 72 NGC 2808    
1942   09 11 00 - 64 45 1.5 m II a - O GG 385 2 Alcaino 03 01 72 NGC 2808    
1943   00 57 00 - 72 27 5 m II a - O GG 385 1.5 Alcaino 04 01 72 NGC 330    
1944   00 57 00 - 72 27 17 m II a - O GG 385 1.5 Alcaino 04 01 72 NGC 330    
1945   00 57 00 - 72 27 2.5 m II a - O GG 385 1.5 Alcaino 04 01 72 NGC 330    
1946   00 57 00 - 72 27 10 m 103a - D GG 495 1.5 Alcaino 04 01 72 NGC 330    
1947   00 57 00 - 72 27 4 m 103a - D GG 495 1.5 Alcaino 04 01 72 NGC 330    
1948   00 57 00 - 72 27 1.5 m 103a - D GG 495 1.5 Alcaino 04 01 72 NGC 330    
1949   06 48 00 - 36 00 8 m II a - O GG 385 1.5 Alcaino 04 01 72 NGC 2258   CTIO
1950   06 48 00 - 36 00 30 m II a - O GG 385 1.5 Alcaino 04 01 72 NGC 2258    
1951   06 48 00 - 36 00 20 m II a - O GG 385 1.5 Alcaino 04 01 72 NGC 2258    
1952   06 48 00 - 36 00 17 m II a - O GG 385 1.5 Alcaino 04 01 72 NGC 2258    
1953   06 48 00 - 36 00 3 m II a - O GG 385 1.5 Alcaino 04 01 72 NGC 2258    
1954   06 48 00 - 36 00 80 seg II a - O GG 385 1.5 Alcaino 04 01 72 NGC 2258    
1955   05 13 00 - 40 07 12 m II a - O GG 385 1.5 Alcaino 04 01 72 NGC 1851    
1956   05 13 00 - 40 07 7 m II a - O GG 385 1.5 Alcaino 04 01 72 NGC 1851    
1957   05 13 00 - 40 07 3 m II a - O GG 385 1.5 Alcaino 04 01 72 NGC 1851   CTIO
1958   05 13 00 - 40 07 80 seg II a - O GG 385 1.5 Alcaino 04 01 72 NGC 1851   CTIO
1959   05 09 00 - 69 01 30 m II a - O GG 385 1.5 Alcaino 04 01 72 Bok region   CTIO
1960   05 09 00 - 69 01 20 m II a - O GG 385 1.5 Alcaino 04 01 72 Bok region   CTIO
1961   05 09 00 - 69 01 15 m II a - O GG 385 1.5 Alcaino 04 01 72 Bok region    
1962   05 09 00 - 69 01 5 m II a - O GG 385 1.5 Alcaino 04 01 72 Bok region    
1963   05 09 00 - 69 01 2 m II a - O GG 385 1.5 Alcaino 04 01 72 Bok region    
1964   05 09 00 - 69 01 23 m 103a - D GG 495 1.5 Alcaino 04 01 72 Bok region    
1965   05 09 00 - 69 01 15 m 103a - D GG 495 1.5 Alcaino 04 01 72 Bok region    
1966   05 09 00 - 69 01 30 seg 103a - D GG 495 1.5 Alcaino 04 01 72 Bok region    
1967   05 09 00 - 69 01 45 seg II a - O GG 385 1.5 Alcaino 04 01 72 Bok region    
1968   05 29 00 - 67 29 20 m II a - O GG 385 1.5 Alcaino 04 01 72 NGC 2004    
1969   05 29 00 - 67 29 5 m II a - O GG 385 1.5 Alcaino 04 01 72 NGC 2004    
1970   05 29 00 - 67 29 1 m II a - O GG 385 1.5 Alcaino 04 01 72 NGC 2004    
1971   05 13 00 - 65 32 30 m II a - O GG 385 1.5 Alcaino 04 01 72 NGC 1866    
1972   05 13 00 - 65 32 20 m II a - O GG 385 1.5 Alcaino 04 01 72 NGC 1866    
1973   05 13 00 - 65 32 15 m II a - O GG 385 1.5 Alcaino 04 01 72 NGC 1866    
1974   05 13 00 - 65 32 5 m II a - O GG 385 1.5 Alcaino 04 01 72 NGC 1866    
1975   05 13 00 - 65 32 3 m II a - O GG 385 1.5 Alcaino 04 01 72 NGC 1866    
1976   05 13 00 - 65 32 90 seg II a - O GG 385 1.5 Alcaino 04 01 72 NGC 1866    
1977   05 13 00 - 65 32 5 m 103a - D GG 495 1.5 Alcaino 04 01 72 NGC 1866    
1978   05 13 00 - 65 32 3 m 103a - D GG 495 1.5 Alcaino 04 01 72 NGC 1866    
1979   05 13 00 - 65 32 1 m 103a - D GG 495 1.5 Alcaino 04 01 72 NGC 1866    
1980   23 14 36 - 42 46 20 m 103a - O GG 385 1.5 Smith 11 01 72 NGC 7552    
1981   01 32 54 - 29 34 6 m 103a - O GG 385 1.5 Smith 11 01 72 NGC 613    
1982   01 32 54 - 29 34 20 m 103a - O GG 385 1.5 Smith 11 01 72 NGC 613    
1983   02 45 00 - 30 24 6 m 103a - O GG 385 1 Smith 11 01 72 NGC 1097    
1984   02 45 00 - 30 24 20 m 103a - O GG 385 1 Smith 11 01 72 NGC 1097    
1985   03 32 36 - 36 14 6 m 103a - O GG 385 1 Smith 11 01 72 NGC 1365    
1986   03 32 36 - 36 14 20 m 103a - O GG 385 1 Smith 11 01 72 NGC 1365    
1987   03 41 00 - 47 20 20 m 103a - O GG 385 1 Smith 11 01 72 NGC 1433    
1988   04 45 12 - 59 18 6 m 103a - O GG 385 1 Smith 11 01 72 NGC 1672    
1989   04 45 12 - 59 18 20 m 103a - O GG 385 1 Smith 11 01 72 NGC 1672    
1990   04 45 12 - 59 18 6 m 103a - O GG 385 1 Smith 11 01 72 NGC 1672    
1991   09 44 24 - 31 03 6 m 103a - O GG 385 1 Smith 11 01 72 NGC 2997    
1992   09 44 24 - 31 03 20 m 103a - O GG 385 1 Smith 11 01 72 NGC 2997    
1993   10 42 24 + 11 52 20 m 103a - O GG 385 1 Smith 11 01 72 NGC 3357    
1994   10 42 24 + 11 52 6 m 103a - O GG 385 1 Smith 11 01 72 NGC 3357    
1995   06 28 53 - 28 33 40 m 103a - O GG 385 1 Lasker 16 01 72 PSR 0628 - 28   CTIO
1996   08 34 23 - 45 05 40 m 103a - O GG 385 1 Lasker 16 01 72 PSR 0833 - 45    

 

Last Updated on 8/27/99

By Guerra & Marin

February

 

February 1972 Plate logs for 1.5-m telescope

Plate N.N. R.A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
1997   (1)                    
  (2)                      
2018 1918 08 34 23 - 45 05 10 m 103a - O GG 385 1.5 Lasker Hilther 15 02 72 PSR 0833 - 45    
2019 1919 11 20 00 - 60 26 15 m II a - O GG 385 1.5 Lasker Hilther 15 02 72 2ASE 1119 - 60 Broken CTIO
2020 1920 11 20 00 - 60 26 60 m II a - O GG 385 1.5 Lasker Hilther 15 02 72 2ASE 1119 - 60 Broken CTIO
2021 1921 15 45 25 - 47 39 12 m II a - O GG 385 1.5 Lasker Hilther 15 02 72 2ASE 1543 - 47   CTIO
2022 1922 15 45 25 - 47 39 60 m II a - O GG 385 1.5 Lasker Hilther 15 02 72 2ASE 1543 - 47 Broken CTIO
2023 1923 05 39 00 - 69 10 10 m II a - O GG 385 1.5 Graham 15 02 72 30 Doradus    
2024 1924 05 39 00 - 69 10 10 m 098 - 02 GG 385 1.5 Graham 19 02 72 30 Doradus    
2025 1925 04 59 00 - 66 02 30 m 103a - O GG 385 1.5 Graham 19 02 72 NGC 1783    
2026 1926 10 46 00 - 59 29 5 m 103a - O GG 385 1.5 Graham 19 02 72 Eta Carina    
2027 1927 10 46 00 - 59 29 5 m 103a - O GG 385 1.5 Graham 19 02 72 Eta Carina    
2028 1928 13 23 00 - 42 52 60 m 103a - O GG 385 1.5 Graham 19 02 72 NGC 5128    
2029 1929 13 25 00 - 47 20 45 m 103a - O GG 385   Graham 19 02 72 Omega Cen.    
2030 1930 13 25 00 - 47 20 12 m 103a - O GG 385   Graham 19 02 72 Omega Cen.    
2031 1931 05 39 00 - 69 10 20 m 103a - O GG 385   Graham 20 02 72 30 Doradus    
2032 1932 05 09 00 - 69 00 30 m 103a - O GG 385   Graham 20 02 72 Bok Tifft    
2033 1933 05 22 00 - 68 00 30 m 103a - O GG 385   Graham 20 02 72 Constellation I    
2034 1934 06 30 00 - 64 18 60 m 103a - O GG 385   Graham 20 02 72 NGC 2257    
2035 1935 10 59 30 - 60 00 30 m 103a - O GG 385   Graham 20 02 72 Carina arm    
2036 1936 10 34 06 - 58 05 10 m 103a - O GG 385   Graham 20 02 72 NGC 3293    
2037 1937 11 12 00 - 61 05 30 m 103a - O GG 385   Graham 20 02 72 NGC 3603    
2038 1938 11 12 00 - 61 05 30 m 103a - O GG 385   Graham 20 02 72 NGC 3603    
2039 1939 10 59 30 - 60 00 30 m 103a - O GG 385   Graham 20 02 72 Carina arm    
2040 1940 13 25 00 - 47 20 45 m 103a - O GG 385   Graham 20 02 72 Omega Cen.    
2041 1941 15 54 00 - 54 40 30 m 103a - O GG 385   Graham 20 02 72 Norma Field    
2042 1942 15 54 00 - 54 40 30 m 103a - O GG 385   Graham 20 02 72 Norma Field    
2043 1943 17 37 36 - 53 39 5 m 103a - O GG 385   Graham 20 02 72 NGC 6397    
2044 1944 04 36 18 - 08 51 10 m 103a - O GG 385   Graham 21 02 72 EG 41    
2045 1945 07 53 36 - 14 41 10 m 103a - O GG 385   Graham 21 02 72 EG 57    
2046 1946 06 57 00 - 04 30 30 m 103a - O GG 385   Graham 21 02 72 Monoceros    
2047 1947 07 52 00 - 28 22 30 m 103a - O GG 385   Graham 21 02 72 Puppis    
2048 1948 09 25 42 - 52 56 30 m 103a - O GG 385   Graham 21 02 72 Vela    
2049 1949 12 14 00 - 62 50 30 m 103a - O GG 385   Graham 21 02 72 Crux   CTIO
2050 1950 13 27 00 - 63 45 30 m 103a - O GG 385   Graham 21 02 72 Centaurus    
2051 1951 09 25 42 - 52 56 30 m 103a - O GG 385   Graham 21 02 72 Vela    
2052 1952 12 14 00 - 62 50 30 m 103a - O GG 385   Graham 21 02 72 Crux    
2053 1953 13 27 00 - 63 45 30 m 103a - O GG 385   Graham 21 02 72 Centaurus    
2054 1954 15 54 00 - 54 40 30 m 103a - O GG 385   Graham 21 02 72 Norma Field    
2055 1955 17 37 36 - 53 39 30 m 103a - O GG 385   Graham 21 02 72 NGC 6397    
2056 1956 02 45 12 - 30 24 25 m 103a - O GG 385   Smith 22 02 72 NGC 1097    
2057 1957 05 35 29 - 49 45 30 m 103a - O GG 385   Smith 22 02 72 PKS 0535 - 49   CTIO
2058 1958 05 35 29 - 49 45 60 m 103a - O GG 385   Smith 22 02 72 PKS 0535 - 49   CTIO
2059 1959 07 43 26 - 67 22 120 m 103a - O GG 385   Smith 22 02 72 PKS 0744 - 67   CTIO
2060 1960 11 17 10 - 46 25 100 m II a -O GG 385   Smith 22 02 72 PKS 1116 - 46   CTIO

(1) Al 2017 Corresponde a Tubo Imagen

(2) Nueva numeracion por error por tanto desde el Nº 1990 a el Nº 1999 estan repetidos

 

Last Updated on 8/27/99

By Guerra & Marin

March

 

March 1972 Plate logs for 1.5-m telescope

Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
2061 1961   (1)                    
2063 1963 10 03 30 - 58 32 90 m 098 - 02 RG 610 2 Henize 17 03 72 HD 87643    
2064 1964 11 07 00 - 77 30 120 m 103a - O GG 385 2 Henize 17 03 72 HD 97048    
2065 1965 11 07 00 - 76 27 120 m 103a - O GG 385 2 Henize 17 03 72 HD 97300    
2066 1966 11 07 00 - 77 30 120 m 103a - D GG 495 2 Henize 17 03 72 HD 97048    
2067 1967 18 59 00 - 37 00 58 m 103a - O GG 385 2 Henize 17 03 72 R Corona Australis    
2068 1968a 08 35 00 - 26 17 4 m 098 - 02 RG 610 2 Henize 18 03 72 He -2 - 10    
2068 1968b 08 35 00 - 26 17 15 m 098 - 02 RG 610 2 Henize 18 03 72 He -2 - 10    
2068 1968c 08 35 00 - 26 17 60 m 098 - 02 RG 610 2 Henize 18 03 72 He -2 - 10    
2069 1969 11 07 00 - 77 30 100 m 098 - 02 RG 610 2 Henize 18 03 72 HD 97048    
2070 1970 11 07 00 - 76 27 100 m 098 - 02 RG 610 2 Henize 18 03 72 HD 97300    
2071 1971 11 07 00 - 76 27 120 m 103a - D GG 495 2 Henize 18 03 72 HD 97300    
2072 1972 11 07 00 - 77 30 94 m 103a - D GG 495 2 Henize 18 03 72 HD 97048    

(1) Al 1962 corresponde a Tubo Imagen

Last Updated on 8/27/99

By Guerra & Marin

May

 

May 1972 Plate logs for 1.5-m telescope

Plate N. N R . A Dec Exp.Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
2073 1973 07 52 00 - 38 26 15 m 103a - O GG 385 2 Hesser Hartwich 10 05 72 NGC 2477    
2074 1974 07 52 00 - 38 26 15 m 103a - O GG 385 2 Hesser Hartwich 10 05 72 NGC 2477    
2075 1975 07 52 00 - 38 26 15 m 103a - D GG 495 2 Hesser Hartwich 10 05 72 NGC 2477    
2076 1976 10 42 00 - 71 00 15 m 103a - D GG 495 2 Hesser Hartwich 10 05 72 Field    
2077 1977 10 42 00 - 71 00 15 m 103a - O GG 385 2 Hesser Hartwich 10 05 72 Field    
2078 1978 10 42 00 - 71 00 15 m 103a - O GG 385 2 Hesser Hartwich 10 05 72 Field    
2079 1979 10 42 00 - 71 00 15 m 103a - D GG 495 2 Hesser Hartwich 10 05 72 Field    
2080 1980 17 13 00 - 29 26 30 m 103a - D GG 495 2 Hesser Hartwich 10 05 72 NGC 6304    
2081 1981 17 13 00 - 29 26 30 m 103a - O GG 385 2 Hesser Hartwich 10 05 72 NGC 6304    
2082 1982 17 13 00 - 29 26 30 m 103a - O GG 385 2 Hesser Hartwich 10 05 72 NGC 6304    
2083 1983 17 13 00 - 29 26 30 m 103a - D GG 495 2 Hesser Hartwich 10 05 72 NGC 6304    
2084 1984 17 48 00 - 37 02 30 m 103a - D GG 495 2 Hesser Hartwich 10 05 72 NGC 6441    
2085 1985 17 48 00 - 37 02 30 m 103a - O GG 385 2 Hesser Hartwich 10 05 72 NGC 6441    
2086 1986 17 48 00 - 37 02 30 m 103a - O GG 385 2 Hesser Hartwich 10 05 72 NGC 6441    
2087 1987 17 48 00 - 37 02 30 m 103a - D GG 495 2 Hesser Hartwich 10 05 72 NGC 6441    
2088 1988 17 48 00 - 37 02 15 m 103a - D GG 495 2 Hesser Hartwich 10 05 72 NGC 6441    
2089 1989 17 48 00 - 37 02 30 m 103a - O GG 385 2 Hesser Hartwich 10 05 72 NGC 6441    
2090 1990 17 48 00 - 37 02 45 m 103a - O GG 385 2 Hesser Hartwich 10 05 72 NGC 6441    
2091 1991 17 48 00 - 37 02 10 m 103a - D GG 495 2.5 Hesser Hartwich 10 05 72 NGC 6441    
2092 1992 17 48 00 - 37 02 10 m 103a - D GG 495 2.5 Hesser Hartwich 10 05 72 NGC 6441    
2093 1993 17 48 00 - 37 02 5 m 103a - D GG 495 2.5 Hesser Hartwich 10 05 72 NGC 6441    
2094 1994 17 48 00 - 37 02 5 m 103a - D GG 495 2.5 Hesser Hartwich 10 05 72 NGC 6441    
2095 1995 07 52 00 - 38 10 15 m 103a - O GG 385 1.5 Hesser Hartwich 11 05 72 NGC 2477    
2096 1996 07 52 00 - 38 10 15 m 103a - D GG 495 1.5 Hesser Hartwich 11 05 72 NGC 2477    
2097 1997 07 52 00 - 38 10 15 m 103a - D GG 495 1.5 Hesser Hartwich 11 05 72 NGC 2477    
2098 1998 07 52 00 - 38 10 15 m 103a - O GG 385 1.5 Hesser Hartwich 11 05 72 NGC 2477    
2099 1999 10 42 00 - 71 00 15 m 103a - O GG 385 1.5 Hesser Hartwich 11 05 72 Field    
2100 2000 10 42 00 - 71 00 15 m 103a - D GG 495 1.5 Hesser Hartwich 11 05 72 Field    
2101 2001 13 25 00 - 47 09 5 m 103a - D GG 495 1.5 Hesser Hartwich 11 05 72 Omega Cen.    
2102 2002 13 25 00 - 47 09 5 m 103a - O GG 385 1.5 Hesser Hartwich 11 05 72 Omega Cen.    
2103 2003 17 24 00 - 48 24 30 m 103a - O GG 385 1.5 Hesser Hartwich 11 05 72 NGC 6352    
2104 2004 17 24 00 - 48 24 30 m 103a - D GG 495 1.5 Hesser Hartwich 11 05 72 NGC 6352    
2105 2005 17 24 00 - 48 24 30 m 103a - D GG 495 1.5 Hesser Hartwich 11 05 72 NGC 6352    
2106 2006 17 24 00 - 48 24 30 m 103a - O GG 385 1.5 Hesser Hartwich 11 05 72 NGC 6352    
2107 2007 17 48 00 - 37 02 45 m 103a - O GG 385 1.5 Hesser Hartwich 11 05 72 NGC 6441    
2108 2008 17 48 00 - 37 02 45 m 103a - O GG 385 1.5 Hesser Hartwich 11 05 72 NGC 6441    
2109 2009 17 48 00 - 37 02 7 m 103a - D GG 495 1.5 Hesser Hartwich 11 05 72 NGC 6441    
2110 2010 17 13 00 - 29 13 30 m 103a - D GG 495 1.5 Hesser Hartwich 11 05 72 NGC 6304    
2111 2011 17 13 00 - 29 13 30 m 103a - O GG 385 2 Hesser Hartwich 11 05 72 NGC 6304    
2112 2012 17 13 00 - 29 13 20 m 103a - O GG 385 2 Hesser Hartwich 11 05 72 NGC 6304    
2113 2013 17 13 00 - 29 13 20 m 103a - D GG 495 2 Hesser Hartwich 11 05 72 NGC 6304    
2114 2014 Al 2075? (1)                    
2176 2076 17 03 48 -36 24 1.5m lla - D Spinad   Liller / Forman / Gomez 14 05 72 1702 - 36    
2177 2077 17 45 48 -26 33 8m lla - D Spinad   Liller / Forman / Gomez 14 05 72 1744 - 26    
2178 2078 17 45 48 -26 33 1.5m lla - D Spinad   Liller / Forman / Gomez 14 05 72 1744 - 26    
2179 2079 17 59 06 -25 05 8m lla - D Spinad   Liller / Forman / Gomez 14 05 72 1757 - 25    
2180 2080 17 59 06 -25 05 1.5m lla - D Spinad   Liller / Forman / Gomez 14 05 72 1757 - 25    
2181 2081 17 59 48 -20 32 8m lla - D Spinad   Liller / Forman / Gomez 14 05 72 1758 - 20    
2182 2082 17 59 48 -20 32 1.5m lla - D Spinad   Liller / Forman / Gomez 14 05 72 1758 - 20    
2183 2083 11 37 36 -37 28 3m lla - D l 4 Smith / Gomez 18 05 72 NGC 3783    
2184 2084 12 34 00 -39 45 3m lla - D l 3 Smith / Gomez 18 05 72 NGC 4507    
2185 2085 13 03 48 -49 21 3m lla - D l 3 Smith / Gomez 18 05 72 NGC 4945    
2186 2086 13 03 48 -49 21 9m lla - D l 2" - 3 Smith / Gomez 18 05 72 NGC 4945    
2187 2087 11 37 36 -37 28 9m lla - D l 2" - 3 Smith / Gomez 18 05 72 NGC 3783    
2188 2088 11 37 40 -37 36 9m lla - D l 2" - 3 Smith / Gomez 18 05 72 NGC 3783    
2189 2089 12 34 00 -39 45 9m lla - D l 2" - 3 Smith / Gomez 18 05 72 NGC 4507    
2190 2090 13 07 24 -49 22 15m lla - D l 2" - 3 Smith / Gomez 18 05 72 NGC 4976    
2191 2091 17 46 12 -24 45 3m lla - D l 2" - 3 Smith / Gomez 18 05 72 IRC 20385    
2192 2092 17 46 12 -24 45 9m lla - D l 2" - 3 Smith / Gomez 18 05 72 IRC 20385    
2193 2093 13 37 08 -64 53 42 10m lla - O   2" - 3 Smith / Gomez 18 05 72 Field Landolt    
2194 2094 12 34 00 -39 45 60m lla - O   2" - 3 Smith / Gomez 18 05 72 NGC 4507    
2195 2095 14 30 42 -44 04 60m lla - O   2" - 3 Smith / Gomez 18 05 72 NGC 5643    
2196 2096 20 16 12 -44 54 123m lla - O   2" - 3 Smith / Gomez 18 05 72 NGC 6890    

(1) ( faltan hojas ) Corresponde a Tubo Imagen

Last Updated on 8/27/99

By Guerra & Marin

June

 

June 1972 Plate logs for 1.5-m telescope

Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
2197 2097 17 13 52 -29 26 30m 103a - O GG 13 3 Hesser / Zemelman 16 06 72 NGC 6304    
2198 2098 17 13 52 -29 26 30m 103a - D GG 14 3 Hesser / Zemelman 16 06 72 NGC 6304    
2199 2099 17 48 22 -37 03 30m 103a - D GG 14 2" - 3 Hesser / Zemelman 16 06 72 NGC 6441    
2200 2100 17 48 22 -37 03 90m 103a - O GG 13 3 Hesser / Zemelman 16 06 72 NGC 6441    
2201 2101 17 48 22 -37 03 90m 103a - O GG 13 3 Hesser / Zemelman 16 06 72 NGC 6441    
2202 2102 17 48 22 -37 03 30m 103a - D GG 14 3 Hesser / Zemelman 16 06 72 NGC 6441    
2203 2103 17 48 22 -37 03 60m 103a - O GG 13 2" - 3 Hesser / Zemelman 16 06 72 NGC 6441    
2204 2104 17 48 22 -37 03 60m 103a - O GG 13 2" - 3 Hesser / Zemelman 16 06 72 NGC 6441    
2205 2105 17 48 22 -37 03 15m 103a - D GG 14 2" - 3 Hesser / Zemelman 16 06 72 NGC 6441    
2206 2106 17 48 22 -37 03 10 15m 103a - D GG 14 2" - 3" Hesser / Zemelman 16 06 72 NGC 6441    
2207 2107 13 18 17 - 31 30 30 m 103a - D GG 495 1.5" - 2" Hesser / Zemelman 17 06 72 Nova en NGC 5253   CTIO
2208 2108 17 12 54 -29 26 30 30m 103a - O GG 13 1.5" - 2" Hesser / Zemelman 17 06 72 NGC 6304    
2209 2109 17 12 54 -29 26 30 30m 103a - O GG 13 1.5" - 2" Hesser / Zemelman 17 06 72 NGC 6304    
2210 2110 17 12 54 -29 26 30 30m 103a - O GG 13 1.5" - 2" Hesser / Zemelman 17 06 72 NGC 6304    
2211 2111 17 12 54 -29 27 00 30m 103a - D GG 14 1.5" - 2" Hesser / Zemelman 17 06 72 NGC 6304    
2212 2112 17 12 54 -29 27 00 30m 103a - O GG 13 1.5" - 2" Hesser / Zemelman 17 06 72 NGC 6304    
2213 2113 17 48 00 -37 03 00 30m 103a - O GG 13 1.5" - 2" Hesser / Zemelman 17 06 72 NGC 6441    
2214 2114 17 48 00 -37 03 00 30m 103a - D GG 14 1.5" - 2" Hesser / Zemelman 17 06 72 NGC 6441    
2215 2115 17 12 54 -29 26 52 30m 103a - O GG 13 1.5" - 2" Hesser / Zemelman 17 06 72 NGC 6304    
2216 2116 17 12 54 -29 26 52 30m 103a - O GG 13 2" - 3" Hesser / Zemelman 17 06 72 NGC 6304    
2217 2117 17 12 54 -29 26 52 30m 103a - D GG 14 2" - 3" Hesser / Zemelman 17 06 72 NGC 6304    
2218 2118 17 12 54 -29 26 52 30m 103a - O GG 13 2" Hesser / Zemelman 17 06 72 NGC 6304    
2219 2119 17 12 54 -29 26 52 30m 103a - O GG 13 2" - 3" Hesser / Zemelman 17 06 72 NGC 6304    
2220 2120 17 12 54 -29 26 52 52m 103a - O GG 13 2" - 3" Hesser / Zemelman 17 06 72 NGC 6304    

 

Last Updated on 8/27/99

By Guerra & Marin

July

 

July 1972 Plate logs for 1.5-m telescope

Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
2221 2121 17 12 54 -29 24 30 30m 103a - O GG 13 2" - 1" Hesser / Gonzalez 17 07 72 NGC 6304    
2222 2122 17 12 54 -29 24 30 30m 103a - O GG 13 1.5" Hesser / Gonzalez 17 07 72 NGC 6304    
2223 2123 17 12 54 -29 24 30 30m 103a - D GG 14 1" - 2" Hesser / Gonzalez 17 07 72 NGC 6304    
2224 2124 17 12 54 -29 24 30 30m 103a - O GG 13 1" - 2" Hesser / Gonzalez 17 07 72 NGC 6304    
2225 2125 17 12 54 -29 24 30 30m 103a - O GG 13 1" - 3" Hesser / Gonzalez 17 07 72 NGC 6304    
2226 2126 17 12 54 -29 24 30 30m 103a - O GG 13 1" - 3" Hesser / Gonzalez 17 07 72 NGC 6304    
2227 2127 17 12 54 -29 24 30 30m 103a - O GG 13 1" - 3" Hesser / Gonzalez 17 07 72 NGC 6304    
2228 2128 17 12 54 -29 24 30 30m 103a - O GG 13 1" - 3" Hesser / Gonzalez 17 07 72 NGC 6304    
2229 2129 17 12 54 -29 24 30 30m 103a - O GG 13 1" - 3" Hesser / Gonzalez 17 07 72 NGC 6304    
2230 2130 17 12 54 -29 24 30 30m 103a - O GG 13 1" - 3" Hesser / Gonzalez 17 07 72 NGC 6304    
2231 2131 00 21 15 -72 15 30 60m 103a - D GG 14 1" - 2" Hesser / Gonzalez 17 07 72 47 Tuc    
2232 2132 17 12 54.5 -29 24 32 30m 103a - O GG 13 2" - 3" Hesser / Gonzalez 18 07 72 NGC 6304    
2233 2133 17 12 54.5 -29 24 32 30m 103a - O GG 13 1" - 2" Hesser / Gonzalez 18 07 72 NGC 6304    
2234 2134 17 12 54.5 -29 24 32 30m 103a - O GG 13 1" - 3" Hesser / Gonzalez 18 07 72 NGC 6304    
2235 2135     30m 103a - O GG 13   Hesser / Gonzalez 18 07 72 NGC 6441    
2236 2136 17 12 54 -29 24 32 12m 103a - D GG 14 1" - 3" Hesser / Gonzalez 18 07 72 NGC 6441    
2237 2137 17 12 54 -29 24 32 30m 103a - D GG 14 1" - 3" Hesser / Gonzalez 18 07 72 NGC 6441    
2238 2138 17 12 54 -29 24 32 30m 103a - O GG 13 1" - 3" Hesser / Gonzalez 18 07 72 NGC 6304    
2239 2139 17 12 54 -29 24 32 30m 103a - O GG 13 1" - 3" Hesser / Gonzalez 18 07 72 NGC 6304    
2240 2140 17 12 54 -29 24 32 30m 103a - D GG 14 1" - 3" Hesser / Gonzalez 18 07 72 NGC 6304    
2241 2141 17 12 54 -29 24 32 30m 103a - O GG 13 1" - 3" Hesser / Gonzalez 18 07 72 NGC 6304    
2242 2142 17 12 54 -29 24 32 60m 103a - D GG 14 1" - 5" Hesser / Gonzalez 18 07 72 NGC 6304    
2243 2143 17 12 54 -29 24 32 30m 103a - O GG 13 1" - 5" Hesser / Gonzalez 18 07 72 NGC 6304    
2244 2144 17 12 54 -29 24 32 30m 103a - O GG 13 1" - 5" Hesser / Gonzalez 18 07 72 NGC 6304    
2245 2145 17 12 54 -29 24 32 30m 103a - O GG 13 3" - 5" Hesser / Gonzalez 18 07 72 NGC 6304    
2246 2146 00 21 15 -72 15 30 60m 103a - O GG 13 1" - 3" Hesser / Gonzalez 18 07 72 47 Tuc    
2247 2147 00 21 15 -72 15 30 60m 103a - O GG 13 1" - 3" Hesser / Gonzalez 18 07 72 47 Tuc    
2248 2148 00 21 15 -72 15 30 20m 103a - D GG 14 1" - 3" Hesser / Gonzalez 18 07 72 47 Tuc    

 

Last Updated on 8/27/99

By Guerra & Marin 

August

 

August 1972 Plate logs for 1.5-m telescope

Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
2249 2149 17 46 21 -24 45 6m lla - D I 3" Smith / Gomez 14 08 72 IRC 20385 image tube  
2250 2150 17 46 21 -24 45 4m lla - D I 3" Smith / Gomez 14 08 72 IRC 20385 image tube  
2251 2151 17 46 21 -24 45 4m lla - D I 2" Smith / Gomez 14 08 72 IRC 20385 image tube  
2252 2152 17 46 21 -24 45 4m lla - D I 2" Smith / Gomez 14 08 72 IRC 20385 image tube  

 

Last Updated on 8/27/99

By Jorge Marin

September

 

September 1972 Plate logs for 1.5-m telescope

Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
2253 2153 00 25 42 -71 41 60m 103a - O GG 13 2" Graham / Czuia 12 09 72 NGC 121    
2254 2154 00 25 42 -71 41 60m 103a - O GG 13 2" Graham / Czuia 12 09 72 NGC 121    
2255 2155 00 25 42 -71 41 90m 103a - D GG 14 1" Graham / Czuia 12 09 72 NGC 121    
2256 2156 00 25 42 -71 41 60m 103a - O GG 13 2" Graham / Czuia 12 09 72 NGC 121    
2257 2157 00 25 42 -71 41 60m 103a - O GG 13 1" - 2" Graham / Czuia 12 09 72 NGC 121    
2258 2158 00 25 42 -71 41 60m 103a - O       12 09 72 NGC 121    
2259 2159 18 57 36 -36 40 20m 098 - 02 RG 1" Kunkel / Czuia 14 09 72 NGC 6723    
2260 2160 18 34 30 -23 57 15m 098 - 02 RG 1 1" Kunkel / Czuia 14 09 72 M 22    
2261 2161 18 57 36 -36 40 15m 098 - 02 RG 1 1.5" Kunkel / Czuia 14 09 72 NGC 6723    
2262 2162 00 58 48 -33 50 120m 098 - 02 RG 1 1" Kunkel / Czuia 14 09 72 Sculptor    
2263 2163 02 38 18 -34 39 120m 098 - 02     Kunkel / Czuia 14 09 72 Fornax    
2264 2164 02 38 18 -34 39 120m 098 - 02   1.5" Kunkel / Czuia 14 09 72 Fornax    
2265 2165 00 25 44 -71 40 51 60m 103a - O GG 13 1" - 2" J.Graham / Saá 30 09 72 NGC 121    
2266 2166 00 25 44 -71 40 51 60m 103a - O GG 13 1" - 2" J.Graham / Saá 30 09 72 NGC 121    
2267 2167 00 25 44 -71 40 51 60m 103a - O GG 13 1" - 2" J.Graham / Saá 30 09 72 NGC 121    
2268 2168 00 25 44 -71 40 51 90m 103a - D GG 14 1" - 2" J.Graham / Saá 30 09 72 NGC 121    
2269 2169 00 25 44 -71 40 51 60m 103a - O GG 13 1" - 2" J.Graham / Saá 30 09 72 NGC 121    
2270 2170 00 25 44 -71 40 51 60m 103a - O GG 13 1" - 2" J.Graham / Saá 30 09 72 NGC 121    
2271 2171 00 25 44 -71 40 51 60m 103a - O GG 13 1" - 2" J.Graham / Saá 30 09 72 NGC 121    
2272 2172 05 28 30 -68 50 10m 103a - O GG 13   J.Graham / Saá 30 09 72 Nova LMC 1912    
2273 2173 05 28 30 -68 50 15m 103a - D GG 14   J.Graham / Saá 30 09 72 Nova LMC 1912    

 

Last Updated on 8/27/99

By Guerra & Marin

October

 

October 1972 Plate logs for 1.5-m telescope

Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
2274 2174 00 25 36 -71 39 30 60m 103a - O GG 13   J.Graham / R.Gonzalez 07 10 72 NGC 121    
2275 2175 00 25 36 -71 39 30 60m 103a - O GG 13   J.Graham / R.Gonzalez 07 10 72 NGC 121    
2276 2176 00 25 36 -71 39 30 25m 103a - O GG 13   J.Graham / R.Gonzalez 07 10 72 NGC 121    
2277 2177 00 25 36 -71 39 30 60m 103a - O GG 13   J.Graham / Czuia 16 10 72 NGC 121    
2278 2178 19 59 18 -47 07 36 60m 098 - 02 RG 2   J.Graham / Czuia 16 10 72 K 30    
2279 2179 00 25 36 -71 39 36 60m 103a - O GG 13   J.Graham / Czuia 16 10 72 NGC 121    
2280 2180 00 07 18 -33 59 30 30m 103a - O GG 13   J.Graham / Czuia 16 10 72 SCI 3    
2281 2181 00 25 36 -71 39 30 60m 103a - O GG 13   J.Graham / Czuia 16 10 72 NGC 121    
2282 2182 05 28 36 -68 50 10m 103a - O GG 13   J.Graham / Czuia 16 10 72 LMC nova 72/1    
2283 2183 00 25 36 -71 39 30 60m 103a - O GG 13   J.Graham / Czuia 16 10 72 NGC 121    
2284 2184 00 25 36 -71 39 30 60m 103a - O GG 13   J.Graham / Czuia 16 10 72 NGC 121    
2285 2185 19 59 18 -47 08 120m llla - J baked     J.Graham / Gomez 29 10 72 Klemola 30    
2286 2186 23 22 00 -58 05 36m 103a - O     J.Graham / Gomez 29 10 72 NGC 7650    
2287 2187 19 59 00 -47 09 120m 103a - O   1.5" J.Graham / Gomez 30 10 72 Klemola 30    
2288 2188 23 22 00 -58 05 120m 103a - O   2" J.Graham / Gomez 30 10 72 NGC 7650    
2289 2189 03 29 36 -52 40 60m 103a - O   2" J.Graham / Gomez 30 10 72 Klemola 8    
2290 2190 05 28 36 -68 50 5m 103a - O GG 13 2" J.Graham / Gomez 30 10 72 LMC nova 1972/1    
2291 2191 05 40 36 -66 41 5m 103a - O GG 13 2" J.Graham / Gomez 30 10 72 LMC nova 1971/2    
2292 2192 04 59 00 -66 01 5m 103a - O GG 13   J.Graham / Gomez 30 10 72 NGC 1783    
2293 2193 05 22 00 -68 00 60m 098 - 02 RG 2 2.5" J.Graham / Gomez 30 10 72 constellation l LMC    

 

Last Updated on 8/27/99

By Guerra & Marin

November

 

November 1972 Plate logs for 1.5-m telescope

Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
2294 2194 00 22 36 -72 14 2m 103a - O     J.Graham / Gomez 19 11 72 47 Tuc    
2295 2195 05 38 00 -01 58 30m 098 - 02 RG 1   R.Gonzalez 19 11 72 epsillon Orion    
2296 2196 05 39 48 -02 26 90m 098 - 02 RG 1   J.Graham / R.Gonzalez 19 11 72 epsillon Orion    
2297 2197 05 33 54 -05 24 5m 098 - 02 RG 2   J.Graham / R.Gonzalez 19 11 72 M 42    
2298 2198 05 33 54 -05 24 5m 103a - O GG 13   J.Graham / R.Gonzalez 19 11 72 M 42    
2299 2199 00 23 00 -72 20 2m 103a - D GG 14 3" Hesser / R.Gonzalez 22 11 72 Nova    
2300 2200 00 23 00 -72 20 2m lla - O GG 13 3" Hesser / R.Gonzalez 22 11 72 Nova    
2301 2201 07 50 30 -38 25 10m 103a - D GG 14 2" Hesser / R.Gonzalez 23 11 72 NGC 2477    
2302 2202 07 50 30 -38 25 10m lla - O GG 13 2" Hesser / R.Gonzalez 23 11 72 NGC 2477    
2303 2203 03 07 30 -20 46 100m lla - O GG 13 3" R.Gonzalez 24 11 72 NGC 1232    
2304 2204 06 29 36 +04 40 180m 098 - 02 RG 1 3" R.Gonzalez 24 11 72 NGC 2237    

 

Last Updated on 8/27/99

By Guerra & Marin

December

 

December 1972 Plate logs for 1.5-m telescope

Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
2305 2205 01 15 00 -73 41 27m llla - J baked   1.5" J.Graham / Gomez 10 12 72 SMC X ray source    
2306 2206 05 32 18 -66 37 30m llla - J baked   1.5" J.Graham / Gomez 10 12 72 LMC X4    
2307 2207 09 26 00 -52 40 30m llla - J baked   1.5" J.Graham / Gomez 10 12 72 Vela    
2308 2208 10 59 00 -60 10 30m llla - J baked   1.5" J.Graham / Gomez 10 12 72 HD 95540    
2309 2209 00 20 36 -48 44 90m 103a - O GG 13 1.5" J.Graham / Gomez 11 12 72 Phoenix group    
2310 2210 02 30 42 -52 36 60m 103a - O   1.5" J.Graham / Gomez 11 12 72 galaxies    
2311 2211 04 18 36 -48 42 120m 103a - O   1.5" J.Graham / Gomez 11 12 72 pec. ellipt.+irreg.    
2312 2212 05 45 36 -52 14 30m 103a - O     J.Graham / Gomez 11 12 72 irreg. galaxy    
2313 2213 06 08 48 -49 33 40m 103a - O     J.Graham / Gomez 11 12 72 galaxies    

 

Last Updated on 8/27/99

By Jorge Marin

1973

1973 Plate logs for 1.5-m telescope.

January

January 1973 Plate logs for 1.5-m telescope

Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
2314 2214 04 28 30 -53 59 60m 103a - D GG 14 1.5" Sersic / Czuia 13 01 73 IC 2082    
2315 2215 07 36 24 -69 28 06 90m 098 - 02 RG 2   Sersic / Czuia 13 01 73 NGC 2442    
2316 2216 07 36 24 -69 28 06 80m 103a - D GG 14   Sersic / Czuia 13 01 73 NGC 2442    
2317 2217 07 36 24 -69 28 06 80m 103a - O GG 13   Sersic / Czuia 13 01 73 NGC 2442    
2318 2218 13 38 12 -31 29 55m 103a - D GG 14   Sersic / Czuia 13 01 73 NGC 5253    

 

Last Updated on 8/27/99

By Guerra & Marin

February

February 1973 Plate logs for 1.5-m telescope

Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
2319 2219 07 24 12 -21 07 36 15m 103a - D GG 13   Miller / Zemelman 08 02 73 Vela F    
2320 2220 07 24 12 -20 54 15m 103a - D GG 13   Miller / Zemelman 08 02 73 Vela F    
2321 2221 07 24 12 -20 54 40m 103a - O UG 2   Miller / Zemelman 08 02 73 Vela F    
2322 2222 07 24 12 -20 54 8m 103a - O GG 13   Miller / Zemelman 08 02 73 Vela F    
2323 2223 07 24 12 -20 54 15m 103a - D GG 14   Miller / Zemelman 08 02 73 Vela F    
2324 2224 07 44 36 -34 08 15m 103a - D GG 14   Miller / Zemelman 08 02 73 Vela D    
2325 2225 07 44 36 -34 08 40m 103a - O UG 2   Miller / Zemelman 08 02 73 Vela D    
2326 2226 07 44 36 -34 08 8m 103a - O GG 13 1" Miller / Zemelman 08 02 73 Vela D    
2327 2227 07 57 48 -28 23 8m 103a - O GG 13 1" Miller / Zemelman 08 02 73 Vela B    
2328 2228 07 57 48 -28 23 40m 103a - O UG 2 1" Miller / Zemelman 08 02 73 Vela B    
2329 2229 07 57 48 -28 23 15m 103a - D GG 14 1" Miller / Zemelman 08 02 73 Vela B    
2330 2230 10 59 00 -60 10 60m 098 - 02 RG 2 1" Miller / Zemelman 08 02 73 HD 95540    
2331 2231 10 59 00 -60 10 10m 103a - O GG 13 1" Miller / Zemelman 08 02 73 HD 95540    
2332 2232 10 59 00 -60 10 5m 103a - D GG 14 1" Miller / Zemelman 08 02 73 HD 95540    
2333 2233 07 45 42 -34 09 30m 103a - O UG 2 2" Miller / Bolelli 09 02 73 Vela D    
2334 2234 07 45 42 -34 09 10m 103a - O GG 13 2" Miller / Bolelli 09 02 73 Vela D    
2335 2235 07 45 42 -34 09 10m 103a - D GG 14 2" Miller / Bolelli 09 02 73 Vela D    
2336 2236 07 57 48 -28 23 10m 103a - D GG 14 2" Miller / Bolelli 09 02 73 Vela B    
2337 2237 07 57 48 -28 23 30m 103a - O UG 2 2" Miller / Bolelli 09 02 73 Vela B    
2338 2238 07 57 48 -28 23 8m 103a - O GG 13 2" Miller / Bolelli 09 02 73 Vela B    
2339 2239 07 24 06 -21 07 10m 103a - D GG 14 2" Miller / Bolelli 09 02 73 Vela F    
2340 2240 07 24 06 -21 07 10m 103a - D GG 14 2" Miller / Bolelli 09 02 73 Vela F    
2341 2241 07 24 06 -21 07 8m 103a - O GG 13 2" Miller / Bolelli 09 02 73 Vela F    
2342 2242 07 24 06 -21 07 30m 103a - O UG 2 2" Miller / Bolelli 09 02 73 Vela F    
2343 2243 07 43 54 -31 50 10m 103a - D GG 14 2" Miller / Bolelli 09 02 73 Vela A    
2344 2244 07 43 54 -31 50 8m 103a - O GG 13 2" Miller / Bolelli 09 02 73 Vela A    
2345 2245 07 43 54 -31 50 30m 103a - O UG 2 2" Miller / Bolelli 09 02 73 Vela A    
2346 2246 08 57 00 -46 58 10m 103a - D GG 14 2" Miller / Bolelli 09 02 73 RCW 38    
2347 2247 08 57 00 -46 58 8m 103a - O GG 13 2" Miller / Bolelli 09 02 73 RCW 38    
2348 2248 08 57 00 -46 58 30m 103a - O UG 2 2" Miller / Bolelli 09 02 73 RCW 38    
2349 2249 14 19 54 -60 48 10m 103a - D GG 14 2" Miller / Bolelli 09 02 73 Cen l    
2350 2250 14 19 54 -60 48 10m 103a - D GG 14 2" Miller / Bolelli 09 02 73 Cen l    
2351 2251 07 43 54 -31 50 10m 103a - D GG 14 2" Miller / Zemelman 09 02 73 Vela A    
2352 2252 07 43 54 -31 50 30m 103a - O UG 2 2" Miller / Zemelman 10 02 73 Vela A    
2353 2253 07 43 54 -31 50 30m 103a - O UG 2 2" Miller / Zemelman 10 02 73 Vela A    
2354 2254 07 43 54 -31 50 10m 103a - D GG 14 2" Miller / Zemelman 10 02 73 Vela A    
2355 2255 07 43 54 -31 50 8m 103a - O GG 13 2" Miller / Zemelman 10 02 73 Vela A    
2356 2256 07 43 54 -31 50 8m 103a - O GG 13 2" - 3" Miller / Zemelman 10 02 73 Vela A    
2357 2257 07 58 00 -28 32 8m 103a - O GG 13 3" - 4" Miller / Zemelman 10 02 73 Vela B    
2358 2258 07 58 00 -28 32 8m 103a - O GG 13 3" - 4" Miller / Zemelman 10 02 73 Vela B    
2359 2259 07 58 00 -28 32 40m 103a - O UG 2 3" - 4" Miller / Zemelman 10 02 73 Vela B    
2360 2260 07 58 00 -28 32 10m 103a - D GG 14 3" - 4" Miller / Zemelman 10 02 73 Vela B    
2361 2261 08 56 12 -47 40 10m 103a - D GG 14 3" - 4" Miller / Zemelman 10 02 73 RCW 38    
2362 2262 08 56 12 -47 40 8m 103a - O GG 13 3" - 4" Miller / Zemelman 10 02 73 RCW 38    
2363 2263 08 56 12 -47 40 20m 103a - O UG 2 3" - 4" Miller / Zemelman 10 02 73 RCW 38    
2364 2264 07 24 06 -21 07 36 10m 103a - D GG 14 3" - 4" Miller / Zemelman 10 02 73 Vela F    
2365 2265 10 59 00 -60 10 8m 103a - O GG 13 3" - 4" Miller / Zemelman 10 02 73 HD 95540    
2366 2266 10 59 00 -60 10 10m 103a - O UG 2 3" - 4" Miller / Zemelman 10 02 73 HD 95540    
2367 2267 14 19 54 -60 48 5m 103a - O GG 13 3" - 4" Miller / Zemelman 10 02 73 Cen I    
2368 2268 14 19 54 -60 48 30m 103a - D GG 14 3" - 4" Miller / Zemelman 10 02 73 Cen I    
2369 2269 07 45 00 -34 42 5m lla - O   2" Miller / Zemelman 11 02 73 Vela D    
2370 2270 07 45 00 -34 42 40m lla - O   2" Miller / Zemelman 11 02 73 Vela D    
2371 2271 07 45 00 -34 42 32m lla - O   2" Miller / Zemelman 11 02 73 Vela D    
2372 2272 07 24 06 -21 07 36 30m 103a - O   2" Miller / Zemelman 11 02 73 Vela F    
2373 2273 07 58 00 -28 31 30m 103a - O   2" Miller / Zemelman 11 02 73 Vela F    
2374 2274 07 43 54 -31 50 30m 103a - O   2" Miller / Zemelman 11 02 73 Vela A    
2375 2275 08 56 12 -47 40 30m 103a - O   2" Miller / Zemelman 11 02 73 RCW 38    
2376 2276 14 19 54 -60 48 30m 103a - O   2" Miller / Zemelman 11 02 73 Cen I    
2377 2277 11 00 25 -59 35 30m 103a - O   2" Miller / Zemelman 11 02 73 HD 95540    
2378 2278 10 59 54 -60 05 35m 098 - 02   2" Miller / Zemelman 11 02 73 HD 95540    
2379 2279 11 02 54 -60 33 10m 098 - 02   2" Miller / Zemelman 11 02 73 HD 95540    
2380 2280 04 20 00 -48 20 60m 103a - O UG 2 2" Graham / Elicer / Gonzalez 11 02 73 galaxy    
2381 2281 06 43 00 -74 20 60m 103a - O   2" Graham / Elicer / Gonzalez 11 02 73 galaxy ring type    
2382 2282 06 43 00 -74 20 120m 098 - 02 GG 13 2" Graham / Elicer / Gonzalez 11 02 73 galaxy ring type    
2383 2283 13 19 00 -43 31 15m 098 - 02 RG 1 2" Graham / Elicer / Gonzalez 11 02 73 NGC 5090    
2384 2284 04 20 00 -48 20 10m 103a - D GG 14 2" Graham / Czuia / Elicer 25 02 73 galaxy    
2385 2285 04 20 00 -48 20 30m 103a - O GG 13   Graham / Czuia / Elicer 25 02 73 galaxy    
2386 2286 04 20 00 -48 20 6m 103a - O GG 13   Graham / Czuia / Elicer 25 02 73 galaxy    
2387 2287 10 07 48 -38 15 90m 103a - O     Graham / Czuia / Elicer 25 02 73 Anom 10 07 - 38    
2388 2288 10 07 48 -38 15 120m 098 - 02 GG 14   Graham / Czuia / Elicer 25 02 73 Anom 10 07 - 38    
2389 2289 13 19 00 +43 31 40m 103a - O GG 13   Graham / Czuia / Elicer 25 02 73 NGC 5090    

 

Last Updated on 8/27/99

By Guerra & Marin

March

 

March 1973 Plate logs for 1.5-m telescope

Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
2390 2290 04 09 24 -75 11 10m lla - O baked "Spinrad" RED 1" - 2" Lasker / Smith / Czuia 01 03 73 0410 - 75    
2391 2291 08 33 00 -45 00 30m lla - O baked "Spinrad" RED 1" - 2" Lasker / Smith / Czuia 01 03 73 0833 - 45    
2392 2292 08 33 00 -45 00 15m lla - O baked "Spinrad" RED 1" - 2" Lasker / Smith / Czuia 01 03 73 0833 - 45    
2393 2293 10 19 00 -42 43 15m lla - O baked "Spinrad" RED 1" - 2" Lasker / Smith / Czuia 01 03 73 1018 - 42    
2394 2294 10 19 00 -42 43 30m lla - O baked "Spinrad" RED 1" - 2" Lasker / Smith / Czuia 01 03 73 1018 - 42    
2395 2295 10 19 00 -42 43 52m lla - O baked "Spinrad" RED 1" - 2" Lasker / Smith / Czuia 01 03 73      

 

Last Updated on 8/27/99

By Guerra & Marin

April

April 1973 Plate logs for 1.5-m telescope

Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
2396 2296 09 44 00 -31 04 60m lla - O   1.5" Sersic / Czuia 10 04 73 N 2997    
2397 2297 10 26 42 -39 48 60m lla - O   1.5" Sersic / Czuia 10 04 73 N 3256    
2398 2298 13 20 30 -38 13 59m lla - O GG 13 2" Sersic / Czuia 10 04 73 N 5102    
2399 2299 13 20 30 -38 13 7m lla - D GG 14 2" Sersic / Czuia 10 04 73 N 5102    
2400 2300 13 38 24 -31 31 60m lla - D GG 14 2" Sersic / Czuia 10 04 73 N 5253    
2401 2301 13 38 24 -31 31 61m lla - D GG 13 2" Sersic / Czuia 10 04 73 N 5253    
2402 2302     56m lla - D GG 13 2.5" Sersic / Czuia 10 04 73 N 6438    
2403 2303 09 44 30 -31 04 61m lla - D GG 14 1.5" Sersic / Czuia 11 04 73 N 2997    
2404 2304 10 26 42 -43 45 60m lla - D GG 14   Sersic / Czuia 11 04 73 N 3256    
2405 2305 10 26 42 -43 45 60m lla - O GG 13 1.5" Sersic / Czuia 11 04 73 N 3256    
2406 2306 13 38 24 -31 31 60m 098 - 02 RG 2   Sersic / Czuia 11 04 73 N 5253    
2407 2307 13 19 30 -36 19 60m lla - O GG 13   Sersic / Czuia 11 04 73 N 5102    
2408 2308 13 19 30 -36 19 60m lla - D GG 13   Sersic / Czuia 11 04 73 N 5102    
2409 2309 13 23 48 -42 52 120m 103a - D GG 5   Sersic / Czuia 11 04 73 N 5128    
2410 2310 13 34 48 -33 39 60m lla - D GG 14 1.5" Sersic / Czuia 12 04 73 IC 4296    
2411 2311 13 34 48 -33 39 60m lla - O GG 13   Sersic / Czuia 12 04 73 IC 4296    
2412 2312 13 19 30 -36 19 60m lla - O GG 13   Sersic / Czuia 12 04 73 N 5102    
2413 2313 13 19 30 -36 19 60m lla - D GG 14   Sersic / Czuia 12 04 73 N 5102    
2414 2314 20 12 06 -71 01 150m 103a - D     Sersic / Czuia 12 04 73 T P    

 

Last Updated on 8/27/99

By Jorge Marin 

May

 

May 1973 Plate logs for 1.5-m telescope

Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
2415 2315 10 22 36 -57 30 15m lla - O     J.Graham / Araya 08 05 73 Wd 1    
2416 2316 10 22 36 -57 30 32m lla - O     R.Gonzalez 09 05 73 Wd 1    
2417 2317 10 16 00 -46 12 30m lla - O     R.Gonzalez 09 05 73 NGC 3201    
2418 2318 15 55 00 -54 16 31m lla - O     R.Gonzalez 09 05 73 Norma    
2419 2319 15 55 00 -54 16 30m lla - O     R.Gonzalez 09 05 73 Norma    
2420 2320 15 25 00 -13 44 150m llla - J baked     R.Gonzalez 09 05 73 Sydney radio source    
2421 2321 19 59 00 -47 09 150m llla - J baked     R.Gonzalez 09 05 73 Klemola 30    

 

Last Updated on 8/27/99

By Guerra & Marin

June

 

June 1973 Plate logs for 1.5-m telescope

 

Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
2422 2322 14 18 00 -26 30 30m 103a - O       27 06 73 ScI - 139    
2423 2323 20 22 24 -38 21 60m 103a - O       27 06 73 IC 4998    
2424 2324 20 36 18 -52 12 30m 103a - O       27 06 73 YC 2030 - 52    
2425 2325 22 01 13 -37 53 90m 103a - O         YC 2200 - 37    
2426 2326 00 17 30 -49 30 60m 103a - O         Anar cluster    
2427 2327 20 28 47.6 -76 57 03.8 10m lla - D         2025 - 77.0 I T  
2428 2328 20 30 56.75 -73 09 34.4 10m lla - D         2028 - 73.2 I T  
2429 2329 21 01 14.5 -64 03 12.4 12m           2059 - 64.1 I T  
2430 2330     12m           2101 - 49.0 I T  
2431 2331 21 19 46.85 -64 11 17.5 15m           2117 - 64.2 I T  
2432 2332 21 43 50.28 -81 39 35.7             2140 - 81.7 I T  
2433 2333 22 06 52.10 -63 33 26.7 18m           2205 - 63.6 I T  
2434 2334 00 04 46.20 -56 37 17.1             0003 - 56.7 I T  
2435 2335                 0003 - 83.3 I T  
2436 2336                 0021 - 68.1 I T  
2437 2337                 0022 - 60.7 I T  
2438 2338                 0032 - 63.6 I T  
2439 2339                 0036 - 62.7 I T  
2440 2340                 0209 - 62.1 I T  
2441 2341                 0224 - 70.1 I T  
2442 2342                 0251 - 67.5 I T  

 

Last Updated on 8/27/99

By Guerra & Marin

 

September

September 1973 Plate logs for 1.5-m telescope

Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
2443 2343 19 36 48 -63 39 49 15m lla - D     Lasker / Czuia 03 09 73 1934 - 63 I T (wrong dec.)  
2444 2344   -63 46 19 15m       Lasker / Czuia 03 09 73 1934 - 63 I T  
2445 2345 21 01 14 -64 03 12 15m       Lasker / Czuia 03 09 73 2059 - 64.1 I T  
2446 2346     15m       Lasker / Czuia 03 09 73 2101 - 49.0 I T  
2447 2347     15m       Lasker / Czuia 03 09 73 2205 - 63.6 I T  
2448 2348 00 22 41 -68 01 18 18m       Lasker / Czuia 03 09 73 0021 - 68.1 I T  
2449 2349             Lasker / Czuia 03 09 73 0022 - 60.7 I T  
2450 2350             Lasker / Czuia 03 09 73 0032 - 63.6 I T  
2451 2351             Lasker / Czuia 03 09 73 0036 - 62.7 I T  
2452 2352             Lasker / Czuia 03 09 73 0040 - 76.0 I T  
2453 2353     15m lla - D     Lasker / Czuia 04 09 73 1934 - 63 I T  
2454 2354       lla - D     Lasker / Czuia 04 09 73 2059 - 64.1 I T  
2455 2355             Lasker / Czuia 04 09 73 2101 - 49.0 I T  
2456 2356             Lasker / Czuia 04 09 73 2205 - 63.6 I T  
2457 2357             Lasker / Czuia 04 09 73 2025 - 77.0 I T  
2458 2358             Lasker / Czuia 04 09 73 2028 - 73.2 I T  
2459 2359             Lasker / Czuia 04 09 73 2117 - 64.2 I T  
2460 2360             Lasker / Czuia 04 09 73 2140 - 81.7 I T  
2461 2361             Lasker / Czuia 04 09 73 0021 - 68.1 I T  
2462 2362             Lasker / Czuia 04 09 73 0036 - 62.7 I T  
2463 2363             Lasker / Czuia 04 09 73 0040 - 76.0 I T  
2464 2364 21 36 00 - 14 40 25 m lla - O no   Lasker / Czuia 05 09 72 PKS 2135 - 14 I T CTIO
2465 2365 00 23 00 - 72 12 20 m lla - O no   Lasker / Czuia 05 09 72 47 Tucan I T CTIO
2466 2366     25m       Lasker / Czuia 05 09 72 0130 - 62.0 I T  
2467 2367 21 36 20 -14 40 15m lla - O     Osmer / Czuia 05 09 72 PKS 2135 - 14    
2468 2368 15 19 00 -57 03 15m lla - O     Osmer / Czuia 05 09 72 Cir X - 1    
2469 2369 21 36 21 -14 40 25m lla - O     Osmer / Czuia 05 09 72 PKS 2135 - 14    
2470 2370 00 22 54 -72 12 20m lla - O     Osmer / Czuia 05 09 72 47 Tuc    
2471 2371 01 08 18 - 72 12 20 m lla - O no   Osmer / Czuia 05 09 72 SMC   CTIO
2472 2372 01 21 00 - 04 29 45 m lla - O no   Osmer / Czuia 05 09 72 PKS 0119 - 04   CTIO
2473 2373 02 38 00 - 23 16 45 m lla - O no   Osmer / Czuia 05 09 72 PKS 0237 - 23   CTIO
2474 2374 05 39 00 - 69 07 07.5 m lla - O no   Osmer / Czuia 05 09 72 30 Doradus   CTIO
2475 2375 05 39 00 - 69 30 30 m lla - O no   Osmer / Czuia 05 09 72 LMC   CTIO

 

Last Updated on 8/27/99

By Guerra & Marin

November

November 1973 Plate log for 1.5-m telescope

Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
2476 2376 22 08 45 -45 50 15m lla - D   1" Smith / Czuia 27 11 73 PKS 2207 - 45    
2477 2377 00 40 54 -44 23 25m lla - D   1" Smith / Czuia 27 11 73 PKS 0039 - 44    
2478 2378 00 51 02 -43 14 57 30m lla - D   1" Smith / Czuia 27 11 73 PKS 0049 - 43    
2479 2379 01 18 50 -68 17 54 30m lla - D   1" Smith / Czuia 27 11 73 PKS 0118 - 68.4    
2480 2380 01 41 15 -69 49 26 30m lla - D   1" Smith / Czuia 27 11 73 PKS 0140 - 69.9    
2481 2381 01 52 06 -76 22 54 30m lla - D   1" Smith / Czuia 27 11 73 PKS 0151 - 76.4    
2482 2382 01 57 26 -78 49 54 25m lla - D   1" Smith / Czuia 27 11 73 PKS 0157 - 78.9    
2483 2383 04 29 50 -61 36 10 30m lla - D   1" Smith / Czuia 27 11 73 PKS 0429 - 61.6    
2484 2384 04 36 59 -65 02 04 30m lla - D   1" Smith / Czuia 27 11 73 PKS 0436 - 65.0    
2485 2385 04 58 17 -75 09 18 30m lla - D   1" Smith / Czuia 27 11 73 PKS 0459 - 75.1    
2486 2386 N 17 83   63m 103a - O GG 13 1.5" Maroly / Czuia 28 11 73 04 59.3 - 66º 01'    
2487 2387 N 17 83   120m 103a - D GG 14 1.5" Maroly / Czuia 28 11 73 04 59.3 - 66º 01'    
2488 2388 N 17 83   106m 103a - D GG 14 1.5" Maroly / Czuia 28 11 73 04 59.3 - 66º 01'    
2489 2389 N 17 83   90m 103a - O GG 13 2" Maroly / Czuia 29 11 73 04 59.3 - 66º 01'    
2490 2390 05 13 42 -65 30 153m 103a - D GG 14   Maroly / Czuia 29 11 73 NGC 1866    
2491 2391 05 13 42 -65 30 133m 103a - O GG 13   Maroly / Czuia   NGC 1866    
2492 2392 00 51 02 -43 14 51 25m lla - D   2" - 3" Smith / Czuia 30 11 73 PKS 0049 - 43    
2493 2393 01 59 35 -74 38 27 30m lla - D   2" - 3" Smith / Czuia 30 11 73 PKS 0158 - 74/2    
2494 2394 01 58 09 -74 45 57 30m lla - D   2" - 3" Smith / Czuia 30 11 73 PKS 0158 - 74/1    
2495 2395 02 02 38 -43 57 21 30m lla - D   2" - 3" Smith / Czuia 30 11 73 PKS 0201 - 44    
2496 2396 02 02 07 -76 27 40 30m lla - D   2" - 3" Smith / Czuia 30 11 73 PKS 0202 - 76    
2497 2397 02 24 22 -70 01 28 30m lla - D   2" - 3" Smith / Czuia 30 11 73 PKS 0224 - 70.1    
2498 2398 02 52 34 -71 10 50 30m lla - D   2" - 3" Smith / Czuia 30 11 73 PKS 0252 - 71.2    
2499 2399 03 15 56 -68 26 57 30m lla - D   3" Smith / Czuia 30 11 73 PKS 0315 - 68.5    
2500 2400 03 24 32 -70 21 35 30m lla - D   3" Smith / Czuia 30 11 73 PKS 0324 - 70.4    
2501 2401 05 06 24 -61 11 42 30m lla - D   3" Smith / Czuia 30 11 73 PKS 0506 - 61.2    
2502 2402 05 07 37 -62 44 28 30m lla - D RG 2 3" Smith / Czuia 30 11 73 PKS 0507 - 62.7    

 

Last Updated on 8/27/99

By Guerra & Marin

December

December 1973 Plate logs for 1.5-m telescope

 

Plate N. N R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
2503 2403 00 49 21 -09 37 42 30m lla - D RG 2 3" - 4" Smith / Saá 01 12 73 PKS 0048 - 09    
2504 2404 02 31 19 -66 33 36 30m lla - D RG 2 3" - 4" Smith / Saá 01 12 73 PKS 0230 - 66    
2505 2405 02 41 36 -42 08 18 30m lla - D RG 2 2" - 3" Smith / Saá 01 12 73 PKS 0240 - 42    
2506 2406 03 24 42 -76 35 33 30m lla - D RG 2 2" Smith / Saá 01 12 73 PKS 0525 - 76.6    
2507 2407 04 00 17 -64 17 19 30m lla - D RG 2 2" Smith / Saá 01 12 73 PKS 0400 - 64.3    
2508 2408 04 16 14 -64 59 32 30m lla - D RG 2 2" Smith / Saá 01 12 73 PKS 0416 - 65.0    
2509 2409 04 28 44 -36 34 17 30m lla - D RG 2 2" Smith / Saá 01 12 73 PKS 0427 - 36    
2510 2410 05 32 38 -63 49 17 30m lla - D RG 2 2" Smith / Saá 01 12 73 PKS 0532 - 63.8    
2511 2411 05 34 31 -61 23 30m lla - D RG 2 3" Smith / Saá 01 12 73 PKS 0534 - 61.3    
2512 2412 04 58 17 -75 09 18 23m lla - D RG 2 3" Smith / Saá 01 12 73 PKS 0459 - 75.1    
2513 2413 00 43 00 -64 42 15m 103a - O GG 13 1" Graham / Czuia 21 12 73 JAG galaxy    
2514 2414 04 50 42 -70 02 15m 103a - O GG 13 1" Miller / Czuia 21 12 73 NGC 1701    
2515 2415 04 50 42 -70 02 20m 103a - D GG 14 1" Miller / Czuia 21 12 73 NGC 1701    
2516 2416 07 44 42 -34 08 40m 103a - O UG 2 1" Miller / Czuia 21 12 73 Vela D    
2517 2417 07 44 42 -34 08 10m 103a - O GG 13 1" Miller / Czuia 21 12 73 Vela D    
2518 2418 07 24 06 -34 08 40m 103a - O UG 2 1" Miller / Czuia 21 12 73 Vela D    
2519 2419 07 44 42 -34 08 15m 103a - D GG 14 1" Miller / Czuia 21 12 73 Vela D    
2520 2420 07 24 06 -21 08 40m 103a - O UG 2 1" Miller / Czuia 21 12 73 Vela F    
2521 2421 07 24 06 -21 08 8m 103a - O GG 13 1" Miller / Czuia 21 12 73 Vela F    
2522 2422 07 24 06 -21 08 15m 103a - D GG 14 1" Miller / Czuia 21 12 73 Vela F    
2523 2423 04 50 42 -70 02 10m 103a - D GG 14 3" Miller / Czuia 22 12 73 NGC 1701    
2524 2424 04 50 42 -70 02 5m 103a - O GG 13 3" Miller / Czuia 22 12 73 NGC 1701    
2525 2425 07 44 42 -34 08 10m 103a - O GG 13 3" Miller / Czuia 22 12 73 Vela D    
2526 2426 07 44 42 -34 08 40m 103a - O UG 2 3" Miller / Czuia 22 12 73 Vela D    
2527 2427 07 44 42 -34 08 15m 103a - D GG 14 3" Miller / Czuia 22 12 73 Vela D    
2528 2428 07 24 06 -21 08 15m 103a - D GG 14   Miller / Czuia 22 12 73 Vela F    
2529 2429 07 24 06 -21 08 40m 103a - O UG 2 3" Miller / Czuia 22 12 73 Vela F    
2530 2430 07 24 06 -21 08 10m 103a - O GG 13   Miller / Czuia 22 12 73 Vela F    
2531 2431 07 24 06 -21 08 10m 103a - O GG 13 3" Miller / Czuia 22 12 73 Vela F    
2532 2432 07 24 06 -21 08 15m 103a - D GG 14 2" Miller / Czuia 22 12 73 Vela F    
2533 2433 07 24 06 -21 08 45m 103a - O GG 14   Miller / Czuia 22 12 73 Vela F    
2534 2434 01 10 50 +69 08 16 20m lla - D RG 2     23 12 73 0110 - 69    
2535 2435 01 30 11 +51 09 32 30m lla - D RG 2     23 12 73 0129 - 51    
2536 2436 01 30 11 +51 09 32 25m lla - D GG 14     23 12 73 0129 - 51    
2537 2437 01 10 50 +69 08 16 8m lla - D GG 14     23 12 73 0110 - 69    
2538 2438 02 10 40 +62 03 35 10m   GG 14     23 12 73 0209 - 62.1    
2539 2439 02 51 32 -67 24 27 10m   GG 14     23 12 73 0251 - 67.5    
2540 2440 02 52 33 -71 10 50 10m   GG 14     23 12 73 0252 - 71.2    
2541 2441 03 15 55 +68 26 51 10m   GG 14     23 12 73 0315 - 68.5    
2542 2442 03 21 31 +70 21 35 10m   GG 14     23 12 73 0324 - 70.4    
2543 2443 03 24 41 +76 35 32 10m   GG 14     23 12 73 0325 - 76.6    
2544 2444 04 00 16 +64 17 18 10m   GG 14     23 12 73 0400 - 64.3    
2545 2445 04 36 58 +65 02 04 10m   GG 14     23 12 73 0436 - 65.0    
2546 2446 04 58 17 +75 09 18 10m   GG 14     23 12 73 0459 - 75.1    
2547 2447 05 06 23 +61 11 42 10m   GG 14     23 12 73 0506 - 61.2    
2548 2448 05 32 37 +03 49 16 10m   GG 14     23 12 73 0532 - 63.8    
2549 2449 05 34 31 +01 23 00 10m   GG 14     23 12 73 0534 - 61.3    
2550 2450 06 02 16 -34 26 27 10m   GG 14     23 12 73 0601 - 34    
2551 2451 06 15 40 -34 55 36 10m   GG 14     23 12 73 0614 - 34    
2552 2452 07 19 39 +55 21 28 8m   GG 14     23 12 73 0719 - 55    

 

Last Updated on 8/27/99

By Jorge Marin

1974

1974 Plate logs for 1.5-m telescope

January

January 1974 Plate logs for 1.5-m telescope

 


Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
2553 2453 04 20 18 -68 20 17m   RG 2     08 01 74 NGC 1567    
2554 2454 05 33 48 -05 25 15m   RG 2     08 01 74 Orion nebulae    
2555 2455 03 59 24 -67 42 60m 098 - 02 RG 1   Graham / Gonzalez /Elicer 08 01 74 NGC 1511    
2556 2456 06 27 00 -47 05 45m 098 - 02 RG 1   Graham / Gonzalez / Elicer 08 01 74 peculiar niple    
2557 2457 08 25 24 -68 02 45m 098 - 02 RG 1   Graham / Gonzalez / Elicer 08 01 74 NGC 2601    
2558 2458 09 26 06 -76 37 45m 098 - 02 RG 1   Graham / Gonzalez / Elicer 08 01 74 NGC 2915    
2559 2459 04 20 18 -48 20 15m 098 - 02 RG 1   Graham / Gomez / Elicer 09 01 74 NGC 1567 ecliptical galaxy    
2560 2460 06 27 00 -47 05 90m 098 - 02 RG 1   Graham / Gomez / Elicer 09 01 74 peculiar niple    
2561 2461 09 26 06 -76 37 90m 098 - 02 RG 1   Graham / Gomez / Elicer 09 01 74 NGC 2915    
2562 2462 06 28 50 -28 34 120 m lla - O GG 385 2" R.Gonzalez 22 01 74 BSR 0628 - 28   CTIO
2563 2463 08 18 06 -13 41 90 m lla - O GG 385 2" R.Gonzalez 22 01 74 BSR 0818 - 13   CTIO
2564 2464 07 36 51 -40 34 30 90 m lla - O GG 385 2" R.Gonzalez 22 01 74 BSR 0736 - 40   CTIO
2565 2465 07 24 06 -21 07 36 40m 103a - O UG 2 2" Miller / R.Gonzalez 23 01 74 HD 58510    
2566 2466 07 24 06 -21 07 36 40m 103a - O UG 2 2" Miller / R.Gonzalez 23 01 74 HD 58510    
2567 2467 07 24 06 -21 07 36 10m 103a - O GG 13 2" Miller / R.Gonzalez 23 01 74 HD 58510    
2568 2468 07 24 06 -21 07 36 10m 103a - O GG 13 2" Miller / R.Gonzalez 23 01 74 HD 58510    
2569 2469 07 24 06 -21 07 36 15m 103a - O GG 13 2" Miller / R.Gonzalez 23 01 74 HD 58510    
2570 2470 07 24 06 -21 07 36 15m 103a - D GG 14 2" Miller / R.Gonzalez 23 01 74 HD 58510    
2571 2471 07 24 06 -21 07 36 40m 103a - D GG 14 2" Miller / R.Gonzalez 23 01 74 HD 58510    
2572 2472 07 57 48 -28 30 40m 103a - O UG 2   Miller / R.Gonzalez 23 01 74 Vela B    
2573 2473 07 57 48 -28 30 40m 103a - O UG 2   Miller / R.Gonzalez 23 01 74 Vela B    
2574 2474 07 57 48 -28 30 15m 103a - D GG 14   Miller / R.Gonzalez 23 01 74 Vela B    
2575 2475 08 57 48 -47 36 40m 103a - O UG 2   Miller / R.Gonzalez 23 01 74 RCW 38    
2576 2476 08 57 48 -47 36 15m 103a - D GG 14   Miller / R.Gonzalez 23 01 74 RCW 38    
2577 2477 07 24 06 -21 07 36 40m 103a - O UG 2   Miller / R.Gonzalez 23 01 74 HD 58510    
2578 2478 07 24 06 -21 07 36 10m 103a - O GG 13   Miller / R.Gonzalez 24 01 74 HD 58510    
2579 2479 07 57 48 -28 30 40m 103a - O UG 2   Miller / R.Gonzalez 24 01 74 Vela B    
2580 2480 07 57 48 -28 30 10m 103a - O GG 13   Miller / R.Gonzalez 24 01 74 Vela B    
2581 2481 08 57 48 -47 36 40m/10m 103a - O UG 2 / GG 13 3" Miller / R.Gonzalez 24 01 74 RCW 38    
2582 2482 08 57 48 -47 36 40m/10m 103a - O UG 2 / GG 13 3" Miller / R.Gonzalez 24 01 74 RCW 38    
2583 2483 08 57 48 -47 36 10m/40m 103a - O GG 13 / UG 2 3" Miller / R.Gonzalez 24 01 74 RCW 38    
2584 2484 08 36 24 -45 07 40m/10m 103a - O UG 2 / GG 13 3" Miller / R.Gonzalez 24 01 74 HD 73568    
2585 2485 08 36 24 -45 07 10m/40m 103a - O GG 13 / UG 2 3" Miller / R.Gonzalez 24 01 74 HD 73568    

 

Last Updated on 8/27/99

By Guerra & Marin

February

 

February 1974  Plate logs for 1.5-m telescope

Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
2586 2486 03 59 24 -67 42 60m 103a - O     Graham / Saá / Elicer 22 02 74 NGC 1511    
2587 2487 06 27 00 -47 05 90m 103a - O     Graham / Saá / Elicer 22 02 74 faint group of galaxies    
2588 2488 06 25 54 -53 40 30m 103a - O     Graham / Saá / Elicer 22 02 74 PKS 625 - 53    
2589 2489 09 25 00 -76 51 90m 103a - O     Graham / Saá / Elicer 22 02 74 NGC 2915    
2590 2490 09 25 00 -76 51 60m 103a - O     Graham / Saá / Elicer 22 02 74 NGC 2915    
2591 2491 15 16 12 -24 15 75m 103a - O     Graham / Saá / Elicer 22 02 74 AP Librae    

 

Last Updated on 8/27/99

By Guerra & Marin

March

March 1974 Plate logs for 1.5-m telescope

 

 

Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
2592 2492 06 27 00 -47 05 3m llla - J     Graham / Richer / Czuia 22 03 74 grupo de galaxias    
2593 2493 13 04 42 -37 26   llla - J     Graham / Richer / Czuia 22 03 74 NGC 4953    
2594 2494 18 41 00 -48 39 118m llla - J     Graham / Richer / Czuia 22 03 74 PKS 1839 - 48    
2595 2495 10 36 12 -27 18 33m lla - O GG 13   Smith / Weedman / Czuia 25 03 74 Hydra l cluster of galaxies    
2596 2496 12 48 24 -41 08 30m lla - O GG 13   Smith / Weedman / Czuia 25 03 74 Centaurus cluster    
2597 2497 12 48 24 -41 08 90m lla - O GG 13   Smith / Weedman / Czuia 25 03 74 Centaurus cluster    
2598 2498 10 36 12 -27 18 30m lla - O     Smith / Weedman / Czuia 26 03 74 Hydra l cluster    
2599 2499 10 36 12 -27 18 180m llla - J     Smith / Weedman / Czuia 26 03 74 Hydra l cluster    
2600 2500 12 48 50 -41 15 48 180m llla - J     Smith / Weedman / Czuia 26 03 74 Centaurus cluster    
2601 2501 12 43 54 -40 36 22 30m lla - O     Smith / Weedman / Czuia 26 03 74 Centaurus cluster    
2602 2502 18 17 12 -13 47 47 32m llla - J     Smith / Weedman / Czuia 26 03 74 M 16    

 

Last Updated on 8/27/99

By Guerra & Marin

April

April 1974 Plate logs for 1.5-m telescope


Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
2603 2503 12 38 06 -26 36 54 10m 103a - D GG 14 1" Hesser / Gonzalez 25 04 74 NGC 4590    
2604 2504 12 38 06 -26 36 54 13m 103a - O GG 385 1" Hesser / Gonzalez 25 04 74 NGC 4590    
2605 2505 12 38 06 -26 36 54 60m 103a - D GG 14 1" Hesser / Gonzalez 25 04 74 NGC 4590    
2606 2506 12 38 06 -26 36 54 60m 103a - O GG 385 1" Hesser / Gonzalez 25 04 74 NGC 4590    
2607 2507 13 44 30 -51 14 60m 103a - D GG 14 1" Hesser / Gonzalez 25 04 74 NGC 5286    
2608 2508 13 44 30 -51 14 60m 103a - O GG 385 < 1" Hesser / Gonzalez 25 04 74 NGC 5286    
2609 2509 17 23 30 -48 27 120m 103a - D GG 14 1" - 1.5" Hesser / Gonzalez 25 04 74 NGC 6352    
2610 2510 17 23 30 -48 27 56m 103a - O GG 385 1" - 2" Hesser / Gonzalez 25 04 74 NGC 6352    
2611 2511 12 38 06 -26 36 54 20m 103a - O GG 385 1.5" - 2" Hesser / Gonzalez 26 04 74 NGC 4590    
2612 2512 12 38 06 -26 36 54 20m 103a - O GG 385 2" Hesser / Gonzalez 26 04 74 NGC 4590    
2613 2513 12 38 06 -26 36 54 60m 103a - D GG 14 1.5" Hesser / Gonzalez 26 04 74 NGC 4590    
2614 2514 12 38 06 -26 36 54 40m 103a - O GG 385 1" - 2" Hesser / Gonzalez 26 04 74 NGC 4590    
2615 2515 14 57 00 -82 08 120m 103a - D GG 14 2" - 2.5" Hesser / Gonzalez 26 04 74 IC 4499    
2616 2516 17 23 30 -48 27 115m 103a - D GG 14 1.5" Hesser / Gonzalez 26 04 74 NGC 6352    
2617 2517 17 23 30 -48 27 120m 103a - O GG 385 1.5" - 2" Hesser / Gonzalez 26 04 74 NGC 6352    

 

Last Updated on 8/27/99

By Jorge Marin

May

May 1974 Plate logs for 1.5-m telescope

 

 

Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
2618 2518 18 34 48 -23 57 20m 103a - D GG 14 2" - 3" Hesser / Czuia / Poblete 25 05 74 M 22    
2619 2519 18 34 48 -23 57 20m 103a - O GG 385 3" Hesser / Czuia / Poblete 25 05 74 M 22    
2620 2520 18 34 48 -23 57 60m 103a - D GG 14 3" Hesser / Czuia / Poblete 25 05 74 M 22    
2621 2521 13 44 00 -51 14 60m 103a - D GG 14 3" Hesser / Czuia / Poblete 26 05 74 NGC 5286    
2622 2522 13 44 00 -51 14 0.5m 103a - O GG 385 2" Hesser / Czuia / Poblete 26 05 74 NGC 5286    
2623 2523 13 44 00 -51 14 0.5m 103a - O GG 385 2.5" Hesser / Czuia / Poblete 26 05 74 NGC 5286    
2624 2524 13 44 00 -51 14 0.5m 103a - O GG 385 2.5" Hesser / Czuia / Poblete 26 05 74 NGC 5286    
2625 2525 13 44 00 -51 14 0.5m 103a - D GG 14 2.5" Hesser / Czuia / Poblete 26 05 74 NGC 5286    
2626 2526 13 44 00 -51 14 0.5m 103a - D GG 14 2.5" Hesser / Czuia / Poblete 26 05 74 NGC 5286    
2627 2527 13 44 00 -51 14 0.5m 103a - D GG 14 2.5" Hesser / Czuia / Poblete 26 05 74 NGC 5286    
2628 2528 13 44 00 -51 14 0.5m 103a - O GG 385 2.5" Hesser / Czuia / Poblete 26 05 74 NGC 5286    
2629 2529 17 23 00 -48 27 60m 103a - D GG 14 2.5" Hesser / Czuia / Poblete 26 05 74 NGC 6352    
2630 2530 17 23 00 -48 27 60m 103a - O GG 385 2.5" Hesser / Czuia / Poblete 26 05 74 NGC 6352    
2631 2531 17 23 00 -48 27 120m 103a - O GG 385 2" Hesser / Czuia / Poblete 26 05 74 NGC 6352    
2632 2532 17 23 00 -48 27 120m 103a - D GG 14 1.5" - 2" Hesser / Czuia / Poblete 26 05 74 NGC 6352    
2633 2533 18 34 48 -23 57 20m 103a - D GG 14 1.5" - 2" Hesser / Czuia / Poblete 26 05 74 M 22    
2634 2534 18 34 48 -23 57 20m 103a - O GG 385 1.5" - 2" Hesser / Czuia / Poblete 26 05 74 M 22    
2635 2535 18 34 48 -23 57 5m 103a - O GG 385 1.5" - 2" Hesser / Czuia / Poblete 26 05 74 M 22    
2636 2536 18 34 48 -23 57 5m 103a - O GG 385 1.5" Hesser / Czuia / Poblete 26 05 74 M 22    
2637 2537 18 34 48 -23 57 5m 103a - D GG 14 1.5" Hesser / Czuia / Poblete 26 05 74 M 22    
2638 2538 18 34 48 -23 57 5m 103a - D GG 14 1.5" Hesser / Czuia / Poblete 26 05 74 M 22    

 

Last Updated on 8/27/99

By Guerra & Marin

June

June 1974 Plate logs for 1.5-m telescope

 


Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
2639 2539 18 05 42 -24 40 25m lla - O UG 2 2" - 3" Racine / R.Gonzalez 29 06 74 NGC 6544    
2640 2540 18 05 42 -24 40 15m lla - O UG 2 2" - 3" Racine / R.Gonzalez 29 06 74 NGC 6544    
2641 2541 18 05 42 -24 40 3m lla - D GG 14 2" - 5" Racine / R.Gonzalez 29 06 74 NGC 6544    
2642 2542 18 05 42 -24 40 1m lla - D GG 14 2" - 5" Racine / R.Gonzalez 29 06 74 NGC 6544    
2643 2543 18 07 36 -25 35 6m lla - O GG 14 2" - 5" Racine / R.Gonzalez 29 06 74 NGC 6553    
2644 2544 18 07 36 -25 35 20m lla - D UG 2 2" - 5" Racine / R.Gonzalez 29 06 74 NGC 6553    
2645 2545 18 08 24 -31 26 30m lla - O UG 2 2" - 20" Racine / R.Gonzalez 30 06 74 NGC 6558    
2646 2546 18 08 24 -31 26 8m lla - D GG 14 2" - 20" Racine / R.Gonzalez 30 06 74 NGC 6558    
2647 2547 21 44 54 -21 22 4m lla - D GG 14 2" - 20" Racine / R.Gonzalez 30 06 74 Pal 12    
2648 2548 21 44 54 -21 22 25m lla - O UG 2 2" - 20" Racine / R.Gonzalez 30 06 74 Pal 12    
2649 2549 19 43 42 -07 46 3m lla - D GG 14 2" - 4" Racine / R.Gonzalez 30 06 74 Pal 11    
2650 2550 19 43 42 -07 46 20m lla - O UG 2 2" - 4" Racine / R.Gonzalez 30 06 74 Pal 11    
2651 2551 21 31 54 -00 58 3m lla - O UG 2 3" - 10" Racine / R.Gonzalez 30 06 74 NGC 7089    
2652 2552 21 31 54 -00 58 15m lla - O UG 2 3" - 10" Racine / R.Gonzalez 30 06 74 NGC 7089    
2653 2553 21 31 54 -00 58 40s lla - D GG 14 3" - 10" Racine / R.Gonzalez 30 06 74 NGC 7089    
2654 2554 21 31 54 -00 58 3m lla - D GG 14 3" - 10" Racine / R.Gonzalez 30 06 74 NGC 7089    

 

Last Updated on 8/27/99

By Guerra & Marin

July

July 1974 Plate logs for 1.5-m telescope

 


Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
2655 2555 16 25 48 -38 25 10m lla - D GG 14 5" Racine / R.Gonzalez 01 07 74 NGC 6139    
2656 2556 16 25 48 -38 25 5m lla - O GG 385 5" Racine / R.Gonzalez 01 07 74 NGC 6139    
2657 2557 17 14 42 -27 46 10m lla - D GG 14 6" - 10" Racine / R.Gonzalez 01 07 74 NGC 6316    
2658 2558 17 14 42 -27 46 5m lla - O GG 385 8" - 10" Racine / R.Gonzalez 01 07 74 NGC 6316    
2659 2559 17 19 30 -19 13 10m lla - D GG 14 4" Racine / R.Gonzalez 01 07 74 NGC 6342    
2660 2560 17 19 30 -19 13 5m lla - O GG 385   Racine / R.Gonzalez 01 07 74 NGC 6342    
2661 2561 17 22 12 -25 59 10m lla - D GG 14 4" Racine / R.Gonzalez 01 07 74 NGC 6355    
2662 2562 17 22 12 -25 59 5m lla - O GG 385   Racine / R.Gonzalez 01 07 74 NGC 6355    
2663 2563 17 36 54 -23 33 10m lla - D GG 14 3" Racine / R.Gonzalez 01 07 74 NGC 6401    
2664 2564 17 36 54 -23 33 5m lla - O GG 385   Racine / R.Gonzalez 01 07 74 NGC 6401    
  2564 13 04 00 -49 21 60m 103a - O   1" Racine / R.Gonzalez 21 07 74 NGC 4945    
2665 2565 13 29 00 -86 24 115m 103a - O   1" Racine / R.Gonzalez 21 07 74 cumulo de galaxias    
2666 2566 20 43 00 -55 10 90m 103a - O   1" Racine / R.Gonzalez 21 07 74 grupo de galaxias    
2667 2567 22 46 00 -58 04 120m llla - J   2" Racine / R.Gonzalez 21 07 74 galaxy chain    
2668 2568 22 35 00 -61 32 120m llla - J   2" Racine / R.Gonzalez 21 07 74 interacting galaxies    
2669 2569 18 35 00 -30 00 10s each lla - O     V.Blanco / Saá / Czuia 30 07 74 focus plate    

 

Last Updated on 8/27/99

By Guerra & Marin

October

October 1974 Plate logs for 1.5-m telescope


Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
2670 2570 18 01 12 -24 24 20m llla - J GG 13 2" Dufour / Ríos 10 10 74 M 8    
2671 2571 00 46 20 -73 24 30m 127 - 02 RG 2 2" Dufour / Ríos 10 10 74 SMC N 19    
2672 2572 00 46 20 -73 24 60m 127 - 02 RG 2 3" Dufour / Ríos 10 10 74 SMC N 19    
2673 2573 00 46 20 -73 24 30m llla - J GG 13 2.5" Dufour / Ríos 10 10 74 SMC N 19    
2674 2574 00 46 20 -73 24 45m llla - J UG 2 2" Dufour / Ríos 10 10 74 SMC N 19    
2675 2575 00 58 27 -72 18 30m llla - J UG 2 2" Dufour / Ríos 10 10 74 SMC N 66A    
2676 2576 00 58 27 -72 18 20m llla - J GG 385 2" Dufour / Ríos 10 10 74 SMC N 66A    
2677 2577 00 58 27 -72 18 15m 127 - 02 RG 2 2" Dufour / Ríos 10 10 74 SMC N 66A    
2678 2578 05 40 00 -69 45 30m llla - J UG 2 2" Dufour / Ríos 10 10 74 LMC X - 1    
2679 2579 05 38 40 -64 06 180m llla - J UG 2 2" Dufour / Ríos 10 10 74 LMC X - 3    
2680 2580 05 38 40 -64 06 60m llla - J UG 2 2" Dufour / Ríos 10 10 74 LMC X - 3    
2681 2581 00 58 30 -33 50 180m 103a - D   2" - 5" Demers / R.Gonzalez 14 10 74 Sculptor galaxy    
2682 2582 04 34 24 -58 59 180m 103a - O   3" Demers / R.Gonzalez 14 10 74 Reticulum galaxy    
2683 2583 04 34 24 -58 59 75m 103a - D   5" Demers / R.Gonzalez 14 10 74 Reticulum galaxy    
2684 2584 00 58 30 -33 50 180m 103a - D   3" Demers / Kunkel / R.Gonzalez 15 10 74 Sculptor galaxy    
2685 2585 04 34 24 -58 59 62m 103a - O   3" Demers / Kunkel / R.Gonzalez 15 10 74 Reticulum galaxy    
2686 2586 04 34 24 -58 59 40m 103a - D     Demers / Kunkel / R.Gonzalez 15 10 74 Reticulum galaxy    
2687 2587 04 34 24 -58 59 40m 103a - O     Demers / Kunkel / R.Gonzalez 15 10 74 Reticulum galaxy    

 

Last Updated on 8/27/99

By Guerra & Marin

December

December 1974 Plate logs for 1.5-m telescope


Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
2688 2588 04 58 48 -66 02 40m 103a - O   1.5" Graham / Poblete / Rojas 17 12 74 NGC 1783    
2689 2589 04 58 48 -66 02 40m 103a - O   1.5" Graham / Poblete / Rojas 17 12 74 NGC 1783    
2690 2590 04 58 48 -66 02 40m 103a - O   1.5" Graham / Poblete / Rojas 17 12 74 NGC 1783    
2691 2591 04 58 48 -66 02 40m 103a - O   1" Graham / Poblete / Rojas 17 12 74 NGC 1783    
2692 2592 04 58 48 -66 02 40m 103a - O   1" Graham / Poblete / Rojas 17 12 74 NGC 1783    
2693 2593 04 58 48 -66 02 40m 103a - O   1" - 1.5" Graham / Poblete / Rojas 17 12 74 NGC 1783    
2694 2594 04 58 48 -66 02 40m 103a - O GG 385 1" Graham / Poblete / Rojas 17 12 74 NGC 1783    
2695 2595 04 58 48 -66 02 40m 103a - O GG 385 > 1" Graham / Poblete / Rojas 18 12 74 NGC 1783    
2696 2596 04 58 48 -66 02 40m 103a - O GG 385 > 1" Graham / Poblete / Rojas 18 12 74 NGC 1783    
2697 2597 04 58 48 -66 02 40m 103a - O GG 385 < 1" Graham / Poblete / Rojas 18 12 74 NGC 1783    
2698 2598 04 58 48 -66 02 60m 103a - D GG 495 > 1" Graham / Poblete / Rojas 18 12 74 NGC 1783    
2699 2599 04 58 48 -66 02 40m 103a - O GG 385 > 1.5" Graham / Poblete / Rojas 18 12 74 NGC 1783    
2700 2600 04 58 48 -66 02 40m 103a - O GG 385 1.5" Graham / Poblete / Rojas 18 12 74 NGC 1783    
2701 2601 04 58 48 -66 02 40m 103a - O GG 385 1.5" Graham / Poblete / Rojas 18 12 74 NGC 1783    
2702 2602 cenit -30 00 12s each 103a - D GG 385 5" Cosgrove 27 12 74 focus plate    
2703 2603 08 36 12 -30 00 12s each 103a - D   5" Cosgrove 27 12 74 focus plate    
2704 2604 01 26 36 -30 00 12s each 103a - D   5" Cosgrove 27 12 74 focus plate    
2705 2605 05 42 30 +20 00 12s each 103a - D   5" Cosgrove 27 12 74 focus plate    
2706 2606 06 12 42 -75 00 12s each 103a - D   5" Cosgrove 27 12 74 focus plate    
2707 2607 09 35 12 -30 00 12s each lla - O   3" Cosgrove 27 12 74 focus plate    
2708 2608 10 57 36 -75 00 12s each lla - O   3" Cosgrove 27 12 74 focus plate    
2709 2609 04 02 48 -30 00 12s each 103a - O   2" Cosgrove 28 12 74 focus plate    
2710 2610 08 17 00 -30 00 12s each 103a - O   2" Cosgrove 28 12 74 focus plate    
2711 2611 01 25 00 -30 00 12s each 103a - O   2" Cosgrove 28 12 74 focus plate    
2712 2612 06 01 12 -75 00 12s each 103a - O   2" Cosgrove 28 12 74 focus plate    
2713 2613 07 06 06 +20 00 12s each 103a - O   2" Cosgrove 28 12 74 focus plate    

 

Last Updated on 8/27/99

By Jorge Marin

1975

1975 Plate logs for 1.5-m telescope

January

January 1975 Plate logs for 1.5-m telescope

 


Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
2714 2614 05 37 36 -70 12 20m 103a - D GG 14 2" Flower / Pinto 21 01 75 focus plate    
2715 2615 05 37 36 -70 12 20m 103a - O GG 13 3" Flower / Pinto 21 01 75 focus plate    
2716 2616 05 37 36 -70 12 60m 103a - D GG 14 3" Flower / Pinto 21 01 75 focus plate    
2717 2617 05 37 36 -70 12 60m 103a - O   3" Flower / Pinto 21 01 75 focus plate    
2718 2618 05 37 36 -70 12 90m 103a - D   3" Flower / Pinto 21 01 75 focus plate    
2719 2619 05 37 36 -70 12 20m 103a - O   3" Flower / Pinto 21 01 75 focus plate    
2720 2620 05 37 36 -70 12 20m 103a - D   3" Flower / Pinto 21 01 75 focus plate    

 

Last Updated on 8/27/99

By Guerra & Marin

February

February 1975 Plate logs for 1.5-m telescope

 


Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
2721 2621 05 13 12 -40 03 10m 103a - O GG 385 5" Mrs.Liller / Ríos 03 02 75 NGC 1851    
2722 2622 06 15 42 +09 08 20m 103a - O GG 385 4" - 5" Mrs.Liller / Ríos 03 02 75 0614 + 09    
2723 2623 09 11 24 -64 45 10m 103a - O GG 385 5" - 6" Mrs.Liller / Ríos 03 02 75 2808    
2724 2624 06 48 06 -35 59 10m 103a - O GG 385 5" - 6" Mrs.Liller / Ríos 03 02 75 NGC 2298    
2725 2625 09 11 24 -64 45 10m 103a - O GG 385 5" - 6" Mrs.Liller / Ríos 03 02 75 2808    
2726 2626 15 18 43 -57 04 60m 098 - 04 RG 1 4" - 5" Mrs.Liller / Ríos 03 02 75 Cir X - 1    
2727 2627 15 37 33 -52 15 30m 098 - 04 RG 1 4" - 5" Mrs.Liller / Ríos 03 02 75 Nova Normae    
2728 2628 05 13 12 -40 03 10m 103a - O GG 385 2" - 3" Mrs.Liller / Ríos 04 02 75 NGC 1851    
2729 2629 06 48 06 -35 59 10m 103a - O GG 385 2" - 3" Mrs.Liller / Ríos 04 02 75 NGC 2298    
2730 2630 09 11 24 -64 45 10m 103a - O GG 385 2" - 3" Mrs.Liller / Ríos 04 02 75 NGC 2808    
2731 2631 06 15 42 +09 08 30m 103a - O GG 385 2" - 3" Mrs.Liller / Ríos 04 02 75 0614 + 09    
2732 2632 05 38 06 -44 06 10m 103a - O GG 385 2" Mrs.Liller / Ríos 04 02 75 537 - 44    
2733 2633 12 24 30 -72 32 10m 103a - O GG 385 2" Mrs.Liller / Ríos 04 02 75 NGC 4372    
2734 2634 05 13 12 -40 03 10m 103a - O GG 385 2" Mrs.Liller / Ríos 04 02 75 NGC 1851    
2735 2635 06 48 06 -35 59 10m 103a - O GG 385 2" Mrs.Liller / Ríos 04 02 75 NGC 2298    
2736 2636 08 30 30 +04 35 10m 103a - O GG 385 2" Mrs.Liller / Ríos 04 02 75 MA 0829 + 04    
2737 2637 09 11 24 -64 45 10m 103a - O GG 385 2" Mrs.Liller / Ríos 04 02 75 NGC 2808    
2738 2638 12 24 30 -72 32 10m 103a - O GG 385 2" Mrs.Liller / Ríos 04 02 75 NGC 4372    
2739 2639 13 23 54 -42 53 30m 098 - 04 RG 1 2" Mrs.Liller / Ríos 04 02 75 Cent A    
2740 2640 15 18 43 -57 04 60m 098 - 04 RG 1 2" Mrs.Liller / Ríos 04 02 75 Cir X - 1    
2741 2641 05 09 00 -69 00 40m 103a - D GG 14 3" Ríos 08 02 75 -69º 5:09    
2742 2642 05 09 00 -69 00 40m 103a - D GG 14 3" Ríos 08 02 75 -69º 5:09    
2743 2643 05 09 00 -69 00 40m 1 N RG 8 3" - 5" Ríos 08 02 75 -69º 5:09    
2744 2644 cenit -30 00 10s each 103a - D   3" Ríos 08 02 75 focus plate    
2745 2645 07 50 44 -40 00 10s each 103a - D   3" Ríos 08 02 75 focus plate    
2746 2646 16 22 57 -40 00 10s each 103a - D   3" Ríos 08 02 75 focus plate    
2747 2647 12 55 50 -70 00 10s each 103a - D   3" Ríos 08 02 75 focus plate    
2748 2648 03 11 42 -55 23 10m 103a - O GG 385 2" Mrs.Liller / Pinto 17 02 75 NGC 1261    
2749 2649 09 11 24 -64 45 10m 103a - O GG 385 2" Mrs.Liller / Pinto 17 02 75 NGC 2808    
2750 2650 06 15 42 +09 08 30m 103a - O GG 385 2" Mrs.Liller / Pinto 17 02 75 3U 0614    
2751 2651 05 13 12 -40 03 10m 103a - O GG 385 2" Mrs.Liller / Pinto 17 02 75 NGC 1851    
2752 2652 06 48 06 -35 59 10m 103a - O GG 385 2" Mrs.Liller / Pinto 17 02 75 NGC 2298    
2753 2653 09 11 24 -64 45 10m 103a - O GG 385 2" Mrs.Liller / Pinto 17 02 75 NGC 2808    
2754 2654 12 24 30 -72 32 10m 103a - O GG 385 2" - 3" Mrs.Liller / Pinto 17 02 75 NGC 4372    
2755 2655 05 13 12 -40 03 10m 103a - O GG 385 2" - 3" Mrs.Liller / Pinto 17 02 75 NGC 1851    
2756 2656 06 48 06 -35 59 10m 103a - O GG 385 2" - 3" Mrs.Liller / Pinto 17 02 75 NGC 2298    
2757 2657 13 23 54 -42 53 30m 098 - 04 RG 1 2" - 3" Mrs.Liller / Pinto 17 02 75 Cent A    
2758 2658 14 28 18 -55 12 15m 103a - O GG 385 2" - 3" Mrs.Liller / Pinto 17 02 75 NGC 5634    
2759 2659 15 18 42 -57 04 60m 098 - 04 RG 1 2" - 3" Mrs.Liller / Pinto 17 02 75 Cir X - 1    
2760 2660 14 28 18 -55 02 15m 103a - O GG 385 2" - 3" Mrs.Liller / Pinto 17 02 75 NGC 5634    
2761 2661 03 11 42 -55 23 10m 103a - D GG 14   Mrs.Liller / Pinto 18 02 75 NGC 1261    
2762 2662 03 11 42 -55 23 10m 103a - O GG 385   Mrs.Liller / Pinto 18 02 75 NGC 1261    
2763 2663 06 48 06 -35 59 10m 103a - O GG 385   Mrs.Liller / Pinto 18 02 75 NGC 2298    
2764 2664 09 11 24 -64 45 10m 103a - O GG 385   Mrs.Liller / Pinto 18 02 75 NGC 2808    
2765 2665 06 15 42 +09 08 30m 103a - O GG 385   Mrs.Liller / Pinto 18 02 75 3U 0614    
2766 2666 05 13 12 -40 03 10m 103a - D GG 14   Mrs.Liller / Pinto 18 02 75 NGC 1851    
2767 2667 05 13 12 -40 03 10m 103a - O GG 385   Mrs.Liller / Pinto 18 02 75 NGC 1851    
2768 2668 06 48 06 -35 59 10m 103a - O GG 385   Mrs.Liller / Pinto 18 02 75 NGC 2298    
2769 2669 09 11 24 -64 45 10m 103a - O GG 385   Mrs.Liller / Pinto 18 02 75 NGC 2808    
2770 2670 12 24 30 -72 32 10m 103a - O GG 385   Mrs.Liller / Pinto 18 02 75 NGC 4372    
2771 2671 14 28 18 -05 52 15m 103a - O GG 385   Mrs.Liller / Pinto 18 02 75 NGC 5634    
2772 2672 15 18 42 -57 04 60m 098 - 4 RG 1   Mrs.Liller / Pinto 18 02 75 Cir X - 1    
2773 2673 15 45 36 -47 47 25m 098 - 4 RG 1   Mrs.Liller / Pinto 18 02 75 3U 1543    
2774 2674 14 28 18 -05 52 15m 103a - O GG 385   Mrs.Liller / Pinto 18 02 75 NGC 5634    

 

Last Updated on 8/27/99

By Guerra & Marin

April

April 1975 Plate logs for 1.5-m telescope

 


Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
2775 2675 10 44 00 -59 32 20m lla - O   1.5" J.Hesser / Pinto 20 04 75 eta Carina    
2776 2676 10 44 00 -59 32 10m lla - O   1.5" J.Hesser / Pinto 20 04 75 eta Carina    
2777 2677 13 25 24 -47 32 5m lla - O   1.5" J.Hesser / Pinto 20 04 75 omega Centauri    
2778 2678 13 25 24 -47 32 10m lla - O   1.5" J.Hesser / Pinto 20 04 75 omega Centauri    
2779 2679 13 25 24 -47 32 20m lla - O   1.5" J.Hesser / Pinto 20 04 75 omega Centauri    
2780 2680 13 25 24 -47 32 20m llla - J baked   1.5" J.Hesser / Pinto 20 04 75 omega Centauri    
2781 2681 17 13 18 -29 38 20m llla - J baked   1.5" J.Hesser / Pinto 20 04 75 NGC 6304    
2782 2682 17 13 18 -29 38 30m llla - J baked   1.5" J.Hesser / Pinto 20 04 75 NGC 6304    
2783 2683 17 23 48 -48 25 15m llla - J baked   1.5" J.Hesser / Pinto 20 04 75 NGC 6352    
2784 2684 17 23 48 -48 25 30m llla - J baked   2" J.Hesser / Pinto 20 04 75 NGC 6352    
2785 2685 17 48 48 -37 05 15m llla - J baked   2" J.Hesser / Pinto 20 04 75 NGC 6441    
2786 2686 17 48 48 -37 05 30m llla - J baked   2" J.Hesser / Pinto 20 04 75 NGC 6441    
2787 2687 18 02 00 -30 04 30m llla - J baked   2" J.Hesser / Pinto 20 04 75 NGC 6522    
2788 2688 18 02 00 -30 04 15m llla - J baked   2" J.Hesser / Pinto 20 04 75 NGC 6522    
2789 2689 18 02 00 -30 04 7.5m llla - J baked   2" J.Hesser / Pinto 20 04 75 NGC 6522    

 

Last Updated on 8/27/99

By Jorge Marin

June

June 1975 Plate logs for 1.5-m telescope

 

Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
2790 2690 22 28 00 -20 57 180m 098 - 02 RG 610 2" V.Blanco / Czuia 30 06 75 NGC 7293   CTIO

 

Last Updated on 8/27/99

By Guerra & Marin

October

October 1975 Plate logs for 1.5-m telescope

 


Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
2791 2691 19 43 54 -08 05 120m 103a - D GG 14 2" R.W.C / R.Gonzalez 06 10 75 Pal 11    
2792 2692 21 45 00 -21 21 120m 103a - D     R.W.C / R.Gonzalez 06 10 75 Pal 12    
2793 2693 21 45 00 -21 21 60m 103a - O GG 13   R.W.C / R.Gonzalez 06 10 75 Pal 12    
2794 2694 00 52 00 -26 44 60m 103a - O     R.W.C / R.Gonzalez 06 10 75 NGC 298    
2795 2695 05 23 00 -24 32 75m 103a - D GG 14   R.W.C / R.Gonzalez 06 10 75 NGC 1904    
2796 2696 19 43 54 -08 05 80m 103a - O GG 385   R.W.C / R.Gonzalez 07 10 75 Pal 11    
2797 2697 19 43 54 -08 05 35m 103a - D GG 14   R.W.C / R.Gonzalez 07 10 75 Pal 11    
2798 2698 21 45 00 -21 21 60m 103a - D GG 14   R.W.C / R.Gonzalez 07 10 75 Pal 12    
2799 2699 21 45 00 -21 21 60m 103a - O GG 385   R.W.C / R.Gonzalez 07 10 75 Pal 12    
2800 2700 05 23 00 -24 32 60m 103a - O GG 385   R.W.C / R.Gonzalez 07 10 75 NGC 1904    
2801 2701 05 23 00 -24 32 70m 103a - D GG 14   R.W.C / R.Gonzalez 07 10 75 NGC 1904    

 

Last Updated on 8/27/99

By Guerra & Marin

December

December 1975 Plate logs for 1.5-m telescope

 


Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
2802 2702 00 51 24 -26 44 30m 103a - D GG 14   McClure / Pinto 13 12 75 NGC 288    
2803 2703 00 51 24 -26 44 34m 103a - D GG 14   McClure / Pinto 13 12 75 NGC 288    
2804 2704 00 51 24 -26 44 40m 103a - D GG 14   McClure / Pinto 13 12 75 NGC 288    
2805 2705 00 51 24 -26 44 40m 103a - D GG 14   McClure / Pinto 13 12 75 NGC 288    
2806 2706 07 58 42 -10 43 45m 103a - D GG 14   McClure / Pinto 13 12 75 NGC 2506    
2807 2707 07 58 42 -10 43 45m 103a - D GG 14   McClure / Pinto 13 12 75 NGC 2506    
2808 2708 07 58 42 -10 43 45m 103a - D GG 14   McClure / Pinto 13 12 75 NGC 2506    
2809 2709 07 58 42 -10 43 76m llla - J GG 385   McClure / Pinto 13 12 75 NGC 2506    

 

Last Updated on 8/27/99

By Guerra & Marin

1976

1976 Plate logs for 1.5-m telescope

July

July 1976 Plate logs for 1.5-m telescope

 


Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
2810 2710 18 03 50 -29 30 10s each 103a - D     O.Saá 13 07 76 focus Nº1    
2811 2711 20 05 30 -35 40 10s each 103a - D     O.Saá 13 07 76 focus Nº2    
2812 2712 19 48 00 +08 46 5m 103a - D     O.Saá 13 07 76 alpha Aql    
2813 2713 22 56 00 -29 45 5m 103a - D     O.Saá 13 07 76 alpha PsA    
2814 2714 22 56 00 -29 45 10m 103a - D     O.Saá 14 07 76 alpha PsA    

 

Last Updated on 8/27/99

By Guerra & Marin

August

August 1976 Plate logs for 1.5-m telescope

 


Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
2815 2715 18 56 42 -08 44 2m llla - J   1.5" Carney / Czuia 20 08 76 NGC 6712    
2816 2716 18 56 42 -08 44 10m llla - J   1.5" Carney / Czuia 20 08 76 NGC 6712    
2817 2717 18 56 42 -08 44 0.3m llla - J   1.5" Carney / Czuia 20 08 76 NGC 6712    
2818 2718 19 08 00 -60 02 30m 103a - O GG 385 3" Carney / Czuia 21 08 76 NGC 6752    
2819 2719 19 08 00 -60 02 35m 103a - D GG 14 3" - 4" Carney / Czuia 21 08 76 NGC 6752    
2820 2720 00 55 24 -72 37 30m 103a - D GG 14 3" - 4" Carney / Czuia 21 08 76 NGC 330    
2821 2721 00 55 24 -72 37 30m 103a - D GG 14 3" - 4" Carney / Czuia 21 08 76 NGC 330    
2822 2722 00 55 24 -72 37 40m 103a - O UG 2 3" - 4" Carney / Czuia 21 08 76 NGC 330    
2823 2723 00 55 24 -72 37 6m 103a - O UG 2 3" - 4" Carney / Czuia 21 08 76 NGC 330    
2824 2724 00 55 24 -72 37 10m 103a - O UG 2 3" - 4" Carney / Czuia 21 08 76 NGC 330    
2825 2725 00 55 24 -72 37 15m 103a - O GG 385 3" - 4" Carney / Czuia 21 08 76 NGC 330    
2826 2726 00 55 24 -72 37 10m 103a - O GG 385 3" - 4" Carney / Czuia 21 08 76 NGC 330    
2827 2727 00 55 24 -72 37 5m 103a - O GG 385 3" - 4" Carney / Czuia 21 08 76 NGC 330    
2828 2728 00 55 24 -72 37 5m 103a - O GG 385 3" - 4" Carney / Czuia 21 08 76 NGC 330    
2829 2729 00 55 24 -72 37 5m 103a - D GG 14 3" - 4" Carney / Czuia 21 08 76 NGC 330    
2830 2730 00 55 24 -72 37 5m 103a - D GG 14 3" Carney / Czuia 21 08 76 NGC 330    
2831 2731 00 23 06 -72 11 10m 103a - D GG 14   Carney / Czuia 21 08 76 NGC 104 (47 Tuc)    

 

Last Updated on 8/27/99

By Jorge Marin

September

September 1976 Plate logs for 1.5-m telescope

 


Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
2832 2732 00 51 12 -26 46 15m 103a - D GG 14 3" - 4" Canterna 02 09 76 NGC 288    
2833 2733 00 51 12 -26 46 90m 103a - D GG 14 3" - 4" Canterna 02 09 76 NGC 288    

 

Last Updated on 8/27/99

By Guerra & Marin

1977

1977 Plate logs for 1.5-m telescope

June

June 1977 Plate logs for 1.5-m telescope

Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
2834 2734 15:05:00 -30:00 10s each 103a - D GG 495 1.5" V.Blanco / Czuia 07 06 77 Focus plate Broken Ok" CTIO
2835 2735 15 05 00 -30 00 10s each 103a - O GG 385 1.5" V.Blanco / Czuia 07 06 77 Focus plate Broken Ok" CTIO
2836 2736 18 02 18 -30 01 20m 103a - O GG 385 1.5" V.Blanco / Czuia 07 06 77 NGC 6522 Broken Ok" CTIO
2837 2737 18 02 18 -30 01 30m 103a - D GG 495 2" V.Blanco / Czuia 07 06 77 NGC 6522 Broken Ok" CTIO
2838 2738 18 02 18 -30 01 53 20m 103a - O GG 385 1.5" V.Blanco / Czuia 07 06 77 NGC 6522    
2839 2739 18 02 18 -30 01 53 30m 103a - D GG 495 1.5" V.Blanco / Czuia 07 06 77 NGC 6522   CTIO
2840 2740 18 02 18 -30 01 53 15m 103a - O GG 385 1.5" V.Blanco / Czuia 07 06 77 NGC 6522   CTIO
2841 2741 18 02 18 -30 01 53 20m 103a - D GG 495 1.5" V.Blanco / Czuia 07 06 77 NGC 6522 Broken Ok" CTIO
2842 2742 18 02 18 -30 01 53 15m 103a - O GG 385 1.5" V.Blanco / Czuia 07 06 77 NGC 6522   CTIO
2843 2743 18 02 18 -30 01 53 30m 103a - D GG 495 1.5" V.Blanco / Czuia 07 06 77 NGC 6522   CTIO
2844 2744 18 02 18 -30 01 20m 103a - O GG 385 1.5" V.Blanco / Czuia 07 06 77 NGC 6522 Broken Ok" CTIO
2845 2745 18 02 18 -30 01 30m 103a - O GG 385 1.5" V.Blanco / Czuia 07 06 77 NGC 6522   CTIO
2846 2746 18 02 18 -30 01 30m IN RG 695 1.5" V.Blanco / Czuia 08 06 77 NGC 6522   CTIO
2847 2747 18 02 22 -30 01 33 20m 103a - O GG 385 1.3" V.Blanco / Czuia 08 06 77 NGC 6522   CTIO
2848 2748 18 02 22 -30 01 33 30m 103a - D GG 495 1.3" V.Blanco / Czuia 08 06 77 NGC 6522   CTIO
2849 2749 18 02 22 -30 01 33 20m 098 - O4 RG 610 1.3" V.Blanco / Czuia 08 06 77 NGC 6522   CTIO
2850 2750 18 02 22 -30 01 33 20m 103a - O GG 385 1.3" V.Blanco / Czuia 08 06 77 NGC 6522   CTIO
2851 2751 18 02 22 -30 01 33 30m 103a - D GG 495 1.3" V.Blanco / Czuia 08 06 77 NGC 6522   CTIO
2852 2752 18 02 22 -30 01 33 20m 103a - O GG 385 1" V.Blanco / Czuia 08 06 77 NGC 6522 Broken Ok" ??? CTIO
2853 2753 18 02 22 -30 01 33 30m 103a - D GG 495 1" V.Blanco / Czuia 08 06 77 NGC 6522 Broken Ok" CTIO
2854 2754 18 02 22 -30 01 33 20m 103a - O GG 385 1.5" V.Blanco / Czuia 08 06 77 NGC 6522   CTIO
2855 2755 18 02 22 -30 01 33 30m 103a - D GG 495 1.5" V.Blanco / Czuia 08 06 77 NGC 6522   CTIO
2856 2756 18 02 22 -30 01 33 20m 103a - O GG 385 1.5" V.Blanco / Czuia 08 06 77 NGC 6522   CTIO
2857 2757 18 02 22 -30 01 33 30m 103a - D GG 495 1.5" V.Blanco / Czuia 08 06 77 NGC 6522   CTIO
2858 2758 18 02 22 -30 01 33 20m 103a - O GG 385 1.5" V.Blanco / Czuia 08 06 77 NGC 6522   CTIO
2859 2759 18 02 22 -30 01 33 30m 103a - D GG 495 2" V.Blanco / Czuia 08 06 77 NGC 6522   CTIO
2860 2760 18 02 22 -30 01 33 20m 103a - O GG 385 2" V.Blanco / Czuia 08 06 77 NGC 6522   CTIO
2861 2761 18 02 22 -30 01 33 20m 103a - D GG 495 2.5" V.Blanco / Czuia 08 06 77 NGC 6522   CTIO
2862 2762 18 02 22 -30 01 33 20m 103a - O GG 385 2" V.Blanco / Czuia 08 06 77 NGC 6522   CTIO

 

Last Updated on 8/27/99

By Guerra & Marin

July

July 1977 Plate logs for 1.5-m telescope

 


Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
2863 2763 18 02 00 -30 14 20m 103a - O GG 385 2" - 3" Blanco / Zemelman 09 07 77 NGC 6522   CTIO
2864 2764 18 02 00 -30 14 20m 103a - O GG 385 2" - 3" Blanco / Zemelman 09 07 77 NGC 6522   CTIO
2865 2765 18 02 00 -30 14 20m 103a - O GG 385 2" - 3" Blanco / Zemelman 09 07 77 NGC 6522   CTIO
2866 2766 18 02 00 -30 14 30m 103a - D GG 495 2" - 3" Blanco / Zemelman 09 07 77 NGC 6522   CTIO
2867 2767 18 02 00 -30 14 20m 103a - O GG 385 2" - 3" Blanco / Zemelman 09 07 77 NGC 6522   CTIO
2868 2768 18 02 00 -30 14 30m 103a - D GG 495 2" - 3" Blanco / Zemelman 09 07 77 NGC 6522   CTIO
2869 2769 18 02 00 -30 14 20m 103a - O GG 385 2" - 3" Blanco / Zemelman 09 07 77 NGC 6522   CTIO
2870 2770 18 02 00 -30 14 30m 103a - D GG 495 2" - 3" Blanco / Zemelman 09 07 77 NGC 6522   CTIO
2871 2771 18 02 00 -30 14 20m 103a - O GG 385 2" Blanco / Zemelman 09 07 77 NGC 6522   CTIO
2872 2772 18 02 00 -30 14 30m 103a - D GG 495 2" Blanco / Zemelman 09 07 77 NGC 6522   CTIO
2873 2773 18 02 00 -30 14 20m 103a - O GG 385 2" Blanco / Zemelman 09 07 77 NGC 6522   CTIO
2874 2774 18 02 00 -30 14 30m 103a - D GG 495 1.5" - 2" Blanco / Zemelman 09 07 77 NGC 6522   CTIO
2875 2775 18 02 00 -30 14 20m 103a - O GG 385 3" Blanco / Zemelman 09 07 77 NGC 6522   CTIO
2876 2776 18 02 00 -30 14 30m 103a - D GG 495 3" Blanco / Zemelman 09 07 77 NGC 6522   CTIO
2877 2777 18 02 00 -30 14 20m 103a - O GG 385 3" Blanco / Zemelman 09 07 77 NGC 6522   CTIO
2878 2778 18 02 00 -30 14 20m 103a - O GG 385 2" - 3" Blanco / Zemelman / M.N 10 07 77 NGC 6522   CTIO
2879 2779 18 02 00 -30 14 20m 103a - O GG 385 2" Blanco / Zemelman / M.N 10 07 77 NGC 6522   CTIO
2880 2780 18 02 00 -30 14 20m 103a - O GG 495 2" - 3" Blanco / Zemelman / M.N 10 07 77 NGC 6522 Broken Ok" CTIO
2881 2781 18 02 00 -30 14 30m 103a - D GG 495 2" - 3" Blanco / Zemelman / M.N 10 07 77 NGC 6522 Broken Ok" CTIO
2882 2782 18 02 00 -30 14 20m 103a - O GG 495 1.5" V.Blanco / R.Gonzalez 16 07 77 NGC 6522 Broken Ok" CTIO
2883 2783 18 02 00 -30 14 30m 103a - D GG 495 1.5" V.Blanco / R.Gonzalez 16 07 77 NGC 6522 Broken Ok" CTIO
2884 2784 18 02 00 -30 14 20m 103a - O GG 495 1.5" V.Blanco / R.Gonzalez 17 07 77 NGC 6522 Broken Ok" CTIO
2885 2785 18 02 00 -30 14 30m 103a - D GG 495 1.5" V.Blanco / R.Gonzalez 17 07 77 NGC 6522   CTIO
2886 2786 18 02 00 -30 14 20m 103a - O GG 495 1.5" V.Blanco / R.Gonzalez 17 07 77 NGC 6522   CTIO
2887 2787 18 02 00 -30 14 30m 103a - D GG 495 1.5" V.Blanco / R.Gonzalez 17 07 77 NGC 6522   CTIO
2888 2788 18 02 00 -30 14 20m 103a - O GG 495 1.5" V.Blanco / R.Gonzalez 17 07 77 NGC 6522   CTIO
2889 2789 18 02 00 -30 14 30m 103a - D GG 495 1.5" V.Blanco / R.Gonzalez 17 07 77 NGC 6522   CTIO
2890 2790 18 02 00 -30 14 20m 103a - O GG 495 2.5" V.Blanco / R.Gonzalez 17 07 77 NGC 6522   CTIO
2891 2791 18 02 00 -30 14 30m 103a - D GG 495 2.5" V.Blanco / R.Gonzalez 17 07 77 NGC 6522   CTIO
2892 2792 18 02 00 -30 14 20m 103a - O GG 495 1.5" - 3" V.Blanco / R.Gonzalez 17 07 77 NGC 6522   CTIO
2893 2793 18 02 00 -30 14 30m 103a - D GG 495 1.5" - 3" V.Blanco / R.Gonzalez 17 07 77 NGC 6522   CTIO
2894 2794 18 02 00 -30 14 20m 103a - O GG 495 1.5" - 3" V.Blanco / R.Gonzalez 17 07 77 NGC 6522 Broken Ok" CTIO
2895 2795 18 02 00 -30 14 30m 103a - D GG 495 2" - 4" V.Blanco / R.Gonzalez 17 07 77 NGC 6522 Broken Ok" CTIO
2896 2796 18 02 00 -30 14 20m 103a - O GG 495 2" - 6" V.Blanco / R.Gonzalez 17 07 77 NGC 6522   CTIO
2897 2797 18 02 00 -30 14 20m 103a - O GG 385 1.5" V.Blanco / R.Gonzalez 17 07 77 NGC 6522 Broken Ok" CTIO
2898 2798 18 02 00 -30 14 30m 103a - D GG 495 1.5" V.Blanco / R.Gonzalez 17 07 77 NGC 6522   CTIO
2899 2799 18 02 00 -30 14 20m 103a - O GG 385 1.5" V.Blanco / R.Gonzalez 18 07 77 NGC 6522 Broken Ok" CTIO
2900 2800 18 02 00 -30 14 30m 103a - D GG 495 1.5" V.Blanco / R.Gonzalez 18 07 77 NGC 6522 Broken Ok" CTIO
2901 2801 18 02 00 -30 14 20m 103a - O GG 385 1.5" V.Blanco / R.Gonzalez 18 07 77 NGC 6522   CTIO
2902 2802 18 02 00 -30 14 30m 103a - D GG 495 1.5" V.Blanco / R.Gonzalez 18 07 77 NGC 6522   CTIO
2903 2803 18 02 00 -30 14 20m 103a - O GG 385 1.5" V.Blanco / R.Gonzalez 18 07 77 NGC 6522   CTIO
2904 2804 18 02 00 -30 14 30m 103a - D GG 495 1.5" V.Blanco / R.Gonzalez 18 07 77 NGC 6522   CTIO
2905 2805 18 02 00 -30 14 20m 103a - O GG 385 1.5" V.Blanco / R.Gonzalez 18 07 77 NGC 6522   CTIO
2906 2806 18 02 00 -30 14 30m 103a - D GG 495 1.5" V.Blanco / R.Gonzalez 18 07 77 NGC 6522   CTIO
2907 2807 18 02 00 -30 14 20m 103a - O GG 385 1.5" V.Blanco / R.Gonzalez 18 07 77 NGC 6522 Broken Ok" CTIO
2908 2808 18 02 00 -30 14 30m 103a - D GG 495 1.5" V.Blanco / R.Gonzalez 18 07 77 NGC 6522   CTIO
2909 2809 18 02 00 -30 14 20m 103a - O GG 385 1.5" V.Blanco / R.Gonzalez 18 07 77 NGC 6522   CTIO
2910 2810 18 02 00 -30 14 30m 103a - D GG 495 1.5" - 3" V.Blanco / R.Gonzalez 18 07 77 NGC 6522   CTIO
2911 2811 18 02 00 -30 14 20m 103a - O GG 385 2" - 3" V.Blanco / R.Gonzalez 18 07 77 NGC 6522 Broken Ok" CTIO
2912 2812 18 02 00 -30 14 20m 103a - O GG 385 1" - 2" V.Blanco / R.Gonzalez 18 07 77 NGC 6522   CTIO
2913 2813 18 02 00 -30 14 30m 103a - D GG 495 2" V.Blanco / R.Gonzalez 18 07 77 NGC 6522   CTIO
2914 2814 18 02 00 -30 14 20m 103a - O GG 385 3" V.Blanco / R.Gonzalez 19 07 77 NGC 6522   CTIO
2915 2815 18 02 00 -30 14 30m 103a - D GG 495 3" V.Blanco / R.Gonzalez 19 07 77 NGC 6522   CTIO
2916 2816 18 02 00 -30 14 20m 103a - O GG 385 3" - 4" V.Blanco / R.Gonzalez 19 07 77 NGC 6522   CTIO
2917 2817 18 02 00 -30 14 30m 103a - D GG 495 3" - 4" V.Blanco / R.Gonzalez 19 07 77 NGC 6522   CTIO
2918 2818 18 02 00 -30 14 20m 103a - O GG 385 3" - 4" V.Blanco / R.Gonzalez 19 07 77 NGC 6522   CTIO
2919 2819 18 02 00 -30 14 30m 103a - D GG 495 5" V.Blanco / R.Gonzalez 19 07 77 NGC 6522   CTIO

 

Last Updated on 8/27/99

By Guerra & Marin

1978

1978 Plate logs for 1.5-m telescope

March

March 1978 Plate logs for 1.5-m telescope


Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
2920 2820 05 32 44 -66 23 03 30m llla - J baked   2" D.Crampton / A.Cowley / D.Maturana 10 03 78 LMC X - 1    
2921 2821 09 19 40 -55 05 39 90m llla - J baked   2" D.Crampton / A.Cowley / D.Maturana 10 03 78 250918 - 549    
2922 2822 09 24 20 -31 35 06 90m llla - J baked   2" D.Crampton / A.Cowley / D.Maturana 10 03 78 400923 - 31    
2923 2823 12 40 31 -60 03 30 105m llla - J baked   2" D.Crampton / A.Cowley / D.Maturana 10 03 78 251239 - 599    
2924 2824 15 40 28 -52 18 10 72m llla - J baked   2" D.Crampton / A.Cowley / D.Maturana 10 03 78 251538 - 522    
2925 2825 05 39 52 -69 46 52 30m llla - J baked   2" D.Crampton / A.Cowley / D.Maturana 11 03 78 LMC X - 1    
2926 2826 05 20 45.2 -71 59 46 60m llla - J baked   2" D.Crampton / A.Cowley / D.Maturana 11 03 78 LMC X - 2    
2927 2827 09 19 40 -55 05 39 120m llla - J baked   3" D.Crampton / A.Cowley / D.Maturana 11 03 78 250918 - 549    
2928 2828 11 23 54 -59 11 40 90m llla - J baked   3" D.Crampton / A.Cowley / D.Maturana 11 03 78 #1122 - 59    
2929 2829 14 09 05 -62 02 06 90m llla - J baked   3" D.Crampton / A.Cowley / D.Maturana 11 03 78 MX 1406 - 61    
2930 2830 16 34 13.4 -64 27 59 90m llla - J baked   3" - 4" D.Crampton / A.Cowley / D.Maturana 11 03 78 2A 1631 - 644    
2931 2831 05 39 04.9 -64 06 58 90m llla - J baked   3" - 4" D.Crampton / A.Cowley / D.Maturana 12 03 78 LMC X - 3    
2932 2832 08 37 02 -42 42 00 90m llla - J baked   3" - 4" D.Crampton / A.Cowley / D.Maturana 12 03 78 4U 0836 - 42    
2933 2833 12 55 55 -69 09 05 90m llla - J baked   3" D.Crampton / A.Cowley / D.Maturana 12 03 78 251254 - 690    
2934 2834 13 29 13 -08 29 32 5m llla - J baked   4" D.Crampton / A.Cowley / D.Maturana 12 03 78 W 485    
2935 2835 15 45 46 -62 29 02 90m llla - J baked   4" D.Crampton / A.Cowley / D.Maturana 12 03 78 251553 - 624    
2936 2836 15 55 48 -54 20 20 120m llla - J baked     D.Crampton / A.Cowley / D.Maturana 12 03 78 251553 - 542    
2937 2837 09 36 14 -37 14 50 15m llla - J baked   4" - 5" D.Crampton / A.Cowley / D.Maturana 13 03 78 LDS 275 AB    
2938 2838 08 37 02 -42 42 00 90m llla - J baked   4" - 5" D.Crampton / A.Cowley / D.Maturana 13 03 78 4 U 0836 - 42    
2939 2839 10 37 10 -56 41 00 90m llla - J baked   4" - 5" D.Crampton / A.Cowley / D.Maturana 13 03 78 4 U 1036 - 56    
2940 2840 12 55 55 -69 09 05 120m llla - J baked   4" D.Crampton / A.Cowley / D.Maturana 13 03 78 251254 - 690    
2941 2841 15 58 55 -60 39 55 90m llla - J baked   4" D.Crampton / A.Cowley / D.Maturana 13 03 78 251556 - 605    
2942 2842 16 26 29 -49 08 53 100m llla - J baked   3" D.Crampton / A.Cowley / D.Maturana 13 03 78 251624 - 490    
  2843 17 02 23 -37 49 16 90s / 30s llla - J baked   3" D.Crampton / A.Cowley / D.Maturana 13 03 78 3 U 1700 - 37    
  2844 09 24 20 -31 35 06 90m llla - J baked   3" D.Crampton / A.Cowley / D.Maturana 14 03 78 4 U 0923 - 31    
  2845 11 38 44 -65 15 47 90m llla - J baked   3" D.Crampton / A.Cowley / D.Maturana 14 03 78 4 U 1137 - 65    
  2846 12 10 22 -64 38 24 90m llla - J baked   3" D.Crampton / A.Cowley / D.Maturana 14 03 78 4 U 1210 - 64    
  2847 15 58 55 -60 39 54 90m llla - J baked   3" - 4" D.Crampton / A.Cowley / D.Maturana 14 03 78 251556 - 605    
  2848 16 26 30 -49 08 40 75m llla - J baked     D.Crampton / A.Cowley / D.Maturana 14 03 78 251624 - 490    
  2849 17 04 18.9 -36 23 35 70m llla - J baked     D.Crampton / A.Cowley / D.Maturana 14 03 78 251702 - 363    
  2850 17 51 32.3 -34 48 04 5m llla - J baked     D.Crampton / A.Cowley / D.Maturana 14 03 78 NGC 6475    
  2851 17 51 32.3 -34 48 04 0.5m llla - J baked     D.Crampton / A.Cowley / D.Maturana 14 03 78 NGC 6475    

 

Last Updated on 8/27/99

By Guerra & Marin

May

May 1978 Plate logs for 1.5-m telescope

 


Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
  2852 10 44 43 -64 12 52 40m 103a - D GG 14 4" - 10" A.Twarog / Poblete 07 05 78 theta Car cluster, IC 2602    
  2853 10 44 43 -64 12 52 45m 103a - O GG 385   A.Twarog / Poblete 07 05 78 theta Car cluster, IC 2602    
  2854 10 44 43 -64 12 52 45m 103a - O GG 385   A.Twarog / Poblete 07 05 78 theta Car cluster, IC 2602    
  2855 17 38 39 -32 11 55 120m 103a - O UG 2 2" -3" A.Twarog / Poblete 07 05 78 NGC 6405    
  2856 17 52 21 -34 46 30 120m 103a - O UG 2 1.5" A.Twarog / Poblete 07 05 78 NGC 6475    
  2857 17 52 21 -34 46 30 30m 103a - O GG 385 1.5" A.Twarog / Poblete 07 05 78 NGC 6475    
  2858 10 44 43 -64 12 52 60m 103a - D GG 495 1.5" A.Twarog / Poblete 08 05 78 IC 2602    
  2859 10 44 43 -64 12 52 120m 103a - O UG 2 4" A.Twarog / Poblete 08 05 78 IC 2602    
  2860 10 44 43 -64 12 52 120m 103a - O UG 2 3" - 4" A.Twarog / Poblete 08 05 78 IC 2602    
  2861 17 38 39 -32 11 55 60m 103a - D GG 495 3" - 4" A.Twarog / Poblete 08 05 78 NGC 6405    
  2862 17 38 39 -32 11 55 40m 103a - O GG 385 3" - 4" A.Twarog / Poblete 08 05 78 NGC 6405    
  2863 17 52 21 -34 46 30 75m 103a - D GG 495 3" - 4" A.Twarog / Poblete 08 05 78 NGC 6475    
  2864 17 52 21 -34 46 30 75m 103a - D GG 14 2.5" A.Twarog / Poblete 08 05 78 NGC 6475    
  2865 10 35 15 -64 17 34 60m 103a - D GG 14 2" A.Twarog / Poblete 09 05 78 IC 2602    
  2866 10 35 21 -64 17 30 120m 103a - O UG 2 2" A.Twarog / Poblete 09 05 78 IC 2602    
  2867 17 38 39 -32 11 55 40m 103a - O GG 385 2" A.Twarog / Poblete 09 05 78 IC 2602    
  2868 17 38 39 -32 11 55 40m 103a - O GG 385 3" A.Twarog / Poblete 09 05 78 NGC 6405    
  2869 17 38 39 -32 11 55 120m 103a - O UG 2   A.Twarog / Poblete 09 05 78 NGC 6405    
  2870 17 52 21 -34 46 30 120m 103a - O UG 2 1.5" A.Twarog / Poblete 09 05 78 NGC 6475    
  2871 17 52 21 -34 46 30 30m 103a - O GG 385 1.5" A.Twarog / Poblete 09 05 78 NGC 6475    
  2872 10 35 16 -64 17 34 60m 103a - D GG 14 2" A.Twarog / Poblete 10 05 78 IC 2602    
  2873 10 35 16 -64 17 34 120m 103a - O UG 2 1.5" - 4" A.Twarog / Poblete 10 05 78 IC 2602    
  2874 10 35 16 -64 17 34 40m 103a - O GG 385   A.Twarog / Poblete 10 05 78 IC 2602    
  2875 17 38 39 -32 11 55 60m 103a - D GG 14   A.Twarog / Poblete 10 05 78 NGC 6405    

 

Last Updated on 8/27/99

By Guerra & Marin

August

August 1978 Plate logs for 1.5-m telescope

 


Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
  2876 17 38 39 -32 11 55 60m lla - O GG 385 1.5" A.Twarog / Poblete 02 08 78 Sagitarius I   CTIO
  2877 17 52 21 -34 46 30 120m 103a - O UG 2   A.Twarog / Poblete 10 05 78 NGC 6475    
  2878 17 57 31 -29 08 47 30m lla - O GG 385 3" - 5" J.Ríos 03 08 78 Sagitarius I   CTIO
  2879 17 57 31 -29 08 47 20m lla - D GG 495 3" - 5" J.Ríos 03 08 78 Sagitarius I   CTIO
  2880 17 57 31 -29 08 47 30m lla - O GG 385 3" - 5" J.Ríos 03 08 78 Sagitarius I   CTIO
  2881 17 57 31 -29 08 47 20m lla - D GG 495 3" - 5" J.Ríos 03 08 78 Sagitarius I   CTIO
  2882 17 57 31 -29 08 47 30m lla - O GG 385 3" - 5" J.Ríos 03 08 78 Sagitarius I   CTIO
  2883 17 57 31 -29 08 47 20m lla - D GG 495 3" - 5" J.Ríos 03 08 78 Sagitarius I   CTIO
  2884 17 57 31 -29 08 47 30m lla - O GG 385 3" - 5" J.Ríos 03 08 78 Sagitarius I   CTIO
  2885 17 57 31 -29 08 47 20m lla - D GG 495 3" - 5" J.Ríos 03 08 78 Sagitarius I   CTIO
  2886 22 56 12 -41 09 40 90m 103a - D GG 495 3" Elmegreen / R.Gonzalez 31 08 78 NGC 7424    
  2887 22 56 12 -41 09 40 60m 103a - O GG 385 3" Elmegreen / R.Gonzalez 31 08 78 NGC 7424    
  2888 22 56 12 -41 09 40 180m 103a - O UG 2 3" Elmegreen / R.Gonzalez 31 08 78 NGC 7424    
  2889 00 54 01 -37 47 00 120m 127 - 04 RG 1 3" Elmegreen / R.Gonzalez 31 08 78 NGC 300    

 

Last Updated on 8/27/99

By Jorge Marin

September

September 1978 Plate logs for 1.5-m telescope

 


Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
  2890 22 56 12 -41 09 40 119m 127 - 04 RG 1 1.5" - 2" Elmegreen / R.Gonzalez 01 09 78 NGC 7424    
  2891 22 56 12 -41 09 40 150m 098 - 04 RG 1 2" - 3" Elmegreen / R.Gonzalez 02 09 78 NGC 7424    
  2892 22 56 12 -41 09 40 150m 103a - O GG 385 2" - 3" Elmegreen / R.Gonzalez 02 09 78 NGC 7424    
  2893 01 35 41 +15 42 90m 103a - O GG 385 2" Elmegreen / R.Gonzalez 02 09 78 NGC 628    
  2894 01 35 41 +15 42 199m 103a - O UG 2 2" Elmegreen / R.Gonzalez 02 09 78 NGC 628    
  2895 22 56 12 -41 09 40 240m 098 - 04 RG 1 1.5" Elmegreen / R.Gonzalez 03 09 78 NGC 7424    
  2896 01 35 48 +15 43 36 240m 098 - 04 RG 1 1" Elmegreen / R.Gonzalez 03 09 78 NGC 628    
  2897 01 35 48 +15 43 36 60m 103a - D GG 495 2" Elmegreen / R.Gonzalez 03 09 78 NGC 628    
  2898 23 55 18 -32 51 150m 098 - 04 RG 1 2" - 3" Elmegreen / Czuia 11 09 78 NGC 7793    
  2899 23 55 18 -32 51 90m lla - O GG 385 3" Elmegreen / Czuia 11 09 78 NGC 7793    

 

Last Updated on 8/27/99

By Guerra & Marin

November

November 1978 Plate logs for 1.5-m telescope

 


Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
  2900 00 49 30 -73 24 48 30m 098 - 04 RG 610 3" Blanco / Ugarte 12 11 78 SMC - B48 Broken bad cndtn CTIO
  2901 00 49 30 -73 24 48 25m 098 - 04 RG 610 3" Blanco / Ugarte 12 11 78 SMC - B48 DESTROYED CTIO
  2902 00 49 30 -73 24 48 90m lN RG 695 3" Blanco / Ugarte 12 11 78 SMC - B48 DESTROYED CTIO

 

Last Updated on 8/27/99

By Guerra & Marin

1979

1979 Plate logs for 1.5-m telescope

July

July 1979 Plate logs for 1.5-m telescope

 


Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
  2903 18 02 17 -30 01 08 20m 103a - O GG 385 2" - 4" Graham / Ugarte 02 07 79 NGC 6522 DESTROYED CTIO
  2904 20 04 30 -44 48 02 13m lla - O GG 495 2" - 4" Graham / Ugarte 02 07 79 E 8 Field    
  2905 18 02 17 -30 01 08 20m 103a - O GG 385 2" Graham / Ugarte 02 07 79 NGC 6522 DESTROYED CTIO
  2906 16 54 06 -41 06 60m 103a - O   3" Graham / Ugarte 02 07 79 TR 24/ NGC 6231    
  2907 00 53 54 -37 45 53 85m lla - D GG 495 1" Graham / Ugarte 02 07 79 NGC 300    
  2908 00 53 54 -37 45 53 75m lla - O GG 385 1" Graham / Ugarte 02 07 79 NGC 300    
  2909 18 02 00 -30 01 20m 103a - O GG 385 3" Graham / Ugarte 03 07 79 NGC 6522 Broken 3/4 plate CTIO
  2910 14 57 09 -31 35 21 20m 103a - O GG 385 1" Graham / Ugarte 03 07 79 Cen X - 4    
  2911 13 38 30 -31 31 20m 103a - O GG 385 1" Graham / Ugarte 03 07 79 NGC 5253    
  2912 18 02 00 -30 01 20m 103a - O GG 385 1" Graham / Ugarte 03 07 79 NGC 6522 Broken Ok" CTIO
  2913 18 02 00 -30 01 20m 103a - O GG 385 1" Graham / Ugarte 03 07 79 NGC 6522 Ok" CTIO
  2914 23 56 30 -32 43 60m 103a - O GG 385 1" Graham / Ugarte 03 07 79 NGC 7793    
  2915 00 53 54 -37 45 53 10m 103a - O GG 385 1" Graham / Ugarte 03 07 79 NGC 300    
  2916 00 53 54 -37 45 53 60m 103a - O GG 385 1" Graham / Ugarte 03 07 79 NGC 300    
  2917 00 53 54 -37 45 53 90m 103a - O UG 2 2" Graham / Ugarte 03 07 79 NGC 300    
  2918 00 53 54 -37 45 53 20m 103a - O GG 385 2" Graham / Ugarte 03 07 79 NGC 300    

 

Last Updated on 8/27/99

By Guerra & Marin

August

August 1979 Plate logs for 1.5-m telescope

 


Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
  2919 18 02 24 -30 01 20m 103a - O GG 385 2" Blanco / Czuia 02 08 79 Baade´s Window   CTIO
  2920 18 02 24 -30 01 30m 103a - D GG 495 2" Blanco / Czuia 02 08 79 Baade´s Window   CTIO
  2921 18 02 24 -30 01 20m 103a - O GG 385 2" Blanco / Czuia 02 08 79 Baade´s Window Broken bad cndtn CTIO
  2922 18 02 24 -30 01 30m 103a - D GG 495 2" Blanco / Czuia 02 08 79 Baade´s Window   CTIO
  2923 18 02 24 -30 01 20m 103a - O GG 385 2" Blanco / Czuia 02 08 79 Baade´s Window   CTIO
  2924 18 02 24 -30 01 30m 103a - D GG 495 2" Blanco / Czuia 02 08 79 Baade´s Window   CTIO
  2925 18 02 24 -30 01 20m 103a - O GG 385 2" Blanco / Czuia 02 08 79 Baade´s Window   CTIO
  2926 18 02 24 -30 01 30m 103a - D GG 495 2" Blanco / Czuia 02 08 79 Baade´s Window   CTIO
  2927 18 02 24 -30 01 20m 103a - O GG 385 2" Blanco / Czuia 02 08 79 Baade´s Window Broken Ok" CTIO
  2928 18 02 24 -30 01 30m 103a - D GG 495 2" Blanco / Czuia 02 08 79 Baade´s Window Broken Ok" CTIO
  2929 18 02 24 -30 01 20m 103a - O GG 385 2" Blanco / Czuia 02 08 79 Baade´s Window   CTIO
  2930 18 02 24 -30 01 14m 103a - D GG 495 2" Blanco / Czuia 02 08 79      
  2931 00 55 24 -72 37 40m 098 - 04 RG 610 2" Blanco / Czuia 03 08 79 NGC 330   CTIO
  2932 00 55 24 -72 37 40m 098 - 04 RG 610 2" - 3" Blanco / Ugarte 04 08 79 NGC 330   CTIO
  2933 18 02 24 -30 01 20m 103a - O GG 385 2" Blanco / Ugarte 05 08 79 Baade´s Window   CTIO
  2934 18 02 24 -30 01 30m 103a - D GG 495 3" Blanco / Ugarte 05 08 79 Baade´s Window   CTIO
  2935 18 02 24 -30 01 20m 103a - O GG 385 3" - 4" Blanco / Ugarte 05 08 79 Baade´s Window Broken Ok" CTIO
  2936 18 02 24 -30 01 30m 103a - D GG 495 3" - 4" Blanco / Ugarte 05 08 79 Baade´s Window   CTIO
  2937 18 02 24 -30 01 20m 103a - O GG 385 3" - 4" Blanco / Ugarte 05 08 79 Baade´s Window   CTIO
  2938 18 02 24 -30 01 30m 103a - D GG 495 1" - 2" Blanco / Ugarte 05 08 79 Baade´s Window   CTIO
  2939 18 02 24 -30 01 20m 103a - O GG 385 1" - 2" Blanco / Ugarte 05 08 79 Baade´s Window   CTIO
  2940 18 02 24 -30 01 30m 103a - D GG 495 1" - 2" Blanco / Ugarte 05 08 79 Baade´s Window   CTIO
  2941 18 02 24 -30 01 20m 103a - O GG 385 2" - 3" Blanco / Ugarte 05 08 79 Baade´s Window   CTIO
  2942 18 02 24 -30 01 30m 103a - D GG 495 2" - 3" Blanco / Ugarte 05 08 79 Baade´s Window   CTIO
  2943 00 55 24 -72 37 120m lN RG 695 2" - 3" Blanco / Ugarte 05 08 79 NGC 330   CTIO
  2944 01 02 36 -72 25 40m 098 - 04 RG 610 2" - 3" Blanco / Ugarte 05 08 79 NGC 371   CTIO
  2945 18 01 48 -29 53 18 20m 103a - O GG 385 3" Blanco / Martin 17 08 79 Baade´s Window   CTIO
  2946 18 01 48 -29 53 18 30m 103a - D GG 495 3" Blanco / Martin 17 08 79 Baade´s Window   CTIO
  2947 18 01 48 -29 53 18 20m 103a - O GG 385 3" Blanco / Martin 17 08 79 Baade´s Window   CTIO
  2948 18 01 48 -29 53 18 30m 103a - D GG 495 2" - 3" Blanco / Martin 18 08 79      
  2949 18 01 48 -29 53 18 20m 103a - O GG 385 2" - 3" Blanco / Martin 17 08 79 Baade´s Window   CTIO
  2950 18 01 48 -29 53 18 30m 103a - D GG 495 2" - 3" Blanco / Martin 18 08 79 Baade´s Window   CTIO
  2951 01 15 06 -73 27 60m 098 - 04 RG 610 2" - 3" Blanco / Martin 18 08 79 NGC 465   CTIO
  2952 01 07 12 -73 05 60m 098 - 04 RG 610 2" - 3" Blanco / Martin 18 08 79 NGC 419   CTIO

 

Last Updated on 8/27/99

By Jorge Marin

October

October 1979 Plate logs for 1.5-m telescope

 


Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
  2953 01 17 52 -28 44 45.6 15m lla - O baked RG 610 1.5" - 2" Dufour et al / Cosgrove 16 10 79 Nov 19 event    
  2954 01 17 52 -28 44 45.6 30m lla - O baked UG 2 1.5" - 2" Dufour et al / Cosgrove 16 10 79 Nov 19 event    
  2955 01 17 52 -28 44 45.6 30m lla - O baked GG 495 1.5" - 2" Dufour et al / Cosgrove 16 10 79 Nov 19 event    
  2956 01 17 52 -28 44 45.6 10m lla - O baked GG 495 1.5" - 2" Dufour et al / Cosgrove 16 10 79 Nov 19 event    
  2957 01 17 52 -28 44 45.6 60m lla - O baked 7 - 83 1.5" - 2" Dufour et al / Cosgrove 16 10 79 Nov 19 event    
  2958 01 17 52 -28 44 45.6 10m lla - O baked 7 - 83 1.5" - 2" Dufour et al / Cosgrove 16 10 79 Nov 19 event    
  2959 05 26 08 -66 06 03 2m lla - O baked RG 610 1.5" Dufour et al / Cosgrove 16 10 79 N 49    
  2960 05 26 08 -66 06 03 20m lla - O baked RG 610 1.5" Dufour et al / Cosgrove 16 10 79 N 49    
  2961 05 26 08 -66 06 03 1m lla - O baked GG 495 1.5" Dufour et al / Cosgrove 16 10 79 N 49    
  2962 05 26 08 -66 06 03 15m lla - O baked GG 495 1.5" Dufour et al / Cosgrove 16 10 79 N 49    
  2963 05 26 08 -66 06 03 45m lla - O baked 7 - 83 1.5" Dufour et al / Cosgrove 16 10 79 N 49    
  2964 05 26 08 -66 06 03 5m lla - O baked 7 - 83 1.5" Dufour et al / Cosgrove 16 10 79 N 49    
  2965 01 17 52 -28 44 45.6 25m lla - O baked 7 - 83 1.5" Dufour et al / Cosgrove 16 10 79 Nov 19 event    
  2966 01 17 52 -28 44 45.6 5m lla - O baked GG 495 1.5" Dufour et al / Cosgrove 16 10 79 Nov 19 event    

 

Last Updated on 8/27/99

By Guerra & Marin

December

December 1979 Plate logs for 1.5-m telescope

 

Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
  2967 05 09 00 -69 00 40m 103a - O GG 385 2" Graham / Czuia 20 12 79 Bok - Tifft    
  2968 04 59 02 -66 01 17 40m 103a - O GG 385 2" Graham / Czuia 20 12 79 NGC 1783    
  2969 04 03 04 -44 46 54 3m lla - O GG 385 2" Graham / Czuia 20 12 79 E 2    
  2970 06 41 53 -45 07 31 3m lla - O GG 385 2" Graham / Czuia 20 12 79 E 3    
  2971 05 08 58 -69 00 19 40m 103a - O GG 385 2" - 3" Graham / Czuia 20 12 79 Bok - Tifft    
  2972 04 59 02 -66 01 17 40m 103a - O GG 385 2" - 3" Graham / Czuia 20 12 79 NGC 1783    
  2973 05 08 58 -69 00 19 40m 103a - O GG 385 2" Graham / Czuia 20 12 79 Bok - Tifft    
  2974 04 59 02 -66 01 17 40m 103a - O GG 385 2" Graham / Czuia 20 12 79 NGC 1783    
  2975 05 08 58 -69 00 19 60m 103a - O GG 385 2" Graham / Czuia 20 12 79 Bok - Tifft    
  2976 04 59 02 -66 01 17 40m 103a - O GG 385 1" - 1.5" Graham / Czuia 21 12 79 NGC 1783    
  2977 05 08 58 -69 00 19 40m 103a - O GG 385 1" - 1.5" Graham / Czuia 21 12 79 Bok - Tifft    
  2978 04 03 04 -44 46 54 6m lla - D GG 495 1" - 1.5" Graham / Czuia 21 12 79 E 2    
  2979 05 08 58 -69 00 19 40m lla - D GG 495 1" Graham / Czuia 21 12 79 Bok - Tifft    
  2980 05 08 58 -69 00 19 40m 103a - O GG 385 1" Graham / Czuia 21 12 79 Bok - Tifft    
  2981 04 59 02 -66 01 17 40m 103a - O GG 385 1" Graham / Czuia 21 12 79 NGC 1783    
  2982 05 08 58 -69 00 19 40m 103a - O GG 385 1.5" Graham / Czuia 21 12 79 Bok - Tifft    
  2983 04 59 02 -66 01 17 40m 103a - O GG 385 1.5" Graham / Czuia 21 12 79 NGC 1783    
  2984 05 08 58 -69 00 19 40m 103a - O GG 385 1.5" Graham / Czuia 21 12 79 Bok - Tifft    

 

Last Updated on 8/27/99

By Jorge Marin

1980

1980 Plate logs for 1.5-m telescope

April

April 1980 Plate logs for 1.5-m telescope

 


Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
  2985 10 44 24 -59 36 20m 103a - O GG 385 3" Blanco / Martin 15 04 80 Trio Eta Carina   CTIO
  2986 08 39 42 -52 59 5m 103a - O GG 385 3" Blanco / Martin 15 04 80 IC 2391   CTIO
  2987 12 38 48 -11 31 30m lla - O   4" Blanco / Martin 15 04 80 M 104    
  2988 13 25 36 -47 12 30m lla - O   3" - 4" Blanco / Martin 15 04 80 Omega Cen.    
  2989 13 25 36 -47 12 5m lla - O   3" Blanco / Martin 15 04 80 Omega Cen.    
  2990 13 25 36 -47 12 1m lla - O GG 385 3" Blanco / Martin 15 04 80 Omega Cen.   CTIO
  2991 13 25 36 -47 12 12s lla - O GG 385 3" Blanco / Martin 15 04 80 Omega Cen.   CTIO
  2992 13 25 36 -47 12 2s lla - O GG 385 3" Blanco / Martin 15 04 80 Omega Cen.   CTIO
  2993a 18 01 48 -29 55 12 20m 103a - O GG 385 3" - 4" Blanco / Martin 15 04 80 Baade´s Window   CTIO
  2993b 13 19 30 -46 56 54 8m - 4 - 2 - 1 103a - D GG 385 2" Blanco / Maturana 16 06 80 Flyspanker    
  2994 13 19 30 -46 56 54 8m - 4 - 2 - 1 103a - O GG 385 2" Blanco / Maturana 15 04 80 Flyspanker   CTIO
  2995 18 01 54.6 -29 55 13 30m 103a - O GG 385 2" Blanco / Maturana 16 04 80 Baade´s Window   CTIO
  2996 18 01 54.6 -29 55 13 30m 103a - O GG 385 2" Blanco / Maturana 16 04 80 Baade´s Window   CTIO
  2997 18 01 54.6 -29 55 13 30m 103a - O GG 385 2" Blanco / Maturana 16 04 80 Baade´s Window   CTIO
  2998 18 01 54.6 -29 55 13 25m 103a - D GG 495 2" Blanco / Maturana 16 04 80 Baade´s Window   CTIO
  2999 18 01 54.6 -29 55 13 30m 103a - O GG 385 2" Blanco / Maturana 16 04 80 Baade´s Window Broken Ok" CTIO
  3000 18 01 54.6 -29 55 13 25m 103a - D GG 495 2" Blanco / Maturana 16 04 80 Baade´s Window   CTIO
  3001 18 01 54.6 -29 55 13 30m 103a - O GG 385 2" Blanco / Maturana 16 04 80 Baade´s Window   CTIO
  3002 18 01 54.6 -29 55 13 30m 103a - O GG 385 2" Blanco / Maturana 16 04 80 Baade´s Window   CTIO
  3003 18 01 54.6 -29 55 13 25m 103a - D GG 495 2" Blanco / Maturana 16 04 80 Baade´s Window   CTIO
  3004 18 01 54.6 -29 55 13 30m 103a - O GG 385 2" Blanco / Maturana 16 04 80 Baade´s Window   CTIO
  3005 18 01 54.6 -29 55 13 25m 103a - D GG 495 2" Blanco / Maturana 16 04 80 Baade´s Window   CTIO
  3006 18 01 54.6 -29 55 13 25m 103a - O GG 385 2" Blanco / Maturana 16 04 80 Baade´s Window   CTIO
  3007 18 01 54.6 -29 55 13 30m 103a - O GG 385 2" - 3" Blanco / Alday 17 04 80 Baade´s Window   CTIO
  3008 18 01 54.6 -29 55 13 25m 103a - D GG 495 2" - 3" Blanco / Alday 17 04 80 Baade´s Window   CTIO
  3009 18 01 54.6 -29 55 13 30m 103a - O GG 385 2" - 3" Blanco / Alday 17 04 80 Baade´s Window   CTIO
  3010 16 22 56 -25 14 57   lla - O GG 385 1" - 1.5" Blanco / Alday 17 04 80 Hyperher Bad plate broken CTIO
  3011 18 01 54.6 -29 55 13 15m 103a - D GG 495   Blanco / Alday 17 04 80 Baade´s Window   CTIO
  3012 18 01 54.6 -29 55 13 20m 103a - O GG 385 1" Blanco / Alday 17 04 80 Baade´s Window   CTIO
  3013 18 01 54.6 -29 55 13 15m 103a - D GG 495 1" Blanco / Alday 17 04 80 Baade´s Window   CTIO
  3014 18 01 54.6 -29 55 13 20m 103a - O GG 385 1" Blanco / Alday 17 04 80 Baade´s Window   CTIO
  3015 18 01 54.6 -29 55 13 25m 103a - D   1" Blanco / Alday 17 06 80 Baade´s Window    
  3016 18 01 54.6 -29 55 13 30m 103a - O GG 385 1" Blanco / Alday 17 04 80 Baade´s Window   CTIO
  3017 18 01 54.6 -29 55 13 25m 103a - D GG 495 1" Blanco / Alday 17 04 80 Baade´s Window   CTIO
  3018 18 01 54.6 -29 55 13 30m 103a - O GG 385 1" Blanco / Alday 17 04 80 Baade´s Window   CTIO
  3019 18 01 54.6 -29 55 13 30m 103a - D GG 495 1" Blanco / Alday 17 04 80 Baade´s Window   CTIO

 

Last Updated on 8/27/99

By Jorge Marin

September

September 1980 Plate logs for 1.5-m telescope

 


Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
  3020 19 43 48 -14 49 60m 103a - O GG 385 2" Graham / Cosgrove 10 09 80 NGC 6822    
  3021 00 25 42 -71 41 60m 103a - O GG 385   Graham / Cosgrove 10 09 80 NGC 121    
  3022 00 25 42 -71 41 60m 103a - O GG 385 2" Graham / Cosgrove 10 09 80 NGC 121    
  3023 00 25 42 -71 41 60m 103a - O GG 385 2" - 3" Graham / Cosgrove 10 09 80 NGC 121    
  3024 00 25 42 -71 41 60m 103a - O GG 385 2" - 4" Graham / Cosgrove 10 09 80 NGC 121    
  3025 00 25 42 -71 41 60m 103a - O GG 385 2" - 4" Graham / Cosgrove 10 09 80 NGC 121    
  3026 00 25 42 -71 41 60m 103a - O GG 385 2" - 3" Graham / Cosgrove 10 09 80 NGC 121    
  3027 00 25 42 -71 41 60m 103a - O GG 385 2" - 4" Graham / Cosgrove 10 09 80 NGC 121    
  3028 17 38 48 -53 40 60m 103a - O GG 385 1" - 2" Graham / Cosgrove 11 09 80 NGC 6397    
  3029 00 25 42 -71 41 60m 103a - O GG 385 1" - 2" Graham / Cosgrove 11 09 80 NGC 121    
  3030 00 25 42 -71 41 60m 103a - O GG 385 1.5" Graham / Cosgrove 11 09 80 NGC 121    
  3031 00 25 42 -71 41 60m 103a - O GG 385 1" Graham / Cosgrove 11 09 80 NGC 121    
  3032 00 25 42 -71 41 60m 103a - O GG 385 1" Graham / Cosgrove 11 09 80 NGC 121    
  3033 00 25 42 -71 41 40m 103a - O GG 385 1" Graham / Cosgrove 11 09 80 NGC 121    
  3034 00 25 42 -71 41 60m 103a - O GG 385 1.5" Graham / Cosgrove 11 09 80 NGC 121    
  3035 00 25 42 -71 41 50m 103a - O GG 385 2" Graham / Cosgrove 11 09 80 NGC 121    
  3036 00 25 42 -71 41 50m 103a - O GG 385 1" Graham / Cosgrove 11 09 80 NGC 121    

 

Last Updated on 8/27/99

By Guerra & Marin

October

October 1980 Plate logs for 1.5-m telescope

 


Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
  3037 00 25 59 -71 41 09 60m 103a - O GG 385 5" - 10" Graham / Alday 11 10 80 NGC 121    
  3038 00 25 59 -71 41 09 60m 103a - O GG 385 5" Graham / Alday 11 10 80 NGC 121    
  3039 00 26 00 -71 41 06 60m 103a - O GG 385 5" Graham / Alday 11 10 80 NGC 121    
  3040 00 26 00 -71 41 06 60m 103a - O GG 385 5" Graham / Alday 11 10 80 NGC 121    
  3041 00 26 00 -71 41 06 60m 103a - O GG 385 3" - 5" Graham / Alday 11 10 80 NGC 121    
  3042 00 26 00 -71 41 06 60m 103a - O GG 385 3" - 5" Graham / Alday 11 10 80 NGC 121    
  3043 00 26 00 -71 41 06 60m 103a - O GG 385 5" Graham / Alday 11 10 80 NGC 121    

 

Last Updated on 8/27/99

By Guerra & Marin

1981

1981 Plate logs for 1.5-m telescope

March

March 1981 Plate logs for 1.5-m telescope

 


Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
  3044 06 11 36 -69 07 40m 103a - O GG 385 3" Graham / Martin 01 03 81 NGC 2210    
  3045 06 11 29.6 -69 07 22 60m 103a - D GG 495 3" Graham / Martin 01 03 81 NGC 2210    
  3046 06 11 29.6 -69 07 22 60m 103a - O GG 385 3" Graham / Martin 01 03 81 NGC 2210    
  3047 06 11 29.6 -69 07 22 60m 103a - O GG 385 3" Graham / Martin 01 03 81 NGC 2210    
  3048 13 24 52 -42 49 47 30m 103a - D GG 495 3" Graham / Martin 01 03 81 NGC 5128    
  3049 13 24 50 -42 49 39 30m 103a - D GG 495 3" Graham / Martin 01 03 81 NGC 5128    
  3050 06 11 33.6 -69 06 22 60m 103a - O GG 385 1" - 3" Graham / Martin 02 03 81 NGC 2210    
  3051 06 11 33.6 -69 06 22 60m 103a - O GG 385 1" - 3" Graham / Martin 02 03 81 NGC 2210    
  3052 06 11 33.6 -69 06 22 60m 103a - O GG 385 1" - 3" Graham / Martin 02 03 81 NGC 2210    
  3053 06 11 33.6 -69 06 22 60m 103a - O GG 385 1" - 3" Graham / Martin 02 03 81 NGC 2210    
  3054 06 11 33.6 -69 06 22 40m 103a - O GG 385 1" - 3" Graham / Martin 02 03 81 NGC 2210    
  3055 13 24 30 -42 49 30 80m llla - J   1" Graham / Martin 02 03 81 NGC 5128    
  3056 13 04 06 -49 22 60m 103a - D GG 495 2" - 3" Graham / Martin 02 03 81 NGC 4945    
  3057 focus plate     103a - O GG 385 2" - 3" Blanco / Martin 03 03 81 focus plate    
  3058 focus plate     103a - O GG 385 2" Blanco / Martin 03 03 81 focus plate    
  3059 focus plate     103a - O GG 385 2" Blanco / Martin 03 03 81 focus plate    
  3060 focus plate     103a - O GG 385 2" Blanco / Martin 03 03 81 focus plate    
  3061 focus plate     103a - O GG 385 2" Blanco / Martin 03 03 81 focus plate    
  3062 focus plate     103a - O GG 385 2" Blanco / Martin 03 03 81 focus plate    
  3063 18 00 23 -30 04 46 15m 103a - O GG 385 2" Blanco / Martin 03 03 81 NGC 6522   CTIO
  3064 18 00 23 -30 04 46 15m 103a - O GG 385 3" Blanco / Martin 03 03 81 NGC 6522   CTIO
  3065 13 25 12.5 -42 42 06 5m lla - O GG 385 2" Graham / Maturana 25 03 81 N 5128    
  3066 13 25 12.5 -42 42 06 30m lla - O GG 385 2" - 3" Graham / Maturana 25 03 81 N 5128    
  3067 13 25 12.5 -42 42 06 10m lla - D GG 495 2" - 3" Graham / Maturana 25 03 81 N 5128    
  3068 13 25 12.5 -42 42 06 45m lla - D GG 495 2" Graham / Maturana 25 03 81 N 5128    
  3069 13 25 12.5 -42 42 06 60m lla - O UG 2 3" Graham / Maturana 25 03 81 N 5128    
  3070 13 25 12.5 -42 42 06     GG 385   Graham / Maturana 25 03 81 N 5128    

 

Last Updated on 8/27/99

By Guerra & Marin

August

August 1981 Plate logs for 1.5-m telescope

 

Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
  3071 15 35 48 -28 04 10s each 103a - D   2" Blanco / Martin 03 08 81 focus plate    
  3072 18 01 54 -29 57 40m 103a - O GG 385 2" Blanco / Martin 03 08 81 Baade's Window   CTIO

 

Last Updated on 8/27/99

By Jorge Marin

October

October 1981 Plate logs for 1.5-m telescope

 


Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
  3073 21 31 30 -67 47 42 15s each 103a - O GG 385 1.5" Klemola / Martin 27 10 81 focus plate    
  3074 01 22 23 -42 24 18 10m 103a - J GG 385 3" Klemola / Martin 27 10 81 U Y Phe    
  3075 00 26 03 -71 38 15 60m 103a - O GG 385 1.5" Klemola / Martin 28 10 81 NGC 121    
  3076 00 26 03 -71 38 15 60m 103a - O GG 385 1.5" Klemola / Martin 28 10 81 NGC 121    
  3077 00 26 03 -71 38 15 60m 103a - O GG 385 1" Klemola / Martin 28 10 81 NGC 121    
  3078 00 26 03 -71 38 15 60m 103a - O GG 385 1.5" Klemola / Martin 28 10 81 NGC 121    
  3079 00 26 03 -71 38 15 60m 103a - O GG 385 1" Klemola / Martin 28 10 81 NGC 121    
  3080 04 19 58 -69 00 52 50m llla - J GG 385 1" Klemola / Martin 28 10 81 LMC 0421 - 69    
  3081 04 19 58 -69 00 52 50m llla - J GG 385 1" Klemola / Martin 28 10 81 LMC 0421 - 69    
  3082 00 25 36 -71 39 54 60m 103a - O GG 385 1.5 - 3" Klemola / Ugarte 29 10 81 NGC 121    
  3083 00 25 36 -71 39 54 60m 103a - O GG 385 1.5 3" Klemola / Ugarte 29 10 81 NGC 121    
  3084 00 25 36 -71 39 54 60m 103a - O GG 385 2" - 3" Klemola / Ugarte 29 10 81 NGC 121    
  3085 00 25 36 -71 39 54 60m 103a - O GG 385 2" - 3" Klemola / Ugarte 29 10 81 NGC 121    
  3086 00 25 36 -71 39 54 60m 103a - O GG 385 1.5" - 2" Klemola / Ugarte 29 10 81 NGC 121    
  3087 04 19 56 -69 00 58 60m llla - J GG 385 1.5" - 2" Klemola / Ugarte 29 10 81 LMC 0421 - 69    
  3088 04 19 56 -69 00 58 60m llla - J GG 385 1.5" - 2" Klemola / Ugarte 29 10 81 LMC 0421 - 69    
  3089 05 18 06 -68 22 31 5m llla - J GG 385 1.5" - 2" Klemola / Ugarte 29 10 81 Stellar group    
  3090 00 25 48 -71 39 12 60m 103a - O GG 385 1" - 1.5" Klemola / Ugarte 30 10 81 NGC 121    
  3091 00 25 48 -71 39 12 60m 103a - O GG 385 1" - 3" Klemola / Ugarte 30 10 81 NGC 121    
  3092 00 25 48 -71 39 12 60m 103a - O GG 385 1" -1.5" Klemola / Ugarte 30 10 81 NGC 121    
  3093 00 25 48 -71 39 12 60m 103a - O GG 385 1" -1.5" Klemola / Ugarte 30 10 81 NGC 121    
  3094 00 25 48 -71 39 12 60m 103a - O GG 385 1" -1.5" Klemola / Ugarte 30 10 81 NGC 121    
  3095 04 19 57 -69 00 45 60m llla - J GG 385 1" -1.5" Klemola / Ugarte 30 10 81 LMC 0421 - 69    
  3096 04 19 57 -69 00 45 60m llla - J GG 385 1" -1.5" Klemola / Ugarte 30 10 81 LMC 0421 - 69    
  3097 05 18 04 -68 22 28 5m llla - J GG 385 1" -1.5" Klemola / Ugarte 30 10 81 Stellar group    
  3098 05 18 04 -68 22 28 5m llla - J GG 385 1" -1.5" Klemola / Ugarte 30 10 81 Stellar group    
  3099 00 25 50 -71 38 11 60m 103a - O GG 385 1" -1.5" Klemola / Ugarte 31 10 81 NGC 121    
  3100 00 25 50 -71 38 11 60m 103a - O GG 385 0.5" - 1" Klemola / Ugarte 31 10 81 NGC 121    
  3101 00 25 50 -71 38 11 60m 103a - O GG 385 1" - 1.5" Klemola / Ugarte 31 10 81 NGC 121    
  3102 00 25 50 -71 38 11 60m 103a - O GG 385 1" - 1.5" Klemola / Ugarte 31 10 81 NGC 121    
  3103 00 25 50 -71 38 11 60m 103a - O GG 385 1" - 1.5" Klemola / Ugarte 31 10 81 NGC 121    
  3104 04 19 53 -69 00 56 60m llla - J GG 385 1" - 1.5" Klemola / Ugarte 31 10 81 LMC 0421 - 69    
  3105 04 19 53 -69 00 56 60m 103a - D GG 495 1" - 1.5" Klemola / Ugarte 31 10 81 LMC 0421 - 69    
  3106 05 18 02 -68 22 10 5m 103a - D GG 495 1" - 1.5" Klemola / Ugarte 31 10 81 Stellar group    

 

Last Updated on 8/27/99

By Guerra & Marin

November

November 1981 Plate logs for 1.5-m telescope

 


Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
  3107 00 25 41 -71 38 33 50m 103a - O GG 385 1" - 1.5" Klemola / Ugarte 01 11 81 NGC 121    
  3108 00 25 41 -71 38 33 50m 103a - O GG 385 1.5" Klemola / Ugarte 01 11 81 NGC 121    
  3109 00 25 41 -71 38 33 60m 103a - O GG 385 1.5" Klemola / Ugarte 01 11 81 NGC 121    
  3110 00 25 41 -71 38 33 60m 103a - O GG 385 1.5" Klemola / Ugarte 01 11 81 NGC 121    
  3111 00 25 41 -71 38 33 60m 103a - O GG 385 1.5" Klemola / Ugarte 01 11 81 NGC 121    
  3112 04 19 47 -69 00 57 55m llla - J GG 385 1.5" Klemola / Ugarte 01 11 81 LMC 0421 - 69    
  3113 04 19 47 -69 00 57 60m llla - J GG 385 1.5" Klemola / Ugarte 01 11 81 LMC 0421 - 69    
  3114 04 19 47 -69 00 57 60m 103a - D GG 495 1.5" Klemola / Ugarte 01 11 81 LMC 0421 - 69    
  3115 04 54 24 -69 51 25m 098 - 04 RG 610 2.5" Blanco / Ugarte 02 11 81 NGC 1751   CTIO
  3116 04 58 24 -66 02 25m 098 - 04 RG 610 2.5" Blanco / Ugarte 02 11 81 NGC 1783   CTIO
  3117 05 07 36 -67 30 25m 098 - 04 RG 610 2.5" Blanco / Ugarte 02 11 81 NGC 1846   CTIO
  3118 05 13 24 -65 29 25m 098 - 04 RG 610 2.5" Blanco / Ugarte 02 11 81 NGC 1866   CTIO
  3119 05 57 30 -67 15 25m 098 - 04 RG 610 2.5" Blanco / Ugarte 02 11 81 NGC 2154   CTIO
  3120 06 11 06 -71 33 25m 098 - 04 RG 610 2.5" Blanco / Ugarte 02 11 81 NGC 2213   CTIO
  3121 06 29 48 -64 09 25m 098 - 04 RG 610 2.5" Blanco / Ugarte 02 11 81 NGC 2257   CTIO

 

Last Updated on 8/27/99

By Guerra & Marin

December

December 1981 Plate logs for 1.5-m telescope

 


Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
  3122 06 05 33.8 -75 25 29 40m lla - O GG 385 2" - 3" Graham / Martin 24 12 81 NGC 2203    
  3123 06 05 31 -75 25 48 60m 103a - D GG 495 2" - 3" Graham / Martin 24 12 81 NGC 2203    
  3124 06 05 31 -75 25 48 40m lla - O GG 385 2" - 3" Graham / Martin 24 12 81 NGC 2203    
  3125 06 05 31 -75 25 48 45m lla - O GG 385 2" - 3" Graham / Martin 24 12 81 NGC 2203    
  3126 06 05 31 -75 25 48 60m 103a - D GG 495 2" Graham / Martin 24 12 81 NGC 2203    
  3127 06 05 31 -75 25 48 20m lla - O GG 385 2" Graham / Martin 24 12 81 NGC 2203    
  3128 06 05 31 -75 25 48 40m lla - O GG 385 2" Graham / Martin 24 12 81 NGC 2203    
  3129 06 05 25 -75 24 18 45m lla - O GG 385 2" Graham / Ugarte 27 12 81 NGC 2203    
  3130 06 11 34.3 -69 05 15 60m 103a - O GG 385 2" Graham / Ugarte 27 12 81 NGC 2210    
  3131 06 05 18.7 -75 25 07 40m lla - O GG 385 2" Graham / Ugarte 27 12 81 NGC 2203    
  3132 06 05 18.7 -75 25 07 40m lla - O GG 385 2" Graham / Ugarte 27 12 81 NGC 2203    
  3133 06 05 18.7 -75 25 07 40m lla - O GG 385 1" Graham / Ugarte 27 12 81 NGC 2203    
  3134 06 11 26 -69 05 33 60m 103a - O GG 385 1.5" Graham / Ugarte 27 12 81 NGC 2210    
  3135 06 05 09 -75 25 04 45m lla - O GG 385 1.5" Graham / Ugarte 27 12 81 NGC 2203    

 

Last Updated on 8/27/99

1982

1982 Plate logs for 1.5-m telescope

February

February 1982 Plate logs for 1.5-m telescope

 


Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
  3136 05 01 00 -69 40 15m 098 - 04 RG 610 1.5" Blanco / Cosgrove / Hernandez 04 02 82 LMC 50-69.7   CTIO
  3137 05 09 09.8 -68 52 29 15m 098 - 04 RG 610 1.5" Blanco / Cosgrove / Hernandez 04 02 82 NGC 1854   CTIO
  3138 05 43 27.4 -70 39 01 15m 098 - 04 RG 610 1.5" Blanco / Cosgrove / Hernandez 04 02 82 NGC 2107   CTIO
  3139 05 44 00 -69 13 52 15m 098 - 04 RG 610 1.5" Blanco / Cosgrove / Hernandez 04 02 82 NGC 2108   CTIO
  3140 05 53 00 -69 30 00 15m 098 - 04 RG 610 1.5" Blanco / Cosgrove / Hernandez 04 02 82 NGC 2136   CTIO
  3141 06 11 04.4 -71 33 14 15m 098 - 04 RG 610 1.5" Blanco / Cosgrove / Hernandez 04 02 82 NGC 2213   CTIO
  3142 06 20 30 -67 31 15m 098 - 04 RG 610 1.5" Blanco / Cosgrove / Hernandez 04 02 82 NGC 2231   CTIO
  3143 06 12 54 -68 16 15m 098 - 04 RG 610 1.5" Blanco / Cosgrove / Hernandez 04 02 82 NGC 2214   CTIO
  3144 05 09 09.8 -60 52 29 15m 098 - 04 RG 610 1.5" Blanco / Cosgrove / Hernandez 04 02 82 NGC 1854   CTIO
  3145 06 40 30 -50 57 06 30m 098 - 04 RG 610 1.5" Blanco / Cosgrove / Hernandez 04 02 82 Dwarf Car. Galaxy   CTIO
  3146 08 54 16 -47 30 04   lla - O GG 385 1.5" Blanco / Cosgrove / Hernandez 04 02 82 ??   CTIO

 

Last Updated on 8/27/99

By Guerra & Marin

April

April 1982 Plate logs for 1.5-m telescope

 


Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
  3147 08 18 00 -30 00 10s llla - J   2" Ugarte / R.Gonzalez 15 04 82 Focus plate    
  3148 08 49 00 -30 00 10s llla - J     Ugarte / R.Gonzalez 15 04 82 Focus plate    
  3149 09 10 00 +30 00 10s llla - J     Ugarte / R.Gonzalez 15 04 82 focus north    
  3150 09 20 00 -90 00 10s llla - J     Ugarte / R.Gonzalez 15 04 82 focus south    
  3151 13 28 00 -30 00 10s llla - J     Ugarte / R.Gonzalez 15 04 82 focus east    
  3152 05 45 00 -30 00 10s llla - J     Ugarte / R.Gonzalez 15 04 82 focus west    
  3153 07 55 00 -30 00 10s 103a - O   1" - 2" Graham / Ugarte 16 04 82 focus zenith    
  3154   +30 00 10s 103a - O     Graham / Ugarte 16 04 82 focus north    
  3155 09 25 00 -90 00 10s 103a - O   1" - 2" Graham / Ugarte 16 04 82 focus south    
  3156 13 37 00 -30 00 10s 103a - O   1" - 2" Graham / Ugarte 16 04 82 focus east    
  3157 06 12 00 -30 00 10s 103a - O   1" - 2" Graham / Ugarte 16 04 82 focus west    

 

Last Updated on 8/27/99

By Jorge Marin

August

August 1982 Plate logs for 1.5-m telescope

 


Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
  3158 zenith   10s lla - O   1" - 2" Bozyan / Opal / R.Gonzalez 08 08 82 focus    
  3159 16 47 00 -56 46 2m / 10m lla - O   1" - 2" Bozyan / Opal / R.Gonzalez 08 08 82 Nor 2645    
  3160 16 51 00 -57 12 10m lla - O   1" - 2" Bozyan / Opal / R.Gonzalez 08 08 82 Nor 305 - 6    
  3161 17 21 00 -67 57 2m20s lla - O   1" - 2" Bozyan / Opal / R.Gonzalez 08 08 82 Nor 600 - 1    
  3162 18 13 00 -66 55 2m20s lla - O   1" - 2" Bozyan / Opal / R.Gonzalez 08 08 82 Nor 857 - 60    
  3163 17 56 00 -32 55 10m2s lla - O   1" - 2" Bozyan / Opal / R.Gonzalez 08 08 82 Sgr W 79 - 81    
  3164 17 56 00 -34 27 10m lla - O   1" - 2" Bozyan / Opal / R.Gonzalez 08 08 82 Sgr W 83    
  3165 17 58 00 -30 17 5m lla - O   1" - 2" Bozyan / Opal / R.Gonzalez 08 08 82 Sgr W 149    
  3166 18 02 00 -29 59 5m lla - O   1" - 2" Bozyan / Opal / R.Gonzalez 08 08 82 Sgr W 265    
  3167 18 02 00 -28 08 5m lla - O   1" - 2" Bozyan / Opal / R.Gonzalez 08 08 82 Sgr W 268    
  3168 18 03 00 -34 23 5m+1m lla - O   1" - 2" Bozyan / Opal / R.Gonzalez 08 08 82 Sgr W 330    
  3169 18 04 00 -27 52 5m+1m lla - O   1" - 2" Bozyan / Opal / R.Gonzalez 08 08 82 Sgr W 361 - 2    
  3170 18 04 00 -27 55 5m lla - O   1" - 2" Bozyan / Opal / R.Gonzalez 08 08 82 Sgr W 386 - 7    
  3171 18 05 00 -26 42 3m lla - O   1" - 2" Bozyan / Opal / R.Gonzalez 08 08 82 Sgr W 455    
  3172 18 06 00 -31 51 7m lla - O   1" - 2" Bozyan / Opal / R.Gonzalez 08 08 82 Sgr W 487    
  3173 18 07 00 -26 30 30 5m lla - O   1" - 2" Bozyan / Opal / R.Gonzalez 08 08 82 Sgr W 552    
  3174 18 09 00 -28 06 5m lla - O   1" - 2" Bozyan / Opal / R.Gonzalez 08 08 82 Sgr W 605    
  3175 18 12 00 -29 45 5m lla - O   1" - 2" Bozyan / Opal / R.Gonzalez 08 08 82 Sgr W 805    
  3176 18 17 00 -34 27 3m20s lla - O   1" - 2" Bozyan / Opal / R.Gonzalez 08 08 82 Sgr W 1138    
  3177 18 21 00 -39 40 2m20s lla - O   1" - 2" Bozyan / Opal / R.Gonzalez 08 08 82 Sgr W 1326    
  3178 18 23 00 -27 02 5m lla - O   1" - 2" Bozyan / Opal / R.Gonzalez 08 08 82 Sgr W 1403    
  3179 18 15 00 -23 29 3m lla - O   1" - 2" Bozyan / Opal / R.Gonzalez 08 08 82 Sgr W 990    
  3180 18 28 00 -31 29 5m lla - O   1" - 2" Bozyan / Opal / R.Gonzalez 08 08 82 Sgr E 179    
  3181 20 56 00 -14 28 30 5m lla - O   1" - 2" Bozyan / Opal / R.Gonzalez 08 08 82 Cap 21 - 22    
  3182 21 35 30 -19 27 5m lla - O   1" - 2" Bozyan / Opal / R.Gonzalez 08 08 82 Cap 123 - 4    
  3183 22 34 00 -45 04 7m lla - O   1" - 2" Bozyan / Opal / R.Gonzalez 08 08 82 Par 84 - 85    
  3184 20 57 00 -49 21 10m lla - O   1" - 2" Bozyan / Opal / R.Gonzalez 08 08 82 2054 - 492    
  3185 23 19 00 -05 15 2.5m+30s lla - O   1" - 2" Bozyan / Opal / R.Gonzalez 08 08 82 Feije 110    
  3186 23 19 00 -05 15 2.5m+30s lla - O   1" - 2" Bozyan / Opal / R.Gonzalez 08 08 82 Feije 110    
  3187 02 34 00 -16 12 5m+20s lla - O   1" - 2" Bozyan / Opal / R.Gonzalez 08 08 82 Cet 15 - 17    
  3188 02 35 00 -08 57 5m+1m lla - O   1" - 2" Bozyan / Opal / R.Gonzalez 08 08 82 Cet 22 - 23    
  3189 02 52 00 -20 18 5m+1m lla - O   1" - 2" Bozyan / Opal / R.Gonzalez 08 08 82 Cet 37 - 41    
  3190 17 14 59 -62 47 21 20m lla - O GG 385 1" - 2" Bozyan / Opal / R.Gonzalez 09 08 82 NG 300    
  3191 17 14 59 -62 47 21 90m lla - O UG 1 1" - 2" Bozyan / Opal / R.Gonzalez 09 08 82 NG 300    
  3192 20 36 23 -23 37 36 20m lla - O GG 385 1" - 2" Bozyan / Opal / R.Gonzalez 09 08 82 2034 - 274    
  3193 19 16 51 -60 34 18 90m llla - F H alpha 1" - 2" Bozyan / Opal / R.Gonzalez 09 08 82 NG 769 / 70    
  3194 19 14 01 -54 40 15 90m llla - F GG 50 H alpha 1" - 2" Bozyan / Opal / R.Gonzalez 09 08 82 1911 - 544    
  3195 21 28 00 -22 17 10s llla - F   1" - 2" Bozyan / Opal / R.Gonzalez 09 08 82 Vesta    
  3196 00 45 40 -52 08 60m llla - F RG 1 1" - 2" Bozyan / Opal / R.Gonzalez 09 08 82 0045 - 522    
  3197 01 12 24 -00 36 42 3s 30s lla - O GG 385 1" - 2" Bozyan / Opal / R.Gonzalez 09 08 82 9 Metis    
  3198 01 19 07 -41 15 29 20m lla - O GG 385 1" - 2" Bozyan / Opal / R.Gonzalez 09 08 82 VV 578    
  3199 00 53 42 -32 06 45 72m llla - F RG 1 1" - 2" Bozyan / Opal / R.Gonzalez 09 08 82 00 52 - 3210    
  3200 17 14 59 -62 46 26 60m lla - D GG 495 1" - 2" Bozyan / Opal / R.Gonzalez 10 08 82 NG 300    
  3201 17 27 16 -62 26 29 30m lla - O GG 385 1" - 2" Bozyan / Opal / R.Gonzalez 10 08 82 1724 - 621    
  3202 17 27 16 -62 26 29 90m lla - O UG 1 1" - 2" Bozyan / Opal / R.Gonzalez 10 08 82 1724 - 621    
  3203 18 50 26 10 17 39 3m 1m 30s 103a - D GG 495 1" - 2" Bozyan / Opal / R.Gonzalez 10 08 82 N 6709    
  3204 18 50 26 10 17 39 3m 1m 30s lla - O GG 385 1" - 2" Bozyan / Opal / R.Gonzalez 10 08 82 N 6709    
  3205 18 50 26 10 17 39 6m 3m 1m lla - O UG 1 1" - 2" Bozyan / Opal / R.Gonzalez 10 08 82 N 6709    
  3206 19 16 51 -60 34 18 180m llla - F H alpha 1" - 2" Bozyan / Opal / R.Gonzalez 10 08 82 NG 769 / 70    
  3207 22 45 59 -65 08 12 60m llla - F RG 1 1" - 2" Bozyan / Opal / R.Gonzalez 10 08 82 2244 - 651    
  3208 01 18 58 -41 22 17 60m llla - F RG 1 1" - 2" Bozyan / Opal / R.Gonzalez 10 08 82 VV 578    
  3209 16 22 30 -26 28.4 60m 103a - D GG 495 1" - 2" Bozyan / Opal / R.Gonzalez 11 08 82 M 4    
  3210 19 16 51 -60 32 34 60m 103a - D GG 495 1" - 2" Bozyan / Opal / R.Gonzalez 11 08 82 N 6769 - 70    
  3211 19 13 59 -54 40 17 60m 103a - D GG 495 1" - 2" Bozyan / Opal / R.Gonzalez 11 08 82 1911 - 544    
  3212 22 45 56 -65 08 18 30m lla - O GG 385 1" - 2" Bozyan / Opal / R.Gonzalez 11 08 82 2244 - 651    
  3213 22 27 37 -24 56 40 30m lla - O GG 385 1" - 2" Bozyan / Opal / R.Gonzalez   2225 - 250    
  3214 18 35 17 -23 56 19 15m 103a - D GG 495 1" - 2" Bozyan / Opal / R.Gonzalez   M 22    
  3215 19 16 51 -60 34 16 60m llla - F RG 1 1" - 2" Bozyan / Opal / R.Gonzalez   M 6769 - 70    
  3216 22 27 37 -24 56 43 60m llla - F RG 1 1" - 2" Bozyan / Opal / R.Gonzalez   2225 - 25º    
  3217 00 14 00 -39 19 27 130m llla - F H alpha 1" - 2" Bozyan / Opal / R.Gonzalez   N 55    

 

Last Updated on 8/27/99

By Jorge Marin

1983

1983 Plate logs for 1.5-m telescope

November

November 1983 Plate logs for 1.5-m telescope

 


Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
  3218 00 20 18 -74 30 5m 098 - 04 RG 610 1.5" Bravo 21 11 83 SMC. C -area A   CTIO
  3219 00 30 24 -75 01 5m 098 - 04 RG 610 1" Bravo 22 11 83 SMC. C -area B   CTIO
  3220 00 35 18 -74 15 5m 098 - 04 RG 610 1" Bravo 22 11 83 SMC. C -area C   CTIO

 

Last Updated on 8/27/99

By Guerra & Marin

1984

1984 Plate logs for 1.5-m telescope

January

January 1984 Plate logs for 1.5-m telescope

Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
  3221 05 20 49.6 -68 37 37 40m lla - O bkd GG 385 <1" Blanco / Cosgrove 04 01 84 LMC. RR - A   CTIO
  3222 05 20 49.6 -68 37 37 40m lla - O GG 385 <1" Blanco / Cosgrove 04 01 84 LMC. RR - A   CTIO
  3223 05 20 49.6 -68 37 37 30m lla - O bkd GG 385 1" Blanco / Cosgrove 04 01 84 LMC. RR - A   CTIO
  3224 05 20 49.8 -68 37 35 31m10s lla - O bkd GG 385 <1" Blanco / Hernandez 05 01 84 LMC. RR - A   CTIO
  3225 05 20 48.8 -68 37 37 45m lla - O bkd GG 385 1" Blanco / Cosgrove 30 01 84 LMC. RR - A   CTIO
  3226 05 20 48.8 -68 37 37 45m lla - O bkd GG 385 <1" Blanco / Cosgrove 30 01 84 LMC. RR - A   CTIO
  3227 05 20 48.8 -68 37 37 45m lla - O bkd GG 385 1.5" Blanco / Cosgrove 30 01 84 LMC. RR - A   CTIO
  3228 05 20 48.8 -68 37 37 45m lla - O bkd GG 385 2.5" Blanco / Cosgrove 30 01 84 LMC. RR - A   CTIO
  3229 05 20 48.8 -68 37 37 45m lla - O bkd GG 385   Blanco / Cosgrove 30 01 84 LMC. RR - A   CTIO
  3230 05 20 48.8 -68 37 37 45m 103a-O bkd GG 385 1.5" Blanco / Cosgrove 01 02 84 LMC. RR - A   CTIO
  3231 05 20 48.8 -68 37 37 45m 103a-O bkd GG 385 1.5" Blanco / Cosgrove 01 02 84 LMC. RR - A   CTIO
  3232 05 20 48.8 -68 37 37 45m 103a-O bkd GG 385 1" Blanco / Cosgrove 01 02 84 LMC. RR - A DESTROYED CTIO
  3233 05 20 48.8 -68 37 37 45m 103a-O bkd GG 385 1" Blanco / Cosgrove 01 02 84 LMC. RR - A   CTIO
  3234 05 20 48.8 -68 37 37 45m 103a-O bkd GG 385 1" Blanco / Cosgrove 01 02 84 LMC. RR - A   CTIO
  3235 05 20 48.8 -68 37 37 45m 103a-O bkd GG 385 1.5" Blanco / Cosgrove 01 02 84 LMC. RR - A   CTIO
  3236   -61 47 10s each lla - O bkd GG 385 2" Martin / Cosgrove 20 01 84 Focus Plate   CTIO
  3237   -33 00 10s lla - O bkd GG 385 2" Martin / Cosgrove 20 01 84 Focus Plate Zenit   CTIO
  3238   -24 00 10s lla - O bkd GG 385 2" Martin / Cosgrove 20 01 84 Focus Plate East   CTIO
  3239   -36 00 10s lla - O bkd GG 385 2" Martin / Cosgrove 20 01 84 Focus Plate West   CTIO
  3240   +14 00 10s lla - O bkd GG 385 2" Martin / Cosgrove 20 01 84 Focus Plate North   CTIO
  3241   -65 00 10s lla - O bkd GG 385 2" Martin / Cosgrove 20 01 84 Focus Plate South   CTIO
  3242 14 44 40.8 -65 27 13 25m lla - O bkd GG 385 2" Martin / Cosgrove 20 01 84 Test Plate   CTIO

 

Last Updated on 8/27/99

By Guerra & Marin

July

July 1984 Plate logs for 1.5-m telescope

 

Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
  3243 18 05 45 -31 10 08 20m 103a - O GG 385 2" - 3" Blanco / Ugarte 19 07 84 0.6 - 5.5 Broken Ok" CTIO
  3244 18 06 47 -32 09 14 20m 103a - O GG 385 1.5" - 5" Blanco / Ugarte 19 07 84 0.0 - 5.8    
  3245 18 05 45 -31 10 08 20m 103a - O GG 385 2" - 4" Blanco / Ugarte 19 07 84 0.6 - 5.5   CTIO
  3246 18 06 47 -32 09 14 20m 103a - O GG 385 2" - 4" Blanco / Ugarte 19 07 84 0.0 - 5.8    
  3247 18 05 45 -31 10 08 20m 103a - O GG 385 2" Blanco / Ugarte 20 07 84 0.6 - 5.5   CTIO
  3248 18 06 47 -32 09 14 20m 103a - O GG 385 2" Blanco / Ugarte 20 07 84 0.0 - 5.8    
  3249 18 05 45 -31 10 18 20m 103a - O GG 385 1" - 2" Blanco / Ugarte 20 07 84 0.6 - 5.5   CTIO
  3250 18 06 47 -32 09 14 20m 103a - O GG 385 1" - 2" Blanco / Ugarte 20 07 84 0.0 - 5.8    
  3251 18 05 45 -31 10 08 20m 103a - O GG 385 1" - 2" Blanco / Ugarte 20 07 84 0.6 - 5.5   CTIO
  3252 18 06 47 -32 09 14 20m 103a - O GG 385 2" Blanco / Ugarte 20 07 84 0.0 - 5.8    
  3253 18 05 45 -31 10 08 20m 103a - O GG 385 2" Blanco / Ugarte 20 07 84 0.6 - 5.5   CTIO
  3254 18 06 47 -32 09 14 20m 103a - O GG 385 2" Blanco / Ugarte 20 07 84 0.0 - 5.8    
  3255 18 05 45 -31 10 08 20m 103a - O GG 385 2" Blanco / Ugarte 20 07 84 0.6 - 5.5   CTIO
  3256 18 06 47 -32 09 14 20m 103a - O GG 385 2" Blanco / Ugarte 20 07 84 0.0 - 5.8    
  3257 18 05 45 -31 10 08 20m 103a - O GG 385 1.5" Blanco / Ugarte 20 07 84 0.6 - 5.5   CTIO
  3258 18 06 47 -32 09 14 20m 103a - O GG 385 1.5" Blanco / Ugarte 20 07 84 0.0 - 5.8    
  3259 18 05 45 -31 10 08 20m 103a - O GG 385 1.5" Blanco / Ugarte 20 07 84 0.6 - 5.5   CTIO
  3260 18 06 47 -32 09 14 20m 103a - O GG 385 1.5" Blanco / Ugarte 20 07 84 0.0 - 5.8    
  3261 18 05 45 -31 10 08 20m 103a - O GG 385 1.5" Blanco / Ugarte 20 07 84 0.6 - 5.5   CTIO
  3262 18 06 47 -32 09 14 20m 103a - O GG 385 1.5" Blanco / Ugarte 20 07 84 0.0 - 5.8    

 

Last Updated on 8/27/99

By Guerra & Marin

August

August 1984 Plate logs for 1.5-m telescope

 


Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
  3263 18 05 45 -31 10 08 20m 103a - O GG 385 1" - 2" Blanco / Ugarte 01 08 84 0.6 - 5.5   CTIO
  3264 18 06 47 -32 09 14 20m 103a - O GG 385 1" - 2" Blanco / Ugarte 01 08 84 0.0 - 5.8    
  3265 18 05 45 -31 10 08 20m 103a - O GG 385 1" - 2" Blanco / Ugarte 01 08 84 0.6 - 5.5   CTIO
  3266 18 06 47 -32 09 14 20m 103a - O GG 385 1" - 2" Blanco / Ugarte 01 08 84 0.0 - 5.8    
  3267 18 05 45 -31 10 08 20m 103a - O GG 385 1" - 2" Blanco / Ugarte 01 08 84 0.6 - 5.5   CTIO
  3268 18 06 47 -32 09 14 20m 103a - O GG 385 1" - 2" Blanco / Ugarte 01 08 84 0.0 - 5.8    
  3269 18 05 45 -31 10 08 20m 103a - O GG 385 2" - 3" Blanco / Ugarte 01 08 84 0.6 - 5.5   CTIO
  3270 18 06 47 -32 09 14 20m 103a - O GG 385 2" - 3" Blanco / Ugarte 01 08 84 #REF!    
  3271 18 05 45 -31 10 08 20m 103a - O GG 385 2" - 3" Blanco / Ugarte 01 08 84 0.6 - 5.5   CTIO
  3272 18 06 47 -32 09 14 20m 103a - O GG 385 2" - 3" Blanco / Ugarte 01 08 84 0.0 - 5.8    
  3273 18 05 45 -31 10 08 20m 103a - O GG 385 3" - 4" Blanco / Ugarte 01 08 84 0.6 - 5.5   CTIO
  3274 18 05 45 -31 10 08 30m 103a - O GG 385 2" - 3" Blanco / Ugarte 02 08 84 0.6 - 5.5   CTIO
  3275 18 06 47 -32 09 14 30m 103a - O GG 385 2" - 3" Blanco / Ugarte 02 08 84 0.0 - 5.8    
  3276 17 59 04.6 -46 50 04 20m 103a - O GG 385 2" - 3" Blanco / Ugarte 02 08 84 comet Neujmin    
  3277 18 05 45 -31 10 08 30m 103a - O GG 385 1" - 2" Blanco / Ugarte 02 08 84 0.6 - 5.5   CTIO
  3278 18 06 47 -32 09 14 30m 103a - O GG 385 1" - 5" Blanco / Ugarte 02 08 84 0.0 - 5.8    
  3279 18 05 45 -31 10 08 30m 103a - O GG 385 2" - 5" Blanco / Ugarte 02 08 84 0.6 - 5.5   CTIO
  3280 17 59 04.6 -46 50 04 15m 103a - O GG 385 1" - 2" Blanco / Ugarte 02 08 84 comet Neujmin    
  3281 18 05 45 -31 10 08 30m 103a - O GG 385 2" Blanco / Ugarte 02 08 84 0.6 - 5.5   CTIO
  3282 18 06 47 -32 08 14 10m 103a - O GG 385   Blanco / Ugarte 02 08 84 0.0 - 5.5    

  

Last Updated on 8/27/99

By Jorge Marin

September

September 1984 Plate logs for 1.5-m telescope

 


Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
  3283 16 31 27 -44 52 44 30m 103a - O GG 495   Graham / Klemola / Bravo 21 09 84 HH - 57    
  3284 17 09 25.6 -23 18 35 30m 103a - O GG 495   Graham / Klemola / Bravo 21 09 84 Ophiuchus    
  3285 19 00 41 -36 59 06 30m 103a - O GG 385   Graham / Klemola / Bravo 21 09 84 R Cr A    
  3286 00 24 27 -71 48 24 90m 103a - O GG 385   Graham / Klemola / Bravo 21 09 84 NGC 121    
  3287 00 24 27 -71 48 24 90m 103a - O GG 385   Graham / Klemola / Bravo 21 09 84 NGC 121    
  3288 00 24 27 -71 48 24 60m 103a - O GG 385   Graham / Klemola / Bravo 21 09 84 NGC 121    
  3289 00 24 27 -71 48 24 3m 103a - O GG 385   Graham / Klemola / Bravo 21 09 84 NGC 121    
  3290 17 09 25.6 -23 18 35 30m 103a - O GG 385 1" Graham / Klemola / Rivera 22 09 84 Ophiuchus    
  3291 19 00 41 -36 59 06 30m 103a - O GG 385 1" Graham / Klemola / Rivera 22 09 84 R Cr A    
  3292 00 24 27 -71 48 24 90m 103a - O GG 385 2" Graham / Klemola / Rivera 22 09 84 NGC 121    
  3293 00 24 27 -71 48 24 90m 103a - O GG 385 1" - 2" Graham / Klemola / Rivera 22 09 84 NGC 121    
  3294 00 24 27 -71 48 24 90m 103a - O GG 385 1" Graham / Klemola / Rivera 22 09 84 NGC 121    
  3295 00 24 27 -71 48 24 90m 103a - O GG 385 1" Graham / Klemola / Rivera 22 09 84 NGC 121    
  3296 17 09 25.3 -23 18 49 30m 103a - D GG 495 2" Graham / Klemola / Rivera 23 09 84 Ophiuchus    
  3297 19 00 41 -36 59 06 40m 103a - O GG 385 1.5" Graham / Klemola / Rivera 23 09 84 R Cr A    
  3298 17 09 25.6 -23 18 35 45m 103a - O UG 1 1" - 2" Graham / Klemola / Rivera 24 09 84 Ophiuchus    
  3299 19 00 41 -36 59 06 30m 103a - O GG 385 1.5" Graham / Klemola / Rivera 24 09 84 R Cr A    
  3300 00 24 27 -71 48 24 90m 103a - O GG 385 1" - 2" Graham / Klemola / Rivera 24 09 84 NGC 121    
  3301 00 24 27 -71 48 24 90m 103a - O GG 385 1" - 4" Graham / Klemola / Rivera 24 09 84 NGC 121    
  3302 00 24 27 -71 48 24 90m 103a - O GG 385 2" - 3" Graham / Klemola / Rivera 24 09 84 NGC 121    
  3303 00 24 27 -71 48 24 72m 103a - O GG 385 2" - 3" Graham / Klemola / Rivera 24 09 84 NGC 121    

 

Last Updated on 8/27/99

By Guerra & Marin

December

December 1984 Plate logs for 1.5-m telescope

 

Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
  3304       llla - F GG 385 1.5" Bass / Hernandez 19 12 84 focus    
  3305 04 19 35.2 -54 58 09 155m llla - J GG 385 1.5" - 2" Bass / Hernandez 19 12 84 NGC 1566    

 

Last Updated on 8/27/99

By Jorge Marin

1985

1985 Plate logs for 1.5-m telescope

May

May 1985 Plate logs for 1.5-m telescope

 

Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
  3306 17 29 51 -37 21 47 10s each lla - O bkd GG 385   Blanco / Elicer / R.Gonzalez 24 05 85 focus    
  3307 18 08 06 -31 10 20 25m lla - O bkd GG 385 2" Blanco / Elicer / R.Gonzalez 24 05 85 0.6 - 5.5   CTIO
  3308 18 08 57 -32 07 37 25m lla - O bkd GG 385 2" Blanco / Elicer / R.Gonzalez 24 05 85 0.6 - 5.8    
  3309 18 08 07.7 -31 10 18 25m lla - O bkd GG 495 2" Blanco / Elicer / R.Gonzalez 24 05 85 0.6 - 5.5   CTIO
  3310 18 08 58.1 -32 07 34 25m lla - O bkd GG 385 2" Blanco / Elicer / R.Gonzalez 24 05 85 0.6 - 5.8    
  3311 18 08 08 -31 10 13 25m lla - O bkd GG 385   Blanco / Elicer / R.Gonzalez 24 05 85 0.6 - 5.5   CTIO
  3312 18 08 58 -32 07 34 25m lla - O bkd GG 385 1.5" Blanco / Elicer / R.Gonzalez 24 05 85 0.6 - 5.8    
  3313 18 08 09 -31 10 14 25m lla - O bkd GG 385 1.5" Blanco / Elicer / R.Gonzalez 24 05 85 0.6 - 5.5   CTIO
  3313 18 08 09 -31 10 14 25m lla - O bkd GG 385 1.5" Blanco / Elicer / R.Gonzalez 24 05 85 0.6 - 5.5    
  3314 18 08 51.7 -32 07 32 25m lla - O bkd GG 385 1.5" Blanco / Elicer / R.Gonzalez 24 05 85 0.6 - 5.8    
  3315 18 08 09 -31 10 14 25m lla - O bkd GG 385 1.5" Blanco / Elicer / R.Gonzalez 24 05 85 0.6 - 5.5   CTIO
  3316 18 08 59 -32 07 32 25m lla - O bkd GG 385 1.5" Blanco / Elicer / R.Gonzalez 24 05 85 0.6 - 5.8    
  3317 18 08 10 -31 10 15 25m lla - O bkd GG 385 1.5" Blanco / Elicer / R.Gonzalez 24 05 85 0.6 - 5.5   CTIO
  3318 18 08 59 -32 07 32 25m lla - O bkd GG 385   Blanco / Elicer / R.Gonzalez 24 05 85 0.6 - 5.8    
  3319 18 08 10 -31 10 15 25m lla - O bkd GG 385 2" Blanco / Elicer / R.Gonzalez 24 05 85 0.6 - 5.5   CTIO
  3320 18 08 59 -32 07 32 25m lla - O bkd GG 385 1.5" Blanco / Elicer / R.Gonzalez 25 05 85 0.6 - 5.8    
  3321 18 08 10 -31 10 15 25m lla - O bkd GG 385 1.5" Blanco / Elicer / R.Gonzalez 25 05 85 0.6 - 5.5   CTIO
  3322 18 08 57.5 -32 06 49 25m lla - O bkd GG 385 1.5" Blanco / Elicer / R.Gonzalez 25 05 85 0.6 - 5.8    
  3323 18 08 10 -31 10 15 25m lla - O bkd GG 385 1.5" Blanco / Elicer / R.Gonzalez 25 05 85 0.6 - 5.5   CTIO
  3324 18 08 58.2 -32 06 46 25m lla - O bkd GG 385 1.5" Blanco / Elicer / R.Gonzalez 25 05 85 0.6 - 5.8    
  3325 18 08 10 -31 10 15 25m lla - O bkd GG 385 seeing variable Blanco / Elicer / R.Gonzalez 25 05 85 0.6 - 5.5   CTIO
  3326 18 08 58.2 -32 06 46 25m lla - O bkd GG 385 2" Blanco / Elicer / R.Gonzalez 25 05 85 0.6 - 5.8    
  3327 18 08 10 -31 10 15 25m lla - O bkd GG 385 2" Blanco / Elicer / R.Gonzalez 25 05 85 0.6 - 5.5   CTIO
  3328 18 08 58 -32 06 40 25m lla - O bkd GG 385 1" Blanco / Elicer / R.Gonzalez 25 05 85 0.6 - 5.8    
  3329 18 08 10 -31 10 15 25m lla - O bkd GG 385 1" - 2" Blanco / Elicer / R.Gonzalez 26 05 85 0.6 - 5.5   CTIO
  3330 18 09 00 -32 06 40 25m lla - O bkd GG 385 seeing variable Blanco / Elicer / R.Gonzalez 25 05 85 0.6 - 5.8    
  3331 18 08 10.7 -31 10 13 25m lla - O bkd GG 385 2" - 4" Blanco / Elicer 26 05 85 0.6 - 5.5    
  3332 18 08 58.8 -32 07 35 25m lla - O bkd GG 385 2" - 4" Blanco / Elicer 26 05 85 0.6 - 5.8    
  3333 18 08 10.7 -31 10 13 25m lla - O bkd GG 385 2" - 4" Blanco / Elicer 26 05 85 0.6 - 5.5   CTIO
  3334 18 08 58.5 -32 07 35 25m lla - O bkd GG 385 2" - 3" Blanco / Elicer 26 05 85 0.6 - 5.8    
  3335 18 08 11 -31 10 10 25m lla - O bkd GG 385 2" - 3" Blanco / Elicer 26 05 85 0.6 - 5.5   CTIO
  3336 18 08 59 -32 07 29 25m lla - O bkd GG 385 2" - 3" Blanco / Elicer 26 05 85 0.6 - 5.8    
  3337 18 08 11 -31 10 09 25m lla - O bkd GG 385 2" - 3" Blanco / Elicer 26 05 85 0.6 - 5.5   CTIO
  3338 18 09 00 -32 07 30 25m lla - O bkd GG 385 1" - 1.5" Blanco / Elicer 26 05 85 0.6 - 5.8    
  3339 18 08 12 -31 10 07 25m lla - O bkd GG 385 2" Blanco / Elicer 26 05 85 0.6 - 5.5   CTIO
  3340 18 08 59 -32 07 31 25m lla - O bkd GG 385 1.5" Blanco / Elicer 26 05 85 0.6 - 5.8    
  3341 18 08 10 -31 10 07 25m lla - O bkd GG 385 2.5" Blanco / Elicer 26 05 85 0.6 - 5.5   CTIO
  3342 18 08 58 -32 07 48 25m lla - O bkd GG 385 2" - 4" Blanco / Elicer 26 05 85 0.6 - 5.8    
  3343 18 08 10 -31 10 07 25m lla - O bkd GG 385 2" - 4" Blanco / Elicer 27 05 85 0.6 - 5.5   CTIO
  3344 18 08 58 -32 07 48 25m lla - O bkd GG 385 1" - 2" Blanco / Elicer 27 05 85 0.6 - 5.8    
  3345 18 08 10 -31 10 07 25m lla - O bkd GG 385 2" Blanco / Elicer 27 05 85 0.6 - 5.5    
  3346 18 08 58 -32 07 48 25m lla - O bkd GG 385 2" Blanco / Elicer 27 05 85 0.6 - 5.8    
  3347 18 08 10 -31 10 07 25m lla - O bkd GG 385 2" Blanco / Elicer 27 05 85 0.6 - 5.5   CTIO
  3348 18 08 58 -32 07 48 25m lla - O bkd GG 385 1" Blanco / Elicer 27 05 85 0.6 - 5.8    
  3349 18 08 10 -31 10 07 25m lla - O bkd GG 385 1" Blanco / Elicer 27 05 85 0.6 - 5.5   CTIO
  3350 18 08 58 -32 07 48 25m lla - O bkd GG 385 1" Blanco / Elicer 27 05 85 0.6 - 5.8    
  3351 18 08 10 -31 10 07 25m lla - O bkd GG 385 1.5" Blanco / Elicer 27 05 85 0.6 - 5.5   CTIO
  3352 18 08 58 -32 07 48 25m lla - O bkd GG 385 1.5" Blanco / Elicer 27 05 85 0.6 - 5.8    
  3353 18 08 10 -31 10 07 25m lla - O bkd GG 385 1.5" Blanco / Elicer 27 05 85 0.6 - 5.5   CTIO
  3354 18 08 58 -32 07 48 25m lla - O bkd GG 385 1.5" Blanco / Elicer 27 05 85 0.6 - 5.8    
  3355 18 08 10 -31 10 07 25m lla - O bkd GG 385 1.5" Blanco / Elicer 27 05 85 0.6 - 5.5   CTIO
  3356 18 08 58 -32 07 48 25m lla - O bkd GG 385 1.5" Blanco / Elicer 27 05 85 0.6 - 5.8    

 

Last Updated on 8/27/99

By Guerra & Marin

August

August 1985 Plate logs for 1.5-m telescope

 


Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
  3357 12 24 57.8 -39 03 43 120m lla - O bkd GG 385   Jarvis / Cosgrove 10 08 85 IC 3370    
  3358 18 58 48 -64 58 06 120m lla - O bkd GG 385 3" - 4" Jarvis / Cosgrove 10 08 85 NGC 6722    
  3359 19 14 14 -60 38 12 120m lla - O bkd GG 495 4" - 5" Jarvis / Cosgrove 10 08 85 NGC 6771    
  3360 21 59 50.3 -32 14 04 150m lla - D GG 495   Jarvis / Cosgrove 10 08 85 466 - 946    
  3361 18 05 45.2 -31 10 05   lla - O bkd GG 385 1" - 3" Blanco / Cosgrove 11 08 85 Field l   CTIO
  3362 18 06 47 -32 09 14   lla - O bkd GG 385 1" - 3" Blanco / Cosgrove 11 08 85 Field ll    
  3363 18 10 24 -29 33   lla - O bkd GG 385 1" - 3" Blanco / Cosgrove 11 08 85 Field lll   CTIO
  3364 18 10 24 -29 33   lla - O bkd GG 385 1" - 3" Blanco / Cosgrove 11 08 85 Field ll   CTIO
  3365 18 10 24 -29 33   lla - O bkd GG 385 1" - 3" Blanco / Cosgrove 11 08 85 Field ll    
  3366 18 10 24 -29 33   lla - O bkd GG 385 1" - 3" Blanco / Cosgrove 11 08 85 Field lll   CTIO
  3367 18 10 24 -29 33   lla - O bkd GG 385 1" - 3" Blanco / Cosgrove 11 08 85 Field l   CTIO
  3368 18 10 24 -29 33   lla - O bkd GG 385 1" - 3" Blanco / Cosgrove 11 08 85 Field ll    
  3369 18 10 24 -29 33   lla - O bkd GG 385 1" - 3" Blanco / Cosgrove 11 08 85 Field lll   CTIO
  3370 18 10 24 -29 33   lla - O bkd GG 385 4" Blanco / Cosgrove 11 08 85 Field l   CTIO
  3371 18 10 24 -29 33   lla - O bkd GG 385 4" Blanco / Cosgrove 11 08 85 Field ll    
  3372 18 10 24 -29 33   lla - O bkd GG 385 1" Blanco / Cosgrove 12 08 85 Field l   CTIO
  3373 18 10 24 -29 33   lla - O bkd GG 385 1" Blanco / Cosgrove 12 08 85 Field ll    
  3374 18 10 24 -29 33   lla - O bkd GG 385 1" Blanco / Cosgrove 12 08 85 Field lll   CTIO
  3375 18 10 24 -29 33   lla - O bkd GG 385 1" Blanco / Cosgrove 12 08 85 Field l   CTIO
  3376 18 10 24 -29 33   lla - O bkd GG 385 1" - 3" Blanco / Cosgrove 12 08 85 Field ll    
  3377 18 10 24 -29 33   lla - O bkd GG 385 1" - 3" Blanco / Cosgrove 12 08 85 Field lll   CTIO
  3378 18 10 24 -29 33   lla - O bkd GG 385 1" - 3" Blanco / Cosgrove 12 08 85 Field l   CTIO
  3379 18 10 24 -29 33   lla - O bkd GG 385 1" - 3" Blanco / Cosgrove 12 08 85 Field ll    
  3380 18 10 24 -29 33   lla - O bkd GG 385 1" - 3" Blanco / Cosgrove 12 08 85 Field lll   CTIO
  3381 18 10 24 -29 33   lla - O bkd GG 385 1" - 3" Blanco / Cosgrove 12 08 85 Field l   CTIO
  3382 18 10 24 -29 33   lla - O bkd GG 385 1" - 3" Blanco / Cosgrove 12 08 85 Field ll    
  3383 18 10 24 -29 33   lla - O bkd GG 385 2" - 3" Blanco / Cosgrove 12 08 85 Field ll    
  3384 18 10 24 -29 33   lla - O bkd GG 385 2" - 4" Blanco / Cosgrove 12 08 85 Field l   CTIO
  3385 18 10 24 -29 33   lla - O bkd GG 385 2" - 4" Blanco / Cosgrove 12 08 85 Field ll    
  3386 18 05 45.2 -31 10 05 20m lla - O bkd GG 385   Blanco / Cosgrove 13 08 85 Field l   CTIO
  3387 18 06 47 -32 09 14 20m lla - O bkd     Blanco / Cosgrove 13 08 85 Field ll    
  3388 18 10 24 -29 33 01 20m lla - O bkd GG 385   Blanco / Cosgrove 13 08 85 Field lll   CTIO
  3389 18 10 24 -29 33 01 20m lla - O bkd GG 385   Blanco / Cosgrove 13 08 85 Field l   CTIO
  3390 18 10 24 -29 33 01 20m lla - O bkd     Blanco / Cosgrove 13 08 85 Field ll    
  3391 18 10 24 -29 33 01 20m lla - O bkd GG 385   Blanco / Cosgrove 13 08 85 Field lll   CTIO
  3392 18 10 24 -29 33 01 20m lla - O bkd GG 385   Blanco / Cosgrove 13 08 85 Field l   CTIO
  3393 18 10 24 -29 33 01 20m lla - O bkd     Blanco / Cosgrove 13 08 85 Field ll    
  3394 18 10 24 -29 33 01 20m lla - O bkd GG 385   Blanco / Cosgrove 13 08 85 Field l   CTIO
  3395 18 10 24 -29 33 01 20m30s lla - O bkd     Blanco / Cosgrove 13 08 85 Field ll    
  3396 18 10 24 -29 33 01 20m lla - O bkd GG 385   Blanco / Cosgrove 13 08 85 Field l   CTIO
  3397 18 10 24 -29 33 01 20m lla - O bkd     Blanco / Cosgrove 13 08 85 Field ll    
  3398 18 10 24 -29 33 01 20m lla - O bkd GG 385   Blanco / Cosgrove 14 08 85 Field l   CTIO
  3399 18 10 24 -29 33 01 20m lla - O bkd GG 385   Blanco / Cosgrove 14 08 85 Field lll   CTIO
  3400 18 10 24 -29 33 01 20m lla - O bkd GG 385   Blanco / Cosgrove 15 08 85 Field l   CTIO
  3401 18 10 24 -29 33 01 20m lla - O bkd     Blanco / Cosgrove 15 08 85 Field ll    
  3402 18 10 24 -29 33 01 20m04s lla - O bkd GG 385   Blanco / Cosgrove 15 08 85 Field lll   CTIO
  3403 18 10 24 -29 33 01 20m lla - O bkd GG 385   Blanco / Cosgrove 15 08 85 Field l   CTIO
  3404 18 10 24 -29 33 01 20m lla - O bkd     Blanco / Cosgrove 15 08 85 Field ll    
  3405 18 10 24 -29 33 01 3m lla - O bkd GG 385   Blanco / Cosgrove 15 08 85 Field lll   CTIO
  3406 18 10 24 -29 33 01 20m lla - O bkd GG 385   Blanco / Cosgrove 15 08 85 Field lll   CTIO
  3407 18 10 24 -29 33 01 20m lla - O bkd GG 385   Blanco / Cosgrove 15 08 85 Field l   CTIO
  3408 18 10 24 -29 33 01 20m lla - O bkd     Blanco / Cosgrove 15 08 85 Field ll    
  3409 18 10 24 -29 33 01 20m lla - D bkd GG 395   Blanco / Cosgrove 15 08 85 Field l   CTIO
  3410 18 10 24 -29 33 01 20m lla - D bkd GG 395   Blanco / Cosgrove 15 08 85 Field ll   CTIO
  3411 18 10 24 -29 33 01 20m lla - D bkd GG 395   Blanco / Cosgrove 15 08 85 Field lll   CTIO
  3412 18 10 24 -29 33 01 20m lla - O bkd GG 385   Blanco / Cosgrove 15 08 85 Field l   CTIO
  3413 18 10 24 -29 33 01 20m lla - O bkd GG 385   Blanco / Cosgrove 15 08 85 Field ll    
  3414 18 10 24 -29 33 01 20m lla - O bkd GG 385 1.5" Blanco / Cosgrove 15 08 85 Field lll   CTIO
  3415 18 05 45.5 -31 10 07 20m lla -- O GG 385 2" - 3" Blanco / Ugarte 16 08 85 Field l   CTIO
  3416 18 06 47 -32 09 14 20m lla -- O GG 385 2" - 3" Blanco / Ugarte 16 08 85 Field ll    
  3417 18 10 24 -29 33 01 20m lla -- O GG 385 2" - 3" Blanco / Ugarte 16 08 85 Field lll   CTIO
  3418 18 10 24 -29 33 01 20m lla -- O GG 385 2" - 3" Blanco / Ugarte 16 08 85 Field l   CTIO
  3419 18 10 24 -29 33 01 20m lla -- O GG 385 2" - 3" Blanco / Ugarte 16 08 85 Field ll    
  3420 18 10 24 -29 33 01 20m lla -- O GG 385 1" Blanco / Ugarte 16 08 85 Field lll   CTIO
  3421 18 10 24 -29 33 01 20m lla -- O GG 385 1" Blanco / Ugarte 16 08 85 Field l   CTIO
  3422 18 10 24 -29 33 01 20m lla -- O GG 385 1" - 2" Blanco / Ugarte 16 08 85 Field ll    
  3423 18 10 24 -29 33 01 20m lla -- O GG 385 1" - 2" Blanco / Ugarte 16 08 85 Field lll   CTIO
  3424 18 10 24 -29 33 01 20m lla -- O GG 385 2" - 4" Blanco / Ugarte 16 08 85 Field l   CTIO
  3425 18 10 24 -29 33 01 20m lla -- O GG 385 1" - 2" Blanco / Ugarte 16 08 85 Field lll   CTIO
  3426 18 10 24 -29 33 01 20m lla -- O GG 385 1" - 2" Blanco / Ugarte 16 08 85 Field lll    
  3427 18 10 24 -29 33 01 20m lla -- O GG 385 1" - 2" Blanco / Ugarte 16 08 85 Field l   CTIO
  3428 18 10 24 -29 33 01 20m lla -- O GG 385 1" - 2" Blanco / Ugarte 16 08 85 Field ll    
  3429 18 10 24 -29 33 01 20m lla -- O GG 385 1" - 2" Blanco / Ugarte 16 08 85 Field ll   CTIO
  3430 18 10 24 -29 33 01 15m lla - D GG 395 1" - 2" Blanco / Ugarte 16 08 85 Field lll   CTIO
  3431 18 10 24 -29 33 01 15m lla - D GG 395 3" Blanco / Ugarte 16 08 85 Field l   CTIO
  3432 18 10 24 -29 33 01 15m lla - D GG 395 3" Blanco / Ugarte 16 08 85 Field ll   CTIO

 

 

Last Updated on 8/27/99

By Jorge Marin

1986

1986 Plate logs for 1.5-m telescope

May

May 1986 Plate logs for 1.5-m telescope

 

Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
  3433 18 10 24 -29 33 02 25m lla - O bkd GG 385 1.4" Blanco / Hernandez 31 05 86 Field lll   CTIO
  3434 18 06 47 -32 09 14 25m lla - O GG 385 1.4" Blanco / Hernandez 31 05 86 Field ll    
  3435 18 10 24 -29 33 01 25m lla - O bkd GG 385 1.4" Blanco / Hernandez 31 05 86 Field lll   CTIO
  3436 18 05 36.8 -31 10 49 25m lla - O bkd GG 385 1.4" Blanco / Hernandez 31 05 86 Field l   CTIO
  3437 18 05 36.8 -31 10 49 25m lla - O bkd GG 385 1.4" Blanco / Hernandez 31 05 86 Field lll   CTIO
  3438 18 05 36.8 -31 10 49 25m lla - O GG 385 1.4" Blanco / Hernandez 31 05 86 Field ll    
  3439 18 05 36.8 -31 10 49 25m lla - O bkd GG 385 1.4" Blanco / Hernandez 31 05 86 Field lll   CTIO
  3440 18 05 36.8 -31 10 49 25m lla - O bkd GG 385 1.4" Blanco / Hernandez 31 05 86 Field l   CTIO
  3441 18 05 36.8 -31 10 49 25m lla - O bkd GG 385 1.4" Blanco / Hernandez 31 05 86 Field lll   CTIO
  3442 18 05 36.8 -31 10 49 25m lla - D bkd GG 395 1.4" Blanco / Hernandez 31 05 86 Field lll   CTIO
  3443 18 06 45 -32 09 14 25m lla - D bkd GG 395 1" - 3" Blanco / Hernandez 31 05 86 Field ll   CTIO
  3444 18 06 45 -32 09 14 25m lla - O bkd GG 385 1" - 3" Blanco / Hernandez 31 05 86 Field lll   CTIO
  3445 18 06 45 -32 09 14 25m lla - D bkd GG 395 1" - 3" Blanco / Hernandez 31 05 86 Field l   CTIO

 

Last Updated on 8/27/99

By Guerra & Marin

June

June 1986 Plate logs for 1.5-m telescope

 

Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
  3446 18:10:31.2 -29 33 57 25m lla - O bkd GG 385 2" - 3" Blanco / Hernandez 01 06 86 Field lll   CTIO
  3447 18 06 53 -32 10 15 25m lla - O GG 385 2" - 3" Blanco / Hernandez 01 06 86 Field ll    
  3448 18 05 47.2 -31 11 56 25m lla - O bkd GG 385 2" - 3" Blanco / Hernandez 01 06 86 Field l   CTIO
  3449 18 10 32 -29 33 53 25m lla - O bkd GG 385 2" - 3" Blanco / Hernandez 01 06 86 Field lll   CTIO
  3450 18 10 32 -29 33 53 25m lla - O GG 385 2" - 3" Blanco / Hernandez 01 06 86 Field ll    
  3451 18 10 32 -29 33 53 25m lla - O GG 385 2" - 3" Blanco / Hernandez 01 06 86 Field lll   CTIO
  3452 18 10 32 -29 33 53 25m lla - O GG 385 2" - 3" Blanco / Hernandez 01 06 86 Field l   CTIO
  3453 18 10 32 -29 33 53 25m lla - O GG 385 2" - 3" Blanco / Hernandez 01 06 86 Field lll   CTIO
  3454 18 10 32 -29 33 53 25m lla - D GG 495 1" - 2" Blanco / Hernandez 01 06 86 Field ll    
  3455 18 10 32 -29 33 53 25m lla - D GG 395 1" - 2" Blanco / Hernandez 01 06 86 Field lll   CTIO
  3456 18 10 32 -29 33 53 25m lla - D GG 395 1" - 2" Blanco / Hernandez 01 06 86 Field l   CTIO
  3457 18 10 32 -29 33 53 25m lla - O GG 385 1" - 2" Blanco / Hernandez 01 06 86 Field lll   CTIO
  3458 18 10 32 -29 33 53 25m lla - O GG 385 1" - 2" Blanco / Hernandez 01 06 86 Field l    
  3459 18 05 47.6 -31 12 01 25m lla - O bkd GG 385 1.5" - 2" Blanco / Hernandez 02 06 86 Field l   CTIO
  3460 18 05 47.6 -31 12 01 25m lla - O bkd GG 385 1.5" - 2" Blanco / Hernandez 02 06 86 Field lll   CTIO
  3461 18 05 47.6 -31 12 01 25m lla - O GG 385 1.5" - 2" Blanco / Hernandez 02 06 86 Field ll    
  3462 18 05 47.6 -31 12 01 25m lla - O bkd GG 385 1.5" - 2" Blanco / Hernandez 02 06 86 Field lll   CTIO
  3463 18 24 11 -33 54 58 30m IV N RG 2 1.5" Blanco / Hernandez 02 06 86 M Dwarf    
  3464 18 08 36 -31 47 00 25m lV N bkd RG 610 1" - 1.5" Blanco / Hernandez 02 06 86 NGC 6558   CTIO
  3465 18 08 36 -31 47 00 25m lV N bkd RG 610 1" - 1.5" Blanco / Hernandez 02 06 86 Field ll   CTIO
  3466 18 08 36 -31 47 00 25m lla - O bkd GG 385 1" - 1.5" Blanco / Hernandez 02 06 86 Field lll   CTIO
  3467 18 08 36 -31 47 00 25m lla - O bkd GG 385 1" - 1.5" Blanco / Hernandez 02 06 86 Field l   CTIO
  3468 18 08 36 -31 47 00 25m lla - O bkd GG 385 1" - 1.5" Blanco / Hernandez 02 06 86 Field lll   CTIO
  3469 18 08 36 -31 47 00 25m lla - O GG 385 1.5" - 2" Blanco / Hernandez 02 06 86 Field ll    
  3470 18 08 36 -31 47 00 25m lla - O bkd GG 385 1.5" - 2" Blanco / Hernandez 02 06 86 Field lll   CTIO
  3471 18 08 36 -31 47 00 25m lla - O bkd GG 385 1.5" - 2" Blanco / Hernandez 02 06 86 Field l   CTIO
  3472 18 08 36 -31 47 00 25m lla - O bkd GG 385 2" - 3" Blanco / Hernandez 02 06 86 Field ll   CTIO
  3473 18 08 36 -31 47 00 25m lla - O GG 385 2" - 3" Blanco / Hernandez 02 06 86 Field ll    

 

Last Updated on 8/27/99

By Guerra & Marin

December

December 1986 Plate logs for 1.5-m telescope

 

Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
  3474 01 02 22.3 -71 26 25 60m 103a - O   2" Baird / Bravo 06 12 86 SMC Field 0102 - 71.5    
  3475 01 02 22.3 -71 26 25 60m HD3L9 batch   2" Baird / Bravo 06 12 86 SMC Field 0102 - 71.5    
  3476 06 30 15.5 -64 18 29 10m lla - O baked GG 385 1" Suntzeff - Bravo 06 12 86 NGC 2257    
  3477 06 30 14.9 -64 19 03 47m lla - O baked GG 385 1" Suntzeff - Bravo 06 12 86 NGC 2257    
  3478 01 02 19.1 -71 26 37 70m 103a - D GG 495 1" Baird / Bravo 07 12 86 SMC Field 0102 - 71.5    
  3479 01 02 19.1 -71 26 37 70m 103a - D HDIKI batch GG 495 1" Baird / Bravo 07 12 86 SMC Field 0102 - 71.5    
  3480 01 02 19.1 -71 26 37 70m 103a - D GG 495 1" Baird / Bravo 07 12 86 SMC Field 0102 - 71.5    
  3481 06 29 58.7 -64 17 50 90m lla - O baked GG 385 2" Suntzeff - Bravo 07 12 86 NGC 2257    
  3482 06 29 58.7 -64 17 50 40m lla - O bkd GG 385 2" Suntzeff - Bravo 07 12 86 NGC 2257   CTIO
  3483 01 02 17 -71 26 24 60m 103a - D GG 495 2" Baird / Bravo 08 12 86 SMC Field 0102 - 71.5    
  3484 01 02 17 -71 26 24 60m 103a - D HDIKI batch GG 495 2" Baird / Bravo 08 12 86 SMC Field 0102 - 71.5    
  3485 06 29 56.6 -64 17 54 90m lla - O baked GG 385 1" Suntzeff - Bravo 08 12 86 NGC 2257    
  3486 06 29 56.6 -64 17 54 90m lla - O baked GG 385 2" Suntzeff - Bravo 08 12 86 NGC 2257    
  3487 01 02 19.3 -71 26 27 90m lla - D bkd GG 495 1.5" Baird / Bravo 09 12 86 SMC Field 0102 - 71.5    
  3488 01 02 19.3 -71 26 27 75m lla - D IH4 batch GG 495 1" Baird / Bravo 09 12 86 SMC Field 0102 - 71.5    
  3489 06 29 59.7 -64 17 46 90m lla - O baked GG 385 1.5" Suntzeff - Bravo 09 12 86 NGC 2257    
  3490 06 29 59.7 -64 17 46 90m lla - O baked GG 385 1.5" Suntzeff - Bravo 09 12 86 NGC 2257    
  3491 01 02 20.9 71 26 29 70m lla - D bkd GG 495 2" Baird / Bravo 10 12 86 SMC Field 0102 - 71.5    
  3492 01 02 20.9 71 26 29 60m lla - D bkd GG 495   Baird / Bravo 10 12 86 SMC Field 0102 - 71.5    
  3493 01 02 20.9 71 26 29 45m 103a - O     Baird / Bravo 10 12 86 SMC Field 0102 - 71.5    
  3494 05 13 27.4 -65 28 21 5m lla - D bkd GG 495   Baird / Bravo 10 12 86 LMC NGC 1866    
  3495 05 13 27.4 -65 28 21 15m lla - D bkd GG 495 2" Baird / Bravo 10 12 86 LMC NGC 1866    
  3496 05 13 27.4 -65 28 21 45m lla - D bkd GG 495 2" Baird / Bravo 10 12 86 LMC NGC 1866    
  3497 01 02 19.5 -71 26 25 60m 103a - O / HD3L9   2.5" Baird / Bravo 11 12 86 SMC Field 0102 - 71.5    
  3498 01 02 19.5 -71 26 25 60m 103a - O / HD3L9   3" Baird / Bravo 11 12 86 SMC Field 0102 - 71.5    
  3499 01 02 19.5 -71 26 25 60m lla - D bkd GG 495 1.5" Baird / Bravo 11 12 86 SMC Field 0102 - 71.5    
  3500 05 13 28 -65 28 27 45m 103a - O   2" Baird / Bravo 11 12 86 LMC NGC 1866    
  3501 05 13 28 -65 28 27 15m 103a - O   2" Baird / Bravo 11 12 86 LMC NGC 1866    
  3502 05 13 28 -65 28 27 5m 103a - O   1" Baird / Bravo 11 12 86 LMC NGC 1866    
  3503 02 36 18 -30 03 13*20s 103a - D     Blanco / Gonzalez / Ugarte 23 12 86 focus    
  3504 05 22 00 -34 57         Blanco / Gonzalez / Ugarte 23 12 86 focus    
  3505 02 08 33 -30 50 20 15*20s       Weller / Ugarte 24 12 86 focus    
  3506 03 00 45 -30 50 20 0.5m       Weller / Ugarte 24 12 86 out of focus images    
  3507 05 25 00 -35 29 5m       Weller / Ugarte / Saá 24 12 86 Hartnann plate    
  3508             Weller / Ugarte / Saá 24 12 86 Hartnann plate    
  3509             Weller / Ugarte / Saá 24 12 86 out of focus zenith    
  3510             Weller / Ugarte / Saá 24 12 86 out of focus zenith    
  3511     20s       Weller / Ugarte / Saá 24 12 86 out of focus zenith    
  3512             Weller / Ugarte / Saá 24 12 86 Hartnann zenith    
  3513             Weller / Saá / Bravo 24 12 86 Focus plate    
  3514             Weller / Saá / Bravo 24 12 86 Focus plate    
  3515             Weller / Saá / Bravo 24 12 86 focus plate way out of focus    

 

Last Updated on 8/27/99

By Jorge Marin

1987

1987 Plate logs for 1.5-m telescope

February

February 1987 Plate logs for 1.5-m telescope

 

Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
  3516     10s       Weller / Saá / Tirado 11 02 87 focus plate    
  3517     10s       Weller / Saá / Tirado 11 02 87 focus plate    
  3518     15s       Weller / Saá / Tirado 12 02 87 focus plate    
  3519     15s       Weller / Saá / Tirado 12 02 87 focus plate    
  3520     15s       Weller / Saá / Tirado 12 02 87 focus plate    
  3521     15s       Weller / Saá / Tirado 12 02 87 focus plate    
  3522     10s       Weller / Saá / Tirado 12 02 87 focus plate    
  3523     10s       Weller / Saá / Tirado 13 02 87 focus plate    
  3524     10s       Weller / Saá / Tirado 13 02 87 focus plate    
  3525     10s       Weller / Saá / Tirado 13 02 87 focus plate    
  3526     10s       Weller / Saá / Tirado 13 02 87 focus plate    
  3527 zenith   10s       Weller / Saá / Tirado 13 02 87 focus plate    
  3528 zenith   10s       Weller / Saá / Tirado 13 02 87 focus plate    
  3529 zenith   10s       Weller / Saá / Tirado 13 02 87 focus plate    
  3530 zenith   15s       Weller / Saá / Tirado 13 02 87 focus plate    
  3531 zenith   10s       Weller / Saá / Tirado 13 02 87 focus plate    
  3532 zenith   10s       Weller / Gonzalez / Tirado 14 02 87 focus plate    
  3533 zenith   10s       Weller / Gonzalez / Tirado 14 02 87 focus plate    
  3534 zenith   10s       Weller / Gonzalez / Tirado 14 02 87 focus plate    
  3535 zenith   10s       Weller / Gonzalez / Tirado 14 02 87 focus plate    
  3536 zenith   10s       Weller / Gonzalez / Tirado 14 02 87 focus plate    
  3537 zenith   10s       Weller / Gonzalez / Tirado 14 02 87 focus plate    
  3538 zenith   10s       Weller / Gonzalez / Tirado 14 02 87 focus plate    
  3539 zenith   10s       Weller / Gonzalez / Tirado 14 02 87 focus plate    
  3540 zenith   60s       Weller / Gonzalez / Tirado 14 02 87 test exposure    
  3541 zenith   10s       Weller / Gonzalez / Tirado 14 02 87 focus plate    
  3542 zenith   60s       Weller / Gonzalez / Tirado 14 02 87 test exposure    
  3543 zenith   10s each       Weller / Gonzalez / Tirado 14 02 87 focus exposure    
  3544 zenith   60s       Weller / Gonzalez / Tirado 14 02 87 test exposure    
  3545 zenith   60s       Weller / Gonzalez / Tirado 14 02 87 test exposure    

 

 

Last Updated on 8/27/99

By Guerra & Marin

March

March 1987 Plate logs for 1.5-m telescope

 

Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
  3546 05 35 50 -69 18 00 60s lV N RG 610   Blanco / Cosgrove 08 03 87 Super Nova 1987-1   CTIO
  3547 05 35 50 -69 18 00 60s lV N RG 610   Blanco / Cosgrove 08 03 87 Super Nova 1987-1   CTIO
  3548 05 35 50 -69 18 00 60s lV N RG 610   Blanco / Cosgrove 08 03 87 Super Nova 1987-1   CTIO
  3549 05 35 50 -69 18 00 60s lV N RG 610   Blanco / Cosgrove 08 03 87 Super Nova 1987-1   CTIO
  3550 05 35 50 -69 18 00 2m lV N RG 610   Blanco / Cosgrove 08 03 87 Super Nova 1987-1   CTIO
  3551 05 35 50 -69 18 00 2m lV N RG 610   Blanco / Cosgrove 08 03 87 Super Nova 1987-1   CTIO
  3552 05 35 50 -69 18 00 30s lV N RG 610   Blanco / Cosgrove 08 03 87 Super Nova 1987-1   CTIO
  3553 05 35 50 -69 18 00 30s lV N RG 610   Blanco / Cosgrove 08 03 87 Super Nova 1987-1   CTIO
  3554 05 35 50 -69 18 00 20s lla - O GG 385   Blanco / Cosgrove 08 03 87 Super Nova 1987-1   CTIO
  3555 05 35 50 -69 18 00 20s lla - O GG 385   Blanco / Cosgrove 08 03 87 Super Nova 1987-1   CTIO
  3556 05 35 50 -69 18 00 30m lla - O GG 495   Blanco / Cosgrove 08 03 87 Super Nova 1987-1 Broken Ok" CTIO
  3557 zenith     lla - O     Blanco / Cosgrove 08 03 87 focus plate    
  3558 zenith     lla - O     Blanco / Cosgrove 08 03 87 focus plate    
  3559 06 16 38 -32 24 5m 103a - D     Weller / Saá / Ugarte 17 03 87 Optic test    
  3560 06 16 38 -32 24 7m 103a - D     Weller / Saá / Ugarte 17 03 87 Optic test    
  3561 08 14 50 -33 02 7m 103a - D     Weller / Saá / Ugarte 17 03 87 Optic test    
  3562 08 14 50 -33 02 5m 103a - D     Weller / Saá / Ugarte 17 03 87 Optic test    
  3563 09 22 20 -35 58 5m 103a - D     Weller / Saá / Ugarte 17 03 87 Optic test    
  3564 09 22 20 -35 58 5m 103a - D     Weller / Saá / Ugarte 17 03 87 Optic test    
  3565 10 20 04 -31 06 5m 103a - D     Weller / Saá / Ugarte 17 03 87 Optic test    
  3566 10 57 20 -30 52 5m 103a - D     Weller / Saá / Ugarte 17 03 87 Optic test    
  3567 10 57 20 -30 52 5m 103a - D     Weller / Saá / Ugarte 17 03 87 Optic test    
  3568 12 43 07 -33 55 5m 103a - D     Weller / Saá / Ugarte 17 03 87 Optic test    
  3569 12 43 07 -33 55 20s each 103a - D     Weller / Saá / Ugarte 17 03 87 focus plate    
  3570 13 28 30 -33 00 5m 103a - D     Weller / Saá / Ugarte 17 03 87 Optic test    
  3571 15 06 24 -31 00 5m 103a - D     Weller / Saá / Ugarte 17 03 87 test    
  3572 06 39 40 -26 19 30 3m 103a - D     Weller / Saá / Ugarte 18 03 87 Optic test    
  3573 06 39 40 -26 19 30 3m 103a - D     Weller / Saá / Ugarte 18 03 87 Optic test    
  3574 06 39 40 -26 19 30 3m 103a - O     Weller / Saá / Ugarte 18 03 87 Optic test    
  3575 11 03 33 -31 44 20 5m 103a - O     Weller / Saá / Ugarte 18 03 87 Optic test    
  3576 11 02 09 -59 23 3m 103a - O     Weller / Saá / Ugarte 18 03 87 Optic test    
  3577 11 02 09 -59 23 3m 103a - O     Weller / Saá / Ugarte 18 03 87 Optic test    
  3578 11 02 09 -59 23 3m 103a - O     Weller / Saá / Ugarte 18 03 87 Optic test    
  3579 15 59 13 -26 22 00 1m40s 103a - O     Weller / Saá / Ugarte 18 03 87 Optic test    
  3580 12 23 15 -60 13 00 3m 103a - O     Weller / Saá / Ugarte 18 03 87 Optic test    
  3581 12 23 15 -60 13 00 3m 103a - O     Weller / Saá / Ugarte 18 03 87 Optic test    
  3582 12 23 15 -60 13 00 3m 103a - O     Weller / Saá / Ugarte 18 03 87 Optic test    
  3583 06 21 35 -33 24 37 3m lla - O     Weller / Saá / Hernandez 20 03 87 Optic test    
  3584 07 31 00.2 -29 10 01 5m lla - O     Weller / Saá / Hernandez 20 03 87 Optic test    
  3585 08 16 33 -29 16 46 3m lla - O     Weller / Saá / Hernandez 20 03 87 Optic test    
  3586 09 23 04 -28 58 18 3m lla - O     Weller / Saá / Hernandez 20 03 87 Optic test    
  3587 10 06 38.9 -28 45 07 3m lla - O     Weller / Saá / Hernandez 20 03 87 Optic test    
  3588 10 29 00 -29 33 04 3m lla - O     Weller / Saá / Hernandez 20 03 87 Optic test    
  3589 11 20 57 -29 30 23 3m lla - O     Weller / Saá / Hernandez 20 03 87 Optic test    
  3590 11 34 34 -29 56 24 3m lla - O     Weller / Saá / Hernandez 20 03 87 Optic test    
  3591 12 58 24.7 -29 53 06 3m lla - O     Weller / Saá / Hernandez 20 03 87 Optic test    
  3592 14 03 51 -28 57 29 2m lla - O     Weller / Saá / Hernandez 20 03 87 Optic test    
  3593 14 26 30 -30 01 32 15s each lla - O     Weller / Saá / Hernandez 20 03 87 focus plate    
  3594 14 03 52 -28 57 11 2m lla - O     Weller / Saá / Hernandez 20 03 87 Optic test    
  3595 16 40 18 -48 44 00 2m lla - O     Weller / Saá / Hernandez 20 03 87 N 6193    

 

Last Updated on 8/27/99

By Guerra & Marin

April

April 1987 Plate logs for 1.5-m telescope

 

Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
  3596 07 23 30 -29 16 42 3m lla - O     Blanco / Bravo / Saá 02 04 87 eta Canis major    
  3597 07 23 30 -29 16 42 5*1m lla - O     Blanco / Bravo / Saá 02 04 87 eta Canis major    
  3598 07 23 30 -29 16 42 5*15s lla - O     Blanco / Bravo / Saá 02 04 87 eta Canis major    
  3599 07 23 30 -29 16 42 9*15s lla - O     Blanco / Bravo / Saá 02 04 87 eta Canis major    
  3600 07 23 30 -29 16 42 9*15s lla - O     Blanco / Bravo / Saá 02 04 87 eta Canis major    
  3601 07 23 30 -29 16 42 9*15s lla - O     Blanco / Bravo / Saá 02 04 87 eta Canis major    
  3602 07 23 30 -29 16 42 9*15s lla - O     Blanco / Bravo / Saá 02 04 87 eta Canis major    
  3603 11 04 43 -30 06 20   lla - O   1" -2" Blanco / Bravo / Saá 02 04 87 focus    
  3604 18 05 45 -31 10 08 20m lla - O GG 385 1.5" Blanco / Bravo 02 04 87 Window l   CTIO
  3605 18 05 45 -31 10 08 20m lla - D GG 495 1.5" Blanco / Bravo 02 04 87 Window l   CTIO
  3606 18 10 24 -29 33 01 20m lla - D GG 495 1.5" Blanco / Bravo 02 04 87 Window lll   CTIO
  3607 18 10 24 -29 33 01 20m lla - O GG 385 1.5" Blanco / Bravo 02 04 87 Window lll   CTIO
  3608 18 06 47 -32 09 14 20m lla - O   1.5" Blanco / Bravo 02 04 87 Window ll    
  3609 18 06 47 -32 09 14 20m lla - D   1" Blanco / Bravo 02 04 87 Window ll    
  3610 05 38 44.3 -69 05 59 20m 103a - O GG 385 1" Blanco / Hernandez 03 04 87 30 Dor. + S. N. 1987   CTIO
  3611 05 38 44.3 -69 05 59 20m 103a - O GG 385 1" Blanco / Hernandez 03 04 87 30 Dor. + S. N. 1987   CTIO
  3612 08 48 10 -30 10 15   103a - O GG 385   Blanco / Hernandez 03 04 87 Focus plate   CTIO
  3613 08 48 10 -30 10 15   103a - O     Blanco / Hernandez 03 04 87 focus    

 

Last Updated on 8/27/99

By Jorge Marin

May

May 1987 Plate logs for 1.5-m telescope

Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
  3614 18 10 24 -29 33 01 25m lla - O GG 385 3" Blanco / M.Fernandez 20 05 87 Field lll   CTIO
  3615 18 06 47 -32 09 14 25m lla - O GG 385   Blanco / M.Fernandez 20 05 87 Field ll    
  3616 18 05 45 -31 10 08 20m lla - O GG 385 1.5" Blanco / M.Fernandez 20 05 87 Field l   CTIO
  3617 18 05 45 -31 10 08 20m lla - D GG 495 1.5" Blanco / M.Fernandez 20 05 87 Field lll   CTIO
  3618 18 05 45 -31 10 08 20m lla - D GG 495 2" - 3" Blanco / M.Fernandez 20 05 87 Field ll    
  3619 18 05 45 -31 10 08 20m lla - D GG 495 2" - 3" Blanco / M.Fernandez 20 05 87 Field l   CTIO
  3620 18 05 45 -31 10 08 20m lla - O GG 385   Blanco / M.Fernandez 20 05 87 Field lll   CTIO
  3621 18 05 45 -31 10 08 20m lla - O GG 385   Blanco / M.Fernandez 20 05 87 Field lll   CTIO
  3622 18 05 45 -31 10 08 58m lV - N sens RG 610   Blanco / M.Fernandez 21 05 87 Field lll   CTIO
  3623 18 05 45 -31 10 08 20m lla - O GG 385 1" - 2" Blanco / M.Fernandez 21 05 87 Field lll   CTIO
  3624 18 05 45 -31 10 08 20m lla - O GG 385 1" - 2" Blanco / M.Fernandez 21 05 87 Field l   CTIO
  3625 18 05 45 -31 10 08 20m lla - O GG 385 1" - 2" Blanco / M.Fernandez 21 05 87 Field lll   CTIO
  3626 18 05 45 -31 10 08 20m lla - O GG 385 1" - 2" Blanco / M.Fernandez 21 05 87 Field ll    
  3627 18 05 45 -31 10 08 20m lla - O GG 385 1" - 2" Blanco / M.Fernandez 21 05 87 Field lll   CTIO
  3628 18 05 45 -31 10 08 20m lla - O GG 385 1" - 2" Blanco / M.Fernandez 21 05 87 Field l   CTIO
  3629 18 05 45 -31 10 08 20m lla - O GG 385 1" - 2" Blanco / M.Fernandez 21 05 87 Field lll   CTIO
  3630 18 05 45 -31 10 08 20m lla - O GG 385 2" Blanco / M.Fernandez 21 05 87 Field ll    
  3631 18 05 45 -31 10 08 20m lla - O GG 385 2" - 3" Blanco / M.Fernandez 21 05 87 Field lll   CTIO
  3632 18 10 24 -29 33 01 20m lla - D GG 495 3" - 4" Blanco / Bravo 22 05 87 Field lll   CTIO
  3633 18 10 24 -29 33 01 20m lla - O GG 385 2" Blanco / Bravo 22 05 87 Field lll   CTIO
  3634 18 10 24 -29 33 01 20m lla - D GG 495 2" Blanco / Bravo 22 05 87 Field lll   CTIO
  3635 18 10 24 -29 33 01 20m lla - O GG 385 3" - 6" Blanco / Bravo 22 05 87 Field lll   CTIO
  3636 18 10 24 -29 33 01 20m lla - O GG 385   Blanco / Bravo 22 05 87 Field lll   CTIO

 

 

Last Updated on 8/27/99

By Guerra & Marin

December

December 1987 Plate logs for 1.5-m telescope

Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
  3637 00 26 08 -71 44 20 80m lla - O GG 385 1" - 2" Graham / M.Fernandez 12 12 87 NGC 721    
  3638 06 30 12 -64 17 30 70m lla - O GG 385 1" Graham / M.Fernandez 12 12 87 NGC 2257    
  3639 00 26 08 -71 44 20 75m lla - O GG 385 1" Graham / M.Fernandez 13 12 87 NGC 121    
  3640 06 30 12 -64 17 30 60m lla - O GG 385 1" Graham / M.Fernandez 13 12 87 NGC 2257    
  3641 06 30 12 -64 17 30 80m lla - O GG 385 1" Graham / M.Fernandez 13 12 87 NGC 2257    
  3642 08 25 00 -51 00 04 135m llla - F RG 610 1" Graham / M.Fernandez 13 12 87 4446    
  3643 00 26 08 -71 44 20 75m lla - O GG 385 1" - 2" Graham / M.Fernandez 14 12 87 NGC 121    
  3644 06 30 12 -64 09 00 60m lla - O GG 385 2" - 3" Graham / M.Fernandez 14 12 87 NGC 2257    
  3645 06 30 12 -64 09 00 90m lla - O GG 385 1" - 2" Graham / M.Fernandez 14 12 87 NGC 2257    
  3646 06 30 12 -64 09 00 130m llla - F RG 610 1" - 2" Graham / M.Fernandez 14 12 87 NGC 2257    
  3647 00 26 08 -71 44 20 75m lla - O GG 385 1" Graham / M.Fernandez 15 12 87 NGC 121    
  3648 06 30 12 -64 17 30 60m lla - O GG 385 1" Graham / M.Fernandez 15 12 87 NGC 2257    
  3649 06 30 12 -64 17 30 75m lla - O GG 385 1" Graham / M.Fernandez 15 12 87 NGC 2257    
  3650 06 30 12 -64 17 30 75m lla - O GG 385 1" - 2" Graham / M.Fernandez 15 12 87 NGC 2257    
  3651 00 26 08 -71 44 20 90m lla - O GG 385 1" - 2" Graham / M.Fernandez 16 12 87 NGC 121    
  3652 06 30 12 -64 17 30 90m lla - O GG 385 2" Graham / M.Fernandez 16 12 87 NGC 2257    
  3653 06 30 12 -64 17 30 90m lla - O GG 385   Graham / M.Fernandez 16 12 87 NGC 2257    
  3654 05 35 31.5 -69 16 27 1s 5s   UG 2   Graham / M.Fernandez 16 12 87 SN 1987    
  3655 05 35 31.5 -69 16 27 60m   RG 2   Graham / M.Fernandez 16 12 87 SN 1987    
  3656  (1)             19 12 88      

 

 (1) NOTE: secondary f 7.5 comes back from Tucson, after refiguring

Last Updated on 8/27/99

By Jorge Marin

1989

1989 Plate logs for 1.5-m telescope

March

March 1989 Plate logs for 1.5-m telescope

Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
  3657 zenith   10s lla - D     Gonzalez / Saá / Tirado 10 03 89 focus    
  3658 06 42 45 -45 11 24 300s lla - D     Gonzalez / Saá / Tirado 10 03 89 E 3    
  3659 06 42 45 -45 11 24 1800s lla - D     Gonzalez / Saá / Tirado 10 03 89 E 3    
  3660 zenith   10s lla - D     Gonzalez / Saá / Tirado 10 03 89 focus    
  3661 08 07 33 -34 43 20 5m lla - D     Gonzalez / Saá / Tirado 10 03 89 field    
  3662 zenith   10s lla - D     Gonzalez / Saá / Tirado 10 03 89 focus    
  3663 08 29 19 -47 04 56 5m lla - D     Gonzalez / Saá / Tirado 10 03 89 field E 4    
  3664 08 29 19 -47 04 56 1800s lla - D     Gonzalez / Saá / Tirado 10 03 89 field E 4    
  3665 zenith   10s lla - D     Gonzalez / Saá / Tirado 10 03 89 focus    
  3666 11 10 03 -46 42 40 5m lla - D     Gonzalez / Saá / Tirado 10 03 89 field E 5    
  3667 zenith   10s lla - D     Gonzalez / Saá / Tirado 10 03 89 focus    
  3668 11 10 28 -46 52 44 5m lla - D     Gonzalez / Saá / Tirado 10 03 89 field E 5    
  3669 11 10 28 -46 52 44 1800s lla - D     Gonzalez / Saá / Tirado 10 03 89 field E 5    
  3670 11 10 28 -46 52 44 10m lla - D     Gonzalez / Saá / Tirado 10 03 89 field E 5    

 

Last Updated on 8/27/99

By Guerra & Marin

June

June 1989 Plate logs for 1.5-m telescope

Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
  3671 13 20 00 -36 40 16 9*10s lla - O     Blanco / Terndrup / Ugarte 01 06 89 focus    
  3672 13 20 00 -36 40 16 9*10s lla - O     Blanco / Terndrup / Ugarte 01 06 89 focus    
  3673 13 20 00 -36 40 16 9*10s lla - O     Blanco / Terndrup / Ugarte 01 06 89 focus    
  3674 16 53 00 -52 40 30m 098 - 4     Blanco / Terndrup / Ugarte 01 06 89 Field #1    
  3675 17 25 42 -45 18 30m 098 - 4     Blanco / Terndrup / Ugarte 01 06 89 Field #3    
  3676 17 45 24 -39 25 30m 098 - 4     Blanco / Terndrup / Ugarte 01 06 89 Field #5    
  3677 17 58 12 -35 00 30m 098 - 4     Blanco / Terndrup / Ugarte 01 06 89 Field #7    
  3678 18 10 24 -29 33 25m lla - O GG 385 1.5" Blanco / Terndrup / Ugarte 02 07 89 Field lll   CTIO
  3679a 18 21 30 -24 50 5m lla - O     Blanco / Terndrup / Ugarte 01 06 89 M 28    
  3679b 18 21 30 -24 50 5m lla - O     Blanco / Terndrup / Ugarte 01 06 89 M 28    
  3680 18 10 24 -29 33 25m lla - O GG 385   Blanco / Terndrup / Ugarte 02 07 89 Field lll   CTIO
  3681 18 01 30 -33 48 30m 098 - 4     Blanco / Terndrup / Ugarte 01 06 89 Field #9    
  3682 18 04 00 -33 05 30m 098 - 4     Blanco / Terndrup / Ugarte 01 06 89 Field #11    
  3683 18 14 36 -28 51 30m 098 - 4     Blanco / Terndrup / Ugarte 01 06 89 Field #15    
  3684 18 20 24 -26 12 30m 098 - 4     Blanco / Terndrup / Ugarte 01 06 89 Field #17    
  3685 18 31 12 -21 26 30m 098 - 4     Blanco / Terndrup / Ugarte 01 06 89 Field #19    
  3686 17 14 42 -48 03 30m 098 - 04     Terndrup / Wells / Ugarte 02 06 89 Field #2    
  3687 17 41 30 -40 40 30m 098 - 04     Terndrup / Wells / Ugarte 02 06 89 Field #4    
  3688 17 45 24 -39 25 30m 098 - 04     Terndrup / Wells / Ugarte 02 06 89 Field #5    
  3689 17 51 30 -37 33 30m 098 - 04     Terndrup / Wells / Ugarte 02 06 89 Field #6    
  3690 17 59 00 -34 50 30m 098 - 04     Terndrup / Wells / Ugarte 02 06 89 Field #8    
  3691 18 03 00 -33 30 30m 098 - 04     Terndrup / Wells / Ugarte 02 06 89 Field #10    
  3692 18 07 00 -31 46 30m 098 - 04     Terndrup / Wells / Ugarte 02 06 89 Field #13    
  3693 18 11 54 -29 50 30m 098 - 04     Terndrup / Wells / Ugarte 02 06 89 Field #14    
  3694 18 17 42 -27 37 30m 098 - 04     Terndrup / Wells / Ugarte 02 06 89 Field #16    
  3695 18 24 12 -24 35 30m 098 - 04     Terndrup / Wells / Ugarte 02 06 89 Field #18    

 

Last Updated on 8/27/99

By Guerra & Marin

 
 

July

July 1989 Plate logs for 1.5-m telescope

Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
  3696 17 14 42 -48 03 30m 098 - 04 RG 1 1" Terndrup / Ugarte 04 07 89 Field #2    
  3697 17 41 30 -40 40 30m 098 - 04 RG 1   Terndrup / Ugarte 04 07 89 Field #4    
  3698 17 45 24 -39 25 30m 098 - 04 RG 1   Terndrup / Ugarte 04 07 89 Field #5    
  3699 17 58 12 -35 00 30m 098 - 04 RG 1   Terndrup / Ugarte 04 07 89 Field #7    
  3700 17 59 00 -34 50 30m 098 - 04 RG 1   Terndrup / Ugarte 04 07 89 Field #8    
  3701 17 51 30 -37 33 30m 098 - 04 RG 1   Terndrup / Ugarte 04 07 89 Field #6    
  3702 18 03 00 -33 30 30m 098 - 04 RG 1   Terndrup / Ugarte 04 07 89 Field #10    
  3703 18 48 36 -13 22 30m 098 - 04 RG 1   Terndrup / Ugarte 04 07 89 Field #20 clear, valley fogged in  
  3704 18 21 24 -24 54 10m lla - O baked GG 385   Terndrup / Ugarte 04 07 89 M 28    
  3705 18 21 24 -24 54 10m lla - O baked GG 385   Terndrup / Ugarte 04 07 89 M 28    
  3706 18 54 54 -10 28 30m 098 - 04 RG 1   Terndrup / Ugarte 04 07 89 Field #21    

 

Last Updated on 8/27/99

By Guerra & Marin

1990

1990 Plate logs for 1.5-m telescope

August

August 1990 Plate logs for 1.5-m telescope

 

Plate N. N. R. A. Dec Exp. Time Emulsion Filtro Seeing Observer Date Object Remarks CTIO
  3707             Saá / Ugarte 30 08 90 test f 7/5  
  3708             Saá / Ugarte 30 08 90 test f 7/5  
  3709             Saá / Ugarte 30 08 90 test f 7/5  
  3710             Saá / Ugarte 30 08 90 test f 7/5  
  3711 18 45 06 -27 00 15s each 103a - O     Saá / Ugarte 30 08 90 BS 7039 Hartmann screen  
  3712 18 45 06 +26 39 35s each 103a - O     Saá / Ugarte 30 08 90 BS 7064 Hartmann screen  
  3713 18 49 24 -87 37 75s each 103a - O     Saá / Ugarte 30 08 90 6721 Hartmann screen  
  3714 14 43 06 -35 08 30s each 103a - O     Saá / Ugarte 30 08 90 5485 Hartmann screen  
  3715 23 32 30 -37 52 18 30s each 103a - O     Saá / Ugarte 30 08 90 8937 Hartmann screen  
  3716 15 59 06 -35 18 30s each 103a - O     Saá / Ugarte 30 08 90 7623 Hartmann screen  
  3717 20 39 12 +15 52 42 20s each 103a - O     Saá / Ugarte 30 08 90 7906 Hartmann screen  
  3718 19 59 30 -72 56 12 20s each 103a - O     Saá / Ugarte 30 08 90 7590 Hartmann screen  
  3719 16 05 54 -36 46 36 30s each 103a - O     Saá / Ugarte 30 08 90 5987 Hartmann screen  
  3720 21 55 00 -34 00 54 3m 103a - O     Saá / Ugarte 30 08 90 field in focus    
  3721 21 55 00 -34 00 54 5m 103a - O     Saá / Ugarte 30 08 90 field in focus    
  3722 22 38 18 -33 07 54 10s each 103a - O     Saá / Ugarte 30 08 90 HR 8616, focus plate    
  3723 22 38 18 -33 07 54 5m 103a - O     Saá / Ugarte 30 08 90 field in focus    
  3724 23 37 06 -31 52 24 3m 103a - O     Saá / Ugarte 30 08 90 field in focus, HR 8956 f 13.5  
  3725 23 37 06 -31 52 24 3m 103a - O     Saá / Ugarte 30 08 90 field in focus, HR 8956 f 13.5  
  3726 23 37 06 -31 52 24 15s each 103a - O     Saá / Ugarte 30 08 90 field in focus, HR 8956    
  3727 00 58 06 -29 24 30 15s, 30s,40s 103a - O     Saá / Ugarte 30 08 90 BS 280 test Harmann screen  
  3728 00 58 06 -29 24 30 45s 103a - O     Saá / Ugarte 30 08 90 BS 280 test Harmann screen  
  3729 21 53 18 -37 24 36 20s 103a - O     Saá / Ugarte 30 08 90 BS 8353 test Harmann screen  
  3730 02 21 36 -68 42 06 30s 103a - O     Saá / Ugarte 30 08 90 BS 705 test Harmann screen  
  3731 01 18 54 +27 12 54 50s 103a - O     Saá / Ugarte 30 08 90 BS 383 test Harmann screen  
  3732 06 19 54 -30 03 30 15s 103a - O     Saá / Ugarte 30 08 90 BS 2282 test Harmann screen  

 

Last Updated on 8/27/99

By Jorge Marin

About SMARTS

The SMARTS Consortium operates four small telescopes (1.5-m [602], 1.3-m [563], 1.0-m [603] and 0.9-m [604]) on Cerro Tololo. Membership in SMARTS is open to individuals or institutions, including international partners.

Join and use SMARTS

Inquiries from potential new members of SMARTS at a variety of levels are always encouraged, as opportunities to join the consortium typically arise every year. Members can purchase time on the SMARTS telescopes at very reasonable rates for single use observing runs that span a few days or weeks, or for distributed observing over one or more semesters for time-domain science.  Both user and service modes are available within the capabilities of the four SMARTS telescopes.  Acceptance of a new member depends on the balance of resources and scientific programs associated with current members.

Current rates for SMARTS are $600 USD / night for the 0.9m (Classical user observing mode only) and $200 USD / hour [NOTE: this is per scheduled hour, not executed hour, and includes overheads from telescope pointing and exposure time] for the 1.3m and 1.5m (queue-scheduled service observing mode only).

Primary Members who contribute $25K USD or more are entitled to a seat on the SMARTS Management Council. Those who contribute less than $25K are considered Secondary Members and do not participate in the governance of SMARTS.

If you are interested in joining SMARTS, please contact Victoria Misenti [605]  for more information.

SMARTS Consortium documents

  • Contribution and user night schedule
  • Current operating plan [606]
  • SMARTS 2 Memorandum Of Understanding [607]

    • Appendix A Form of SMARTS 2 Membership Agreement [608]
    • Appendix C Example of a Consortium Contribution Report [609]
    • Appendix D Contact Information for AURA Export Control Administrator [610]


SMARTS History

  • Click the following link for more information on the history of SMARTS [611].

MOU-Appendix D

AURA CONTRACT No. C77006A
SMARTS 2 AGREEMENT TO OPERATE SMALL TELESCOPES IN CHILE
Appendix D

Contact Information

AURA:

Association of Universities for Research in Astronomy
Dr. William Smith, President
1200 New York Avenue NW
Suite 350
Washington DC, 20005
(202) 483-2101
wsmith@aura-astronomy.org [612]

AURA export administrator:

Clark Enterline
Procurement Manager
NOAO
950 N. Cherry Avenue
PO Box 26732
Tucson, AZ 85726-6732
(520) 318-8277
centerline@noao.edu [613]

NOAO:

NOAO
SMARTS Program
R. Chris Smith
NOAO/CTIO
Casilla 603, La Serena, Chile
(56-51) 205200
csmith@noao.edu [614]

Yale:

Charles Bailyn
Yale University, Department of Astronomy
PO Box 208101
New Haven, CT 06520-8101
(203) 432-3000
charles.bailyn@yale.edu [615]

Adopted by the SMARTS management council.
Amended by the SMARTS management council February 1, 2008 (to take effect as of October 1, 2007).

NOAO contact amended July 2011 due to change in personnel.

 

Applying & Observing

Proposal information

  • See the telescopes, instruments and schedules page [616] and the SMARTS current operating plan [606] for useful information on availability of telescopes and instruments.
  • If you are from NOAO, see Observing though NOAO [617].  cambiar
  • If your institution is a Primary Member of SMARTS, please check with your institution regarding proposal submission procedures. 
  • If you are a Secondary Member, please send your proposals to your sponsoring institution.
  • If you are not a member yet, but are interested in using SMARTS, please see our information on joining SMARTS [618].

 

Procedures for observers with approved programs

 

  • 0.9m observers should follow the instructions on this webpage [619].
    • See also the 0.9m website [604].
  • 1.3m observers should submit a detailed Phase II observing plan [549]. More info is below:
    •   Phase II Submission Instructions [551]
    •   Observation Template (Obs File) Creation Form Instructions [552]
    •   Multi-Observation Script Creation Form Instructions [553]
    •   Phase II Observing Program Submission Form Instructions [554]
    •   Obs File Manager Form Instructions [555]
    •   Archive of Old Observing Files [556]
    •   1.3m webpage [563]
  • 1.5m observers should contact those listed on the contact page [605] for their respective instruments.
    • 1.5m service observing schedule and information website [601]
    • If you are awarded time on CHIRON, please log in to these pages to set up your program [620].

 

Other useful information for observing

 

  • CTIO observing preparation pages [621]
  • CTIO Visiting Astronomers'  Travel Guide [622]
  • Sky conditions [623]
  • NOAO data tools and science archive [624]
 

Retired Instruments

Retired Spectrographs

  • 1.5M Fiber Echelle Spectrograph [625] has been retired.  For information only.


Retired Imagers

  • 1.5M ASCAP Automated Single Channel Photometer [626] has been retired.  For information only.

ASCAP

Photo-electric Photometry at CTIO, using PC/ASCAP

Instrument is retired and no longer available for use.

G. Schumacher
D. Geisler
Feb. 1991

some updates by A.R. Walker, Sept. 1998

 

INTRODUCTION

Photo-electric Photometry is only offered on the 1.5-m telescope, at f/13/5 (10 arcsec/mm). Unfortunately, there is at present no CTIO staff member carrying out scientific programs with this equipment, and so we may be a little slow at finding the answers to your questions. Sorry!

We have several photomultiplier tubes (GaAs, S20, S11) normally operating in a dry-ice cooled cold-box. We also have the last working Varian InGaAsP photomultiplier in the world (purchased in 1978!!) which has high sensitivity to almost 1.2 microns, we restrict access to this tube due to its fragility and uniqueness. The photometers are simple devices containing an aperture wheel, filter wheel, and TV viewing of the aperture, all under computer control. The pulses from the photomultipliers are amplified by either SSR or EMI amplifier- discriminators and then counted on hardware contained in a PC, which also operates the instrument, and has various facilities for displaying the data, manipulating and storing it, and doing reductions. The remainder of this document describes the program. Note that this PC is on the mountain ethernet, so you can transfer your data files home with ease, or else write them to floppy disk.

 

FILES

The files utilized by the PC-ASCAP program are ordinary text files consisting of one line records, which can be produced using any text editor which does not leave any special control character in the file. The records themselves consists of various fields separated by any number of spaces. Free format number decoding is used throughout. Therefore, it is important not to use a space within a field, for example in a star identification. We recommend using the "_" (underbar) or "-" (dash) characters instead.

User file.

This file is mandatory and contains the basic information for observation. We recommend calling it by your name, e.g. Jastronomer. The examples illustrate a typical set-up: using the 1.5m telescope with the Hamamatsu tube in cold box 71 and the filters VBURI in positions 1-5. The following record types are used in this file:

Name: this record identifies the observer. For example:

Name: Joe Astronomer

Telescope: this record identifies the telescope. The telescopes with encoders are the 4.0m, 1.5m, 1.0m, and 0.9m. Any other name is accepted, e.g. 0.6m, but the position information is then taken from the right ascension and declination of the object, as given with the 'ident' command (see below), instead of from the telescope encoders. For example:

Telescope: 1.5m

Tube: this record identifies the photomultiplier in use. The last field in the record contains the maximum recommended count rate for the tube.

Tube: Hamamatsu 71 200000

In order to prevent damage to the phototube, there is a maximum recommended count rate for each tube that should not be exceeded. In general, this maximum count rate is 200,000 counts/sec. This is true of all of the GaAs tubes (RCA, Hamamatsu) - see page IV-28 of the Facilities Manual for the maximum recommended count rate if you are using a different tube. If the count exceeds the number given in the user file in the first second of observation, the program will insert the TV mirror, warn you that you have exceeded the maximum count rate and ask if you wish to continue. To be safe, answer "NO" and observe a fainter star. You can force the integration to continue by typing "YES" but PLEASE be careful as excessive exposure to extreme light levels can fry the tube. If you must observe this star, use the minimum integration time necessary.

Dead time: this record gives the dead time in nanoseconds, needed to correct for coincidence losses.

Dead time: 35

Filters: this record initiates the description of the filters in use. The description consists of the filter position in the filter wheel, an identification label and optional comments. The identification label should start with an alphabetic character, not a number.

Filters:

 

  1. v
  2. b
  3. u
  4. r
  5. i

Precision: this record initiates the declaration of the precision value for each filter. You can omit this item if you are not using the automatic mode.

Precision:

 

  1. 1.5
  2. 0.7
  3. 0.7
  4. 0.7
  5. 0.7

Color equations: this record initiates the description of the color equations to be used in the quick look calculations. The equations are constructed utilizing the labels given in the filters record. You can omit this and following items if quick look is not desired.

Color equations:

U-B = 1.01*u - 1.01*b
B-V = 0.95*b - 0.95*v
V-R = 0.96*v - 0.96*r
R-I = 0.99*r - 0.99*i
V = 1.03*v - 0.03*b

NB - The order of these equations should be the same as that in the Standard file (see below).

Extinction coefficients: this record initiates the definition of the extinction coefficients.

Extinction coefficients:

v = 0.14
b = 0.23 - 0.024*b + 0.024*v
u = 0.50 - 0.024*b + 0.024*v
r = 0.085
i = 0.052 + 0.01*r - 0.01*i

Zero points: this record initiates the definition of zero point values.

Zero points:

U-B = 0.21
B-V = -0.38
V-R = -0.29
R-I = 1.20
V = 21.61

The next example shows a complete user file.

Name: Joe Astronomer
Telescope: 1.5m
Tube: Hamamatsu 71 200000
Dead time: 35
Filters:

  1. v
  2. b
  3. u
  4. r
  5. i

Precision:

  1. 1.5
  2. 0.7
  3. 0.7
  4. 0.7
  5. 0.7

Color equations:

U-B = 1.01*u - 1.01*b
B-V = 0.95*b - 0.95*v
V-R = 0.96*v - 0.96*r
R-I = 0.99*r - 0.99*i
V = 1.03*v - 0.03*b

Extinction coefficients:

v = 0.14
b = 0.23 - 0.024*b + 0.024*v
u = 0.50 - 0.024*b + 0.024*v
r = 0.085
i = 0.052 + 0.01*r - 0.01*i

Zero points:

U-B = 0.21
B-V = -0.38
V-R = -0.29
R-I = 1.20
V = 21.61

Macros file

The macros file contains the definitions of the automated observing sequences. The macros have the same format as the old Tolnet version. In order to distinguish one macro from another they are separated by a record containing the word 'macro' followed by a number. This number is then used to invoke the macro with the 'X' command. The macro may be extended to several lines and can have an unlimited number of commands. The file must be called ' macros '. The number of macros is also unlimited (unlike the old version where there were only 10 available). Within a macro, the format is : * (star) or / (sky), followed by filter number, then a comma, followed by the desired number of observations, then a space, and another 4-character command. For example:

 

macro 1
*1,1 *2,1 *3,1 *4,1 *5,1
/5,1 /4,1 /3,1 /2,1 /1,1

macro 2
*1,2 *2,2 *3,2 *4,2 *5,2 /5,1 /4,1 /3,1 /2,1 /1,1

After observing the star and before observing sky, the program will halt, move the TV mirror to the field position, and wait until you locate a sky patch and press the space key before observing sky.

Objects file

The objects file contains the positions of the objects to be observed. Remember that spaces are used to separate fields and should not be used within a field.

Within the data records, the following order is used:

- Record Identifier: The exact content of this record is up to the user. This identifier should be given with the 'ident' command. It can be up to 8 characters.

- right ascension: 3 numbers: HH MM SS.SS, e.g. 12 34 45.123

- declination: 3 numbers: DD MM SS.SS, e.g. -30 41 32.3

- epoch: a number in years., e.g. 1990.0

 

The rest of the line may be used for comments, identifiers, etc. PC-ASCAP does not use this information.

The following is an example of an object file:

 

1 17 05 05.431 -64 59 56.12 2000.0 Center of field
2 17 03 32 -65 00 53 1950 V= 18.24, B-V= 0.35

 

Standard file

This file contains the star id, standard magnitude and the color values for the standard stars. The order of the indices should be the same as that given in the user file. Also, the star id should be identical to that used in the objects file and

 

Star         U-B     B-V    V-R    R-I      V 

 E101      0.091   0.087   0.038   0.084  7.704
 E102      0.112   0.206   0.126   0.274  8.444 
 E103      0.098   0.086   0.037   0.085  9.657
 E104      0.001   0.362   0.213   0.427  7.455

Data file

The data file is called 'ppdata.dat'. The data is normally written to the hard disk but you can also select the floppy drive as a backup medium. The format of the data is the same card image format as the old version of People's Photometry, so you don't have to change your reduction program! At the end of the night, you can write out your data to floppy using the command PPCOPY. For example:

PPCOPY ppdata.dat a:dec2590.dat

The format of the data is:

 

 

Column(s)        Contents

   1        0 if normal data record or 1 if a comment, in which case the comment
            appears in columns 6-80.
   2-5      Record number.
   6-13     Identification.
   14       Standard flag: 1 if the star identification appears in your
            standard star (stand) file, 0 otherwise.
   15       Object flag: 0 if star, 1 if sky.
   16       Diaphram number (first diafram used =1, second =2, etc.).
   17       Filter number.
   20-21    Universal time hours.
   22-23    Universal time minutes.
   24-25    Universal time seconds.
   26-28    Hour angle hours.
   29-30    Hour angle minutes.
   31-32    Hour angle seconds.
   33-35    Declination degrees.
   36-37    Declination minutes.
   38-39    Declination seconds.
   40       Reject flag: blank if not rejected, 1 if rejected.
   41       Number of channels (=1).
   42-45    Integration time (sec).
   46-52    Counts.
   67-68    Month.
   69-70    Day.
   71-72    Year.
   73-74    Universal time tenths of seconds.

 

COMMANDS

The $ level commands are those which accept parameters needed during data acquisition and logging. The commands are case insensitive and all responses require pressing the 'enter' key to be acted upon. A list of the available commands at any level appears on a window on the right-hand side of the screen. Following is a description of all implemented commands.

 

This command sets the clock to the Universal Time as given by the satellite receiver. In order to use this feature you need to be connected to the SUN computer named ctio1m (from the Sun, do "rlogin ctio1m"). Operation is as follows:

 

- Type the goes command at the PC terminal.

- Then type the goes command at the SUN terminal.

- On the PC screen you will see a time about 10 seconds ahead of the present time. When that time arrives the clock will be synchronized with the satellite time. There are ocassions when this command fails to terminate and the clock doesn't get synchronized at the shown time. In that case, strike any key at the PC terminal and repeat the operation again.

 

  • backup

    This command enables or disables backup of the data on a diskette. To enable backup type 'backup on'. To disable type 'backup off'. The backup status is permanently shown in the status window. For example:

    backup on

    It is a good idea to enable this feature, which will then cause the data to be written to floppy ~ every 10 records, naming the file something like a:dec2590.bck. However, since you may reject records during the night after they are written, you may also want to write the clean data to floppy at the end of the night using the PPCOPY feature (after you quit the program), naming the file a:dec2590.dat.

     

  • coord

    This command shows the present telescope coordinates on the screen. If printer logging is enabled they get typed on that medium too. The coordinates are presented in the order right ascension, declination and hour angle.

     

  • date.

    This command permits setting of the date. If no argument is given then the present date is shown on the screen. The format is month/day/year. For example:

    date 09/18/90

     

  • diaf

    With this command you give the program the size of the diafram (in mm) to be used. After given the command, the program positions the selected aperture inmediately. The acceptable arguments are: 0.7, 1.0, 1.4, 2.0, 2.8, 4.0, 5.6. See the Facilities Manual (Table IV-17) to determine the size of the apertures in arcseconds at your telescope. For example:

    diaf 1.4

     

  • dir

    This command permits examining a directory content. After you type the command, you are requested for the name of the directory to be shown. To return to the command level, just press 'ESC'.

     

  • edit

    This command permits editing of a file content. If the file doesn't exist it is created. Otherwise the file content is presented in an edit panel.

    The editor is a true screen editor (not a word processor) in that you use the arrows and pages keys to browse and insert text. To exit the editor press the ESC key. The following keys are supported:

     

    ESC       Quit editing
    DEL       Delete character under cursor
    BACKSPACE Delete character to the left of cursor
    ALT-S     Search for a string
    ALT-R     Search for a string and replace it
    UP        Moves the cursor up one character
    DOWN      Moves the cursor down one character
    RIGHT     Moves the cursor right one character
    LEFT      Moves the cursor left one character
    HOME      Moves to beginning of the current line
    END       Moves to the end of the current line
    PGUP      Moves up one page
    PGDN      Moves down one page
    CTRL-PGUP Goes to the beginning of the text
    CTRL-PGDN Goes to the end of the text
    ALT-M     Turns marking mode on or off.
    GRAY +    Copies the marked block to the cut buffer.
    GRAY -    Cuts the marked block to the cut buffer.
    INS       Pastes the cut buffer at the current cursor location.
    DEL       Deletes the marked block if there is one.
    
    

    For example:

    edit jastronomer

    -Note. Be sure to use the "eq" command after editing your userfile to update the changes into the program, e.g. after changing the zero points at the beginning of the night.

     

  • eps

    This command is used to enter the limit of acceptable variability for the counts, C, according to:

    |C - Mean| / Sigma < Eps.

    If any count rate exceeds this criterion, integration will halt and an "Unstdy Counts" error message will appear. Check centering, etc. To continue, just press the space key. Be sure to reject the offending integration if appropriate.

    To suppress this feature enter a value of 0. For example:

    eps 10

     

  • eq

    This command permits rereading the equations for quick look contained in the user file. Normally you give this command after editing the user file, for example, after changing the zeropoints at the beginning of the night.

     

  • go

    This command transfers control to the section of the program where data acquisition actually occurs. The runtime window is placed on the screen. For example:

    go

    The GO level commands for actual data acquisition are virtually identical to the old People's Photometry commands. They are largely single key instructions requiring no 'enter' key to perform its action. However, 'enter' must still be used with those commands requiring parameters, such as setting an integration time. Following is a list of GO level commands.

     

    space   continue integration after hold condition.
    1-8     starts integration with selected filter.
    *       group observations as star counts. 
    /       group observations as sky counts.
    -       group observations as dark counts.
    !       force termination of present integration, and continue to next command
            if executing a macro.
    a       selects automatic mode. (Integration terminates when the precision defined
            in the Precision Table is reached).
    b       breaks integration or escapes from macro. Data is not recorded 
            for the interrupted integration.
    c XXX   enters the comment XXX (up to 72 characters).
    f       shows the field on the TV screen.
    h       holds an integration. Continue by striking the space bar.
    k       kills the previous sky readings.
    m       selects manual mode.
    n NN    sets the number of integrations to NN per filter.
    r n-m   sets the reject flag on records n-m.
    s       stop and return to $ level commands.
    t n     sets the integration time to n seconds. Allowed values are 1 to 30,000.
    v       view the area of the diafram on the TV screen.
    x n     starts macro n.
    z       zap (terminate) present macro command. Can reinitiate present macro 
            command with the Space bar.
    

     

  • goes
  • gonr

    This command transfers control to the section of the program where data acquisition actually occurs. The difference with the go command is that no data recording takes place.

     

  • i (ident)

    This command is used to identify an object using up to 8 characters. The command groups the observations belonging to one object together, and failure to use it negates internal housekeeping functions. After receiving the command, the program checks the standard file to see if the object is a standard star or not. If it is, the program tells you so.

    For telescopes lacking position encoders, or when the connection is disabled (see tcs command below) and if the id is not found in the objects file, then the program will ask for the coordinates of the object. The coordinates are requested in a formatted window. In order to escape from the window just press 'ESC'. For example:

    i LMC-0635

     

  • macros

    This command allows editting of the macros file. After the command is given the file content is presented in an edit window (see edit command above). For example:

    macros

     

  • object

    This command selects the objects file. The file should be prepared according to the description given in the 'files' section. For example:

    object obs24.coo

     

  • prec

    This command is used to change the precision values of any filter. After given the command you are presented with a window of precision values. To return to the command level press 'ESC'.

     

  • printer

    This command enables or disables logging of commands on the printer. To enable logging type 'printer on'. To disable logging type 'printer off'.

     

  • q (quick)

    This command requests the calculation of quick look reductions. If no argument is given then the last object observed is used. Otherwise, the argument is taken as the first record number of the object to be calculated. For example:

    q 274

     

  • quit

    This command terminates the program. After receiving the command, the program requests the user for confirmation. Respond 'yes' if you want to abandon the program. Use this command to terminate the program at the end of the night. If you quit the program during the night for whatever reason and then return, be sure to execute the "stand" command and set "backup" and "printer" on.

     

  • stand

    This command selects the standard stars file. The file should be prepared according to the description given in the 'files' section. Be sure to use this command again if, for whatever reason, you "Quit" the program and then return to it during the night. For example:

    stand ubvrimag

     

  • tcs

    This command enables or disables the connection to the telescope control system. Type 'tcs on' to enable. Type 'tcs off' to disable. For example:

    tcs on

     

  • time

    This command permits setting of the universal time into the computer. If no argument is given then the present time is shown on the screen. The format is hh:mm:ss. For example:

    time 06:35:40

Data Display

Figure 1 shows the run-time data display. It consists of a series of windows each showing specific pieces of information. Following is a description of each window.

Top left

This window displays the program name.

Top right

This window displays the date and universal time.

Middle left

This window displays the actual run-time information. Under 'object' it shows both '*' and '/', for star and sky respectively. Under 'filter' it shows the number of the actual filter being observed. Under 'time' it shows the total time of integration in seconds. Under 'counts/sec' it shows the rate for the present object being observed. Under 'counts' it shows the total counts already obtained for both star and sky for the selected filter. Under 'prec' it shows the present presicion obtained (in units of 0.1%), and finally under 'total (* - /)' is shown the total star counts minus the sky counts (=(Star count rate - Sky count rate)(both corrected for dead time) * ( total time observed on Star )). Thus, e.g., when this number reaches 10,000 you have achieved 1% accuracy from photon statistics.

Middle right

This window shows the status of the backup, printer and tcs options.

Bottom left

This is the actual command window.

Bottom right

This is the help window, where all possible commands available in the current task are shown. The window content changes as you select different levels of the program.

 

Next-day Reduction on the Mountain

A full photometry reduction program is available on the SUN computers, both on the mountain and in La Serena, enabling you to obtain final transformed magnitudes and colors for program stars. After a little practice, one can reduce a night's worth of data in about an hour.

 

G. Schumacher
D. Geisler
Feb. 1991

Fiber Echelle Spectrograph

Fiber echelle is de-commissioned starting from 2011.

Fiber echelle consists of the de-comissioned Blanco Echelle spectrograph [627] in fixed configuration connected by optical fiber to the CTIO 1.5-m telescope. The instrument was used in service mode in 2008-2010.

Spectral format: Fixed configuration covering wavelength range from 4010 to 7300 Angstroem without gaps. The order height is about 3 pixels FWHM.

Spectral resolution:

  • Standard mode (slit setting 50 micron, actual width 90 micron): R=43000 (FWHM 2.2 pixels)
  • Low-resolution mode (slit setting 100 micron): R~26000 (fully opened slit, transmission gain 30%).

Efficiency: Estimated 1%. The star V=5 gives about 135 electrons/s in the extracted spectrum (standard slit setting 50 micron). Assuming 5-pixel height of the extracted spectrum and normal readout mode, the signal-to-noise ratio S/N near blaze maximum for exposure time t seconds and a star of magnitude V can be estimated as

S/N = Nph/sqrt(Nph + 18^2), Nph = 1.35 t 10^(-0.4V + 4)

See the plot below. Exposures longer than 20 min. are not recommended because of cosmic rays; take several exposures instead.

Detector: SITe, 2048x2048 pixels, 24-micron pixel size. Full readout in 27s (normal mode, gain 0.9 el/ADU) or 18s (fast mode, gain 3 el/ADU). Readout noise 8el (normal) and 9.5el (fast). Saturation level: 65536 counts in all modes (to be confirmed).

Comparison lamps: Thorium-Argon, Quartz (not simultaneous, light goes through the same fiber). Do not forget to take comparison exposures needed for your program!

Precise radial velocities: Iodine cell can be inserted in the beam before slit for precise radial-velolcity measurements. On bright stars, the precision can reach 3 m/s.

Entrance aperture: round, diameter 2.7 arcseconds.

Guiding: automatic, using light of the observed star falling outside entrance aperture.

Documentation: user's manual [628]
 

Time synchronization

Time synchronization on the CTIO computers is done as follows:

  1. An automatic job is invoked on Cerro Tololo machine ctioa7 at 0045h, 0445h, 0845h, 1245h, 1645h, 2045h.

     
  2. This job runs the 'ntpdate' program which uses the ntp protocol to acquire precise time and other information from each of the following sites:

    *norad.arc.nasa.gov

    *tick.usno.navy.mil

    *tock.usno.navy.mil

    *ntp1.sura.net

    *ntp2.sura.net

    *louie.udel.edu

    *ntp.css.gov

     
  3. The ntpdate program uses the data provided by the above machines and applies some sophisticated corrections to the data to compensate for packet transmission time, and sets the time on ctioa7 accordingly.

     
  4. All other SunOS, Solaris, and Linux computers run an automatic job once an hour on the hour.

     
  5. This job is 'rdate' which synchronizes their time w/ ctioa7 (for machines on Cerro Tololo) or w/ ctios5 (for machines in La Serena).



    Here is the crontab entry as it appears on ctioa7:



    45 0,4,8,12,16,20 * * * /usr/etc/ntpdate -s -p 8 norad.arc.nasa.gov \ tick.usno.navy.mil tock.usno.navy.mil ntp1.sura.net ntp2.sura.net \ louie.udel.edu ntp.css.govra7(42)



    Here is the typical SunOS crontab entry on Cerro Tololo:



    0 * * * * /bin/touch /dev/console;/usr/ucb/rdate ctioa7 \ 1> /dev/null 2> /dev/null



Jim Hughes (jhughesATnoao.edu)

 

Telescopes, Instruments & Schedules

Current Schedules

  • 0.9m 2012B [629]
  • 1.0m 2012B [630]
  • 1.3m 2012B [631]
  • 1.5m 2012B [632]
     
  • Previous semesters' schedules [633]
  • Current Operating Plan [606]


Telescopes and Instruments

  • 0.9m telescope [604] with Tek2KCam
  • 1.0m telescope [603] with Y4KCam [currently unavailable]
  • 1.3m telescope [563] with ANDICAM
  • 1.5m telescope [602] with RC-Spec and Chiron

Source URL (modified on 07/15/2020 - 16:06): http://www.ctio.noao.edu/noao/content/Obsolete-Material

Links
[1] http://www.ctio.noao.edu/noao/content/gu%C3%ADa-%C3%B3ptica
[2] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/through_focus_pf.gif
[3] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/coma_pf.gif
[4] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/astig_pf.gif
[5] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/tref_pf.gif
[6] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/coma_zeroed_pf.gif
[7] http://www.ctio.noao.edu/noao/content/ellipticity-measurements
[8] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/depth_focus_pf.gif
[9] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/noadc.gif
[10] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/ispijspot.jpg
[11] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/ispihspot.jpg
[12] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/ispikspot.jpg
[13] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/ispijee.jpg
[14] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/ispihee.jpg
[15] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/ispikee.jpg
[16] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/ispijfocus.jpg
[17] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/ispihfocus.jpg
[18] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/ispikfocus.jpg
[19] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/ispijeeold.jpg
[20] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/ispiheeold.jpg
[21] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/ispikeeold.jpg
[22] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/blancoiq-status-sumry_300509-1.xls
[23] http://www.ctio.noao.edu/noao/content/optical-status-2010
[24] https://www.ctio.noao.edu/cgi-bin/DocDB/ShowDocument?docid=1403
[25] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/f14stat1.gif
[26] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/f14stat2.gif
[27] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/mosaic_stat.gif
[28] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/baldwin1.jpg
[29] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/suntzeff1.jpg
[30] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/seeing-comparison.gif
[31] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/seeing-1996.gif
[32] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/seeing-1997.gif
[33] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/seeing-1998.gif
[34] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/seeing-1999.gif
[35] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/weirdtrend.gif
[36] http://www.ctio.noao.edu/noao/content/PFADC
[37] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/seqmscfocus.gif
[38] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/seqtweak1-0.jpg
[39] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/mosfoc01.gif
[40] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/mosfoc02.gif
[41] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/mosfoc03.gif
[42] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/binodal_astig.gif
[43] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/F8_IQ_historical.xls
[44] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/f8_list.in.030909.txt
[45] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/f8_list.in.280410.txt
[46] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/f8_list.in.300310.txt
[47] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/PF_IQ_historical.xls
[48] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/pf_shap.in.11Mar05.txt
[49] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/pf_shap.in.12feb02.txt
[50] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/pf_shap.in.130809.txt
[51] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/pf_shap.in.230410_lut-offset0deg.txt
[52] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/pf_shap.in.230410_lut-offset180deg.txt
[53] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/BlancoFlex_laser_mitutoyo-coma-skynap_summary2010.xls
[54] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/Blanco%20summary%20310510.pdf
[55] http://www.ctio.noao.edu/noao/content/optical-design#table1
[56] http://www.ctio.noao.edu/noao/content/measured-and-predicted-ofad#table2
[57] http://www.ctio.noao.edu/noao/content/estimation-most-probable-values-ofad#table3
[58] http://www.ctio.noao.edu/noao/content/effect-changing-back-focal-distance#table4
[59] http://www.ctio.noao.edu/noao/content/Short-instructions-normal-use
[60] http://www.ctio.noao.edu/noao/content/Users-Guide-Active-Optic-System
[61] http://www.ctio.noao.edu/noao/content/F8-Secondary-Mirror-Control-System
[62] http://www.ctio.noao.edu/noao/content/4m-Active-Primary-Mirror-Control-System
[63] http://www.ctio.noao.edu/noao/content/Calibrations-Positions-4MAP-lookup-tables
[64] http://www.ctio.noao.edu/noao/content/rcadc-and-atmospheric-refraction
[65] http://www.ctio.noao.edu/noao/content/Differential-Atmospheric-Refraction
[66] http://www.ctio.noao.edu/noao/content/Flux-captured-Hydra
[67] http://www.ctio.noao.edu/noao/content/short-instructions-normal-use
[68] http://www.ctio.noao.edu/noao/content/calibrations-positions-4map-lookup-tables
[69] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/chimney_layout.gif
[70] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/rcadc3.gif
[71] http://www.ctio.noao.edu/noao/content/differential-atmospheric-refraction
[72] http://www.ctio.noao.edu/noao/content/flux-captured-hydra
[73] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/lutz_s.gif
[74] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/guider.gif
[75] http://obs.carnegiescience.edu/
[76] http://archive.eso.org/gsc/gsc
[77] http://www.noao.edu/gateway/ccdtime/
[78] http://www.ctio.noao.edu/instruments/ir_instruments/image_cal.html
[79] http://www1.ctio.noao.edu/noao/content/smarts-imager-exposure-calculator
[80] http://catserver.ing.iac.es/staralt/index.php
[81] http://www.ctio.noao.edu/misc/astro-links-new.html
[82] http://www.ctio.noao.edu/noao/content/active-optics-system
[83] http://www.ctio.noao.edu/noao/content/CO2-snow-cleaning-procedure
[84] http://www.ctio.noao.edu/noao/content/Optical-Engineering
[85] http://www.ctio.noao.edu/noao/content/CTIO-Staff-Responsibilities
[86] http://www.ctio.noao.edu/noao/content/victor-blanco-4-m-telescope
[87] mailto:tabbott@ctio.noao.edu
[88] http://www.ctio.noao.edu/soar/
[89] mailto:cbriceno@ctio.noao.edu
[90] http://www.ctio.noao.edu/noao/content/smarts-consortium
[91] mailto:thenry@chara.gsu.edu
[92] http://www.ctio.noao.edu/soar/content/goodman-high-throughput-spectrograph
[93] mailto:spoints@ctio.noao.edu
[94] http://www.ctio.noao.edu/soar/content/soar-optical-imager-soi
[95] http://www.ctio.noao.edu/soar/content/soar-adaptive-optics-module-sam
[96] http://www.ctio.noao.edu/soar/content/spartan-near-ir-camera
[97] mailto:jelias@noao.edu
[98] http://www.ctio.noao.edu/soar/content/triplespec41-nir-imaging-spectrograph
[99] http://www.ctio.noao.edu/noao/content/COSMOS
[100] http://www.ctio.noao.edu/noao/content/dark-energy-camera-decam
[101] mailto:awalker@ctio.noao.edu
[102] http://www.ctio.noao.edu/noao/content/mosaic-filters
[103] http://www.ctio.noao.edu/noao/content/ctio-3x3-inch-and-4x4-inch-filters
[104] http://www.noao.edu/kpno/mosaic/filters/index.html
[105] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/filter_names.txt
[106] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/vrsupermacho_0.jpg
[107] http://www.ctio.noao.edu/noao/content/u-leak
[108] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/ctiosdssu_leak.gif
[109] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/ctiosdssu.gif
[110] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/ctiosdssu.dat
[111] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/ctiosdssuleak.dat
[112] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/OCIW_1.TXT
[113] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/y1.png
[114] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/OCIW_2.TXT
[115] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/y2.png
[116] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/OCIW_3.TXT
[117] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/y3.png
[118] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/OCIW_7.TXT
[119] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/y7.png
[120] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/iband.txt
[121] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/iband.gif
[122] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/j_40.txt
[123] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/j_401.gif
[124] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/j_82a.txt
[125] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/j_82a1.gif
[126] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/J_183.txt
[127] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/J_183.gif
[128] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/geminiJ.dat
[129] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/geminiJ.png
[130] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/ispiJ.dat
[131] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/ispiJ.png
[132] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/ja.gif
[133] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/h_44.txt
[134] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/h_441.gif
[135] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/H_184.txt
[136] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/H_184.gif
[137] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/geminiH.dat
[138] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/geminiH.png
[139] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/ha.png
[140] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/k_50.txt
[141] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/k_501.gif
[142] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/K_185.txt
[143] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/K_185.gif
[144] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/ks_129.txt
[145] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/ks_1291.gif
[146] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/ka.png
[147] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/2248.txt
[148] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/2248.jpg
[149] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/219.txt
[150] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/219.jpg
[151] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/216w.txt
[152] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/216w.jpg
[153] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/216micron.dat
[154] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/216.jpg
[155] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/214w.txt
[156] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/214w.jpg
[157] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/2.14micron.dat
[158] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/2.14micron.gif
[159] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/212w.txt
[160] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/212w.jpg
[161] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/2.12.txt
[162] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/212.jpg
[163] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/212micron.dat
[164] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/212micron.gif
[165] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/208.txt
[166] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/208.jpg
[167] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/206.txt
[168] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/206.jpg
[169] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/203.txt
[170] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/203.jpg
[171] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/1.644.gif
[172] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/1.28.txt
[173] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/1.28.jpg
[174] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/1.257.txt
[175] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/1.257.jpg
[176] http://www.ctio.noao.edu/noao/content/ispi
[177] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/y4kcam_b.pdf
[178] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/y4kcam_B.txt
[179] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/y4kcam_v.pdf
[180] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/y4kcam_V.txt
[181] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/y4kcam_r.pdf
[182] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/y4kcam_Rc.txt
[183] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/y4kcam_i.pdf
[184] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/y4kcam_Ic.txt
[185] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/y4kcam_sdss_u.pdf
[186] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/sdss_u.txt
[187] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/y4kcam_sdss_g.pdf
[188] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/sdss_g.txt
[189] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/y4kcam_sdss_r.pdf
[190] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/sdss_r.txt
[191] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/y4kcam_sdss_i.pdf
[192] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/sdss_i.txt
[193] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/y4kcam_sdss_z.pdf
[194] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/sdss_z.txt
[195] http://www.ctio.noao.edu/noao/content/ctio-various-filters-transmission-curves
[196] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3085-75.gif
[197] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3085-75.txt
[198] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3510-300.gif
[199] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3510-300.txt
[200] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3515-290.gif
[201] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3515-290.txt
[202] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3520-300.gif
[203] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3520-300.txt
[204] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3530-280.gif
[205] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3530-280.txt
[206] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3530-400.gif
[207] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3530-400.txt
[208] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3575-600.gif
[209] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3575-600.txt
[210] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3580-610.gif
[211] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3580-610.txt
[212] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3623-605.gif
[213] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3623-605.txt
[214] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3650-100.gif
[215] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3650-100.txt
[216] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3650-600.gif
[217] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3650-600.txt
[218] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3700-110.gif
[219] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3700-110.txt
[220] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3727-21.gif
[221] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3727-21.txt
[222] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3727-44.gif
[223] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3727-44.txt
[224] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3727-45.gif
[225] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3727-45.txt
[226] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3765-45.gif
[227] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3765-45.txt
[228] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3767-44.gif
[229] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3767-44.txt
[230] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3800-110.gif
[231] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3800-110.txt
[232] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3870-50.gif
[233] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3870-50.txt
[234] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3980-400.gif
[235] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3980-400.txt
[236] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/39861047.gif
[237] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/39961042.gif
[238] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/40001030.gif
[239] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4060-70.gif
[240] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4060-70.txt
[241] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4110-190.gif
[242] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4110-190.txt
[243] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4118-146.gif
[244] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4118-146.txt
[245] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4120-160.gif
[246] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4120-160.txt
[247] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/41851030.gif
[248] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/42011050.gif
[249] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/42021050.gif
[250] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/42031050.gif
[251] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4260-65.gif
[252] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4260-65.txt
[253] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/43241050.gif
[254] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/43241056.gif
[255] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/43241156.gif
[256] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4340-980.gif
[257] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4340-980.txt
[258] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/43501680.gif
[259] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/43571665.gif
[260] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4363-20.gif
[261] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4363-20.txt
[262] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4650-190.gif
[263] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4685-44.gif
[264] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4685-44.txt
[265] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4686-15.gif
[266] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4686-15.txt
[267] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4695-15.gif
[268] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4695-15.txt
[269] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4697-196.gif
[270] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4697-196.txt
[271] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4700-190.gif
[272] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4700-190.txt
[273] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4845-65.gif
[274] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4845-65.txt
[275] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4857-12.gif
[276] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4857-12.txt
[277] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4861-26.gif
[278] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4861-26.txt
[279] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4861-44.gif
[280] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4861-44.txt
[281] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4861-50.gif
[282] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4861-50.txt
[283] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4862-14.gif
[284] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4862-14.txt
[285] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4866-12.gif
[286] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4866-12.txt
[287] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4880-70.gif
[288] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4880-70.txt
[289] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4905-44.gif
[290] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4905-44.txt
[291] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4940-700.gif
[292] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4940-700.txt
[293] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4949-44.gif
[294] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4949-44.txt
[295] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4993-44.gif
[296] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4993-44.txt
[297] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5000-70.gif
[298] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5000-70.txt
[299] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5007-44.gif
[300] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5007-44.txt
[301] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5013-14.gif
[302] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5013-14.txt
[303] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5019-50.gif
[304] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5019-50.txt
[305] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5024-15.gif
[306] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5024-15.txt
[307] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/50251020.gif
[308] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/50251023.gif
[309] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5029-43.gif
[310] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5029-43.txt
[311] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5032-15.gif
[312] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5032-15.txt
[313] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5037-44.gif
[314] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5037-44.txt
[315] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5040-15.gif
[316] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5040-15.txt
[317] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5040-990.gif
[318] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5040-990.txt
[319] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5049-15.gif
[320] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5049-15.txt
[321] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5057-15.gif
[322] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5057-15.txt
[323] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5081-44.gif
[324] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5081-44.txt
[325] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5100-100.gif
[326] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5100-100.txt
[327] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5117-895.gif
[328] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5117-895.txt
[329] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5118-900.gif
[330] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5118-900.txt
[331] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5125-44.gif
[332] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5125-44.txt
[333] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5130-155.gif
[334] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5140-90.gif
[335] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5140-153.gif
[336] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5145-30.gif
[337] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5145-80.gif
[338] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5169-44.gif
[339] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5182-10.gif
[340] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5213-44.gif
[341] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5257-44.gif
[342] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/52951590.gif
[343] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/53781018.gif
[344] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/53801000.gif
[345] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5400-100.gif
[346] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5409-948.gif
[347] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/54351081.gif
[348] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/54381026.gif
[349] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/54431060.gif
[350] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5461-100.gif
[351] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/54751000.gif
[352] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5497-241.gif
[353] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5500-200.gif
[354] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5500a240.gif
[355] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5755-20.gif
[356] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5800-100.gif
[357] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5877-14.gif
[358] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5890-40.gif
[359] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5894-14.gif
[360] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5900-350.gif
[361] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5915-40.gif
[362] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5950-40.gif
[363] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5997-40.gif
[364] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6087-40.gif
[365] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6100-100.gif
[366] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6120-140.gif
[367] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6130-590.gif
[368] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6152-625.gif
[369] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6170-590.gif
[370] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6301-10.gif
[371] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6330-100.gif
[372] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/64001450.gif
[373] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/64101470.gif
[374] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/64251500.gif
[375] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/64371525.gif
[376] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/64401520.gif
[377] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/64541451.gif
[378] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6477-75.gif
[379] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/64841532.gif
[380] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6520-76.gif
[381] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6552-40.gif
[382] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6559-5.gif
[383] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6560-110.gif
[384] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6560-900.gif
[385] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6563-12.gif
[386] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6563-17.gif
[387] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/656375-3.gif
[388] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/656375-4.gif
[389] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6563-78.gif
[390] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6568-20.gif
[391] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6571-15.gif
[392] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6575-14.gif
[393] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6584-15.gif
[394] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6586-20.gif
[395] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6586-40.gif
[396] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6600-100.gif
[397] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6600b110.gif
[398] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/660075-3.gif
[399] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/660075-4.gif
[400] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6602-20.gif
[401] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6606-75.gif
[402] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6618-20.gif
[403] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6636-20.gif
[404] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6649-76.gif
[405] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6654-20.gif
[406] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6672-20.gif
[407] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6680-100.gif
[408] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6693-76.gif
[409] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6700-350.gif
[410] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6718-20.gif
[411] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6718-5.gif
[412] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6724-7.gif
[413] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/67271015.gif
[414] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/67281000.gif
[415] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6731-6.gif
[416] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6732-20.gif
[417] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6737-76.gif
[418] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6738-50.gif
[419] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6781-78.gif
[420] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6820-100.gif
[421] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6826-78.gif
[422] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6840-90.gif
[423] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6871-78.gif
[424] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6890-100.gif
[425] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6916-78.gif
[426] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6961-79.gif
[427] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/7000-175.gif
[428] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/7007-79.gif
[429] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/7053-79.gif
[430] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/7080-100.gif
[431] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/7099-80.gif
[432] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/7146-80.gif
[433] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/7193-80.gif
[434] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/7240-75.gif
[435] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/7288-82.gif
[436] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/7336-82.gif
[437] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/7384-84.gif
[438] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/7433-84.gif
[439] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/7482-84.gif
[440] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/7500-100.gif
[441] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/7531-84.gif
[442] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/7580-85.gif
[443] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/7630-85.gif
[444] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/7680-84.gif
[445] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/7700-110.gif
[446] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/7730-85.gif
[447] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/7781-86.gif
[448] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/7832-86.gif
[449] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/7883-86.gif
[450] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/7935-88.gif
[451] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/80671485.gif
[452] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/80751500.gif
[453] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/8100-110.gif
[454] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/81001500.gif
[455] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/81021505.gif
[456] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/81181415.gif
[457] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/81201500.gif
[458] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/81231313.gif
[459] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/8300-110.gif
[460] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/83002500.gif
[461] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/8542-18.gif
[462] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/8549-25.gif
[463] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/8585-100.gif
[464] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/8632-100.gif
[465] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/9532-20.gif
[466] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/9900z2x2.gif
[467] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/9900z3x3.gif
[468] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3615-570.txt
[469] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3656-167.txt
[470] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3780-181.txt
[471] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3912-196.txt
[472] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4054-214.txt
[473] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4207-233.txt
[474] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4372-255.txt
[475] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4551-280.txt
[476] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4650-190.txt
[477] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4745-309.txt
[478] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4900-650.txt
[479] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4955-341.txt
[480] http://www.ctio.noao.edu/noao/content/CTIO-Various-Filters
[481] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/wg345.gif
[482] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/wg360.gif
[483] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/gg385.gif
[484] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/gg420.gif
[485] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/gg455.gif
[486] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/gg495.gif
[487] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/og570.gif
[488] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/rg610.gif
[489] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/rg695.gif
[490] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/bg38.gif
[491] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/bg39.gif
[492] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/cuso4.gif
[493] http://www.astro.yale.edu/smarts/1.3m.html
[494] http://www.astro.yale.edu/smarts/ANDICAM/data.html
[495] http://www.astronomy.ohio-state.edu/ANDICAM/detectors.html
[496] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/kpno_b.pdf
[497] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/KPNO_B.txt
[498] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/kpno_v.pdf
[499] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/KPNO_V.txt
[500] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/kpno_i.pdf
[501] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/KPNO_I.txt
[502] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/andi_j.pdf
[503] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/J_andi.txt
[504] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/andi_h.pdf
[505] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/H_andi.txt
[506] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/andi_k.pdf
[507] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/K_andi.txt
[508] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/yalo_b.pdf
[509] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/B_YALO.txt
[510] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/yalo_r.pdf
[511] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/R_YALO.txt
[512] http://www.astro.yale.edu/smarts/ANDICAM/mail.html
[513] http://www.astro.yale.edu/smarts/smarts13m/observer.html
[514] http://www.astro.yale.edu/smarts/smarts13m/optprocessing.html
[515] http://www.astro.yale.edu/smarts/ANDICAM/ObsLogs/
[516] http://www.astro.yale.edu/smarts/ANDICAM/Reports/Nightly/
[517] http://www.astro.yale.edu/smarts/smarts13m/procreps.html
[518] http://www.ctio.noao.edu/noao/content/13-m-photometric-standards
[519] http://www.astro.yale.edu/smarts/smarts13m/pg1323.html
[520] http://www.astro.yale.edu/smarts/smarts13m/ndfilters.html
[521] http://www.astro.yale.edu/smarts/smarts13m/queue.html
[522] http://www.astro.yale.edu/smarts/usage/usage13m2004b.dat
[523] http://www.astro.yale.edu/smarts/usage/usage13m2005a.dat
[524] http://www.astro.yale.edu/smarts/usage/usage13m2005b.dat
[525] http://www.astro.yale.edu/smarts/usage/usage13m2006a.dat
[526] http://www.astro.yale.edu/smarts/usage/usage13m2006b.dat
[527] http://www.ctio.noao.edu/noao/content/optical-processing-procedure
[528] http://www.astro.yale.edu/smarts/ANDICAM/Reports/Trouble/
[529] http://www.astro.yale.edu/smarts/ANDICAM/Reports/
[530] http://www.ctio.noao.edu/noao/content/SMARTS-Logs
[531] http://www.astronomy.ohio-state.edu/ANDICAM/detectors.html#sens
[532] http://www.ctio.noao.edu/noao/content/13-m-telescope
[533] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/smarts/tele13/optprocessing.txt
[534] http://www.ctio.noao.edu/noao/content/smarts-contacts
[535] http://www.astro.yale.edu/smarts/smarts13m/photrepsCCD.html
[536] http://www.astro.yale.edu/smarts/smarts13m/photrepsIR.html
[537] http://www.astro.yale.edu/smarts/smarts13m/ext.coeffsCCD
[538] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/smarts/tele13/ext.coeffsIR
[539] http://www.ctio.noao.edu/noao/content/13-m-smarts-photometric-calibrations-bvri
[540] http://www.ctio.noao.edu/noao/content/13-m-SMARTS-Photometric-Calibrations-JHK
[541] mailto:charles.bailyn@yale.edu
[542] mailto:victoria.gardner@yale.edu?subject=SMARTS%20ANDICAM%20observing
[543] mailto:depoy@astronomy.ohio-state.edu
[544] mailto:pogge@astronomy.ohio-state.edu
[545] mailto:michelle.buxton@yale.edu
[546] mailto:swt@astro.yale.edu
[547] mailto:csmith@noao.edu?subject=ANDICAM
[548] http://www.ctio.noao.edu/noao/content/andicam
[549] http://www.astro.yale.edu/cgi-bin/ANDICAM/Obs/obsentry.pl
[550] http://www.ctio.noao.edu/noao/content/ANDICAM-Contacts
[551] http://www.astro.yale.edu/smarts/ANDICAM/Obs/phase2.html
[552] http://www.astro.yale.edu/smarts/ANDICAM/Obs/obshelp.html
[553] http://www.astro.yale.edu/smarts/ANDICAM/Obs/moshelp.html
[554] http://www.astro.yale.edu/smarts/ANDICAM/Obs/ph2help.html
[555] http://www.astro.yale.edu/smarts/ANDICAM/Obs/mgrhelp.html
[556] http://www.astro.yale.edu/smarts/ANDICAM/Obs/oldobs.html
[557] http://www.ctio.noao.edu/noao/content/andicam-phase-ii-observing-tools
[558] http://www.ctio.noao.edu/noao/content/andicam-contacts
[559] http://www.ctio.noao.edu/noao/content/andicam-phase-ii-submission-instructions
[560] http://www.ctio.noao.edu/noao/content/andicam-phase-ii
[561] http://www.ctio.noao.edu/noao/content/andicam-filters
[562] https://www.astro-research.org/
[563] http://www.astro.yale.edu/smarts/13-m-telescope.htm
[564] http://www.ctio.noao.edu/noao/content/y4kcam
[565] http://www.astronomy.ohio-state.edu/Y4KCam/detector_ap7.html
[566] http://www.astro.yale.edu/smarts/smarts1.0m.html
[567] http://www.astronomy.ohio-state.edu/Y4KCam/
[568] http://www.astronomy.ohio-state.edu/Y4KCam/detector.html
[569] http://www.itl.arizona.edu/
[570] http://www.astro-cam.com/
[571] http://www.astronomy.ohio-state.edu/Y4KCam/OSU4K/index.html#DQE
[572] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/smarts/tele10/y4kcam_bias_071210.jpg
[573] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/smarts/tele10/y4kcam_star_071210.jpg
[574] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/smarts/tele10/badpix.1.0m.pl.txt
[575] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/smarts/tele10/badpix.1.0m.2x2.pl.txt
[576] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/smarts/tele10/y4kshut_300ms.jpg
[577] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/smarts/tele10/y4k_xtalk.jpg
[578] http://www.ctio.noao.edu/noao/sites/default/files/instruments/imagers/y4kcam_xtalk.txt
[579] http://www.astronomy.ohio-state.edu/Y4KCam/Y4KObsguide.pdf
[580] http://www.ctio.noao.edu/noao/sites/default/files/1m_observing.pdf
[581] http://www2.lowell.edu/users/massey/obins/y4kcamred.html
[582] http://www.ctio.noao.edu/noao/sites/default/files/quadproc_head.txt
[583] http://www.ctio.noao.edu/noao/sites/default/files/quadproc_head_2x2.txt
[584] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/smarts/tele10/phot.txt
[585] http://www.ctio.noao.edu/noao/content/13-m-logs-2011
[586] http://www.ctio.noao.edu/noao/content/13-m-logs-2010
[587] http://www.ctio.noao.edu/noao/content/13-m-logs-2009
[588] http://www.ctio.noao.edu/noao/content/13-m-logs-2008
[589] http://www.ctio.noao.edu/noao/content/13-m-logs-2007
[590] http://www.ctio.noao.edu/noao/content/13-m-logs-2006
[591] http://www.ctio.noao.edu/noao/content/15-m-logs-2006a
[592] http://www.ctio.noao.edu/noao/content/15-m-logs-2005b
[593] http://www.ctio.noao.edu/noao/content/13-m-logs-2005
[594] http://www.ctio.noao.edu/noao/content/15-m-logs-2005a
[595] http://www.ctio.noao.edu/noao/content/15-m-logs-2004b
[596] http://www.ctio.noao.edu/noao/content/13-m-logs-2004
[597] http://www.ctio.noao.edu/noao/content/10-m-Logs-2004
[598] http://www.ctio.noao.edu/noao/content/15-m-logs-2004a
[599] http://www.ctio.noao.edu/noao/content/15-m-logs-2003b
[600] http://www.ctio.noao.edu/noao/content/13-m-logs-2003
[601] http://www.astro.sunysb.edu/fwalter/SMARTS/smarts_15msched.html
[602] http://www.astro.yale.edu/smarts/15-m-telescope.htm
[603] http://www.astro.yale.edu/smarts/10-m-telescope.htm
[604] http://www.chara.gsu.edu/~thenry/SMARTS/
[605] http://www.astro.yale.edu/smarts/contact.htm
[606] http://www.astro.yale.edu/smarts/operatingplan.htm
[607] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/smarts/SMARTS2MOU.v3.pdf
[608] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/smarts/SMARTSAppendixA.pdf
[609] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/smarts/SMARTSAppendixC.pdf
[610] http://www.ctio.noao.edu/noao/content/mou-appendix-d
[611] http://www.ctio.noao.edu/noao/content/smarts-telescopes-history
[612] mailto:wsmith@aura-astronomy.org
[613] mailto:centerline@noao.edu
[614] mailto:csmith@noao.edu?subject=SMARTS2%20Consortium
[615] mailto:charles.bailyn@yale.edu?subject=SMARTS2%20Consortium
[616] http://www.astro.yale.edu/smarts/observing.html
[617] http://www.ctio.noao.edu/noao/content/observing-through-noao
[618] http://www.astro.yale.edu/smarts/about.htm
[619] http://www.chara.gsu.edu/~thenry/SMARTS/smarts.dutiesproposers.user
[620] http://chiron.astro.yale.edu/
[621] http://www.ctio.noao.edu/noao/content/planning-executing-wrapping-your-run-ctio
[622] http://www.ctio.noao.edu/noao/content/visiting-astronomers-travel-guide
[623] http://www.ctio.noao.edu/noao/content/sky-conditions
[624] http://ast.noao.edu/data
[625] http://www.ctio.noao.edu/noao/content/Fiber-Echelle-Spectrograph
[626] http://www.ctio.noao.edu/noao/content/ASCAP
[627] http://www.ctio.noao.edu/spectrographs/4m_Echelle/4m_echelle.html
[628] http://www.ctio.noao.edu/noao/sites/default/files/instruments/spectrographs/ech_manual.pdf
[629] http://www.chara.gsu.edu/~thenry/SMARTS/schedule2012B.htm
[630] http://www.astro.yale.edu/smarts/schedules/sched10m2012b.txt
[631] http://www.astro.yale.edu/smarts/schedules/sched13m2012b.txt
[632] http://www.astro.yale.edu/smarts/schedules/sched15m2012b.txt
[633] http://www.astro.yale.edu/smarts/previous.htm