This is an attempt to group all science and engineering obsolete pages.
In the following, 'Night report' refers to the number selected by the observer in the night report among the proposed categories: <0.4; 0.4-0.6; 0.6-0.8; 0.8-1.0; 1.0-1.5; 1.5-2.0; 2.0-3.0; >3.0. Actually, I use and plot the average of these respective categories: 0.4; 0.5; 0.7; 0.9; 1.25; 1.75; 2.5; 3.0. The numbers usually reflect the wavelength of interest of the instrument used (i.e. for example f/14 night reports yield a seeing estimate at about 2 microns).
Note: all the seeing data presented above was taken with the Carnegie monitor. 9499 samples per year means an average of 26 per night, corresponding to an average of 3 hours continuous sampling per night.
In February 2001, Tony Tyson and his group showed us some ellipticity maps of their Mosaic images. Ellipticity of each star is measured, as per SExtractor's definitions (see the User Manual), and plotted as vectors showing both amplitude 'e' and angle 'pa'. By definition:
e = 1 - B/A, where B and A are the semi-minor and semi-major axis lengths. So a perfectly round image has an ellipticity of 0 and e=0.1 means the major axis is 10% longer than the minor axis.
Some trends were quite unusual (see example [35]) and obviously contained precious information about image quality. In May, we obtained our first engineering images with specific telescope parameters (like ADC on/off, M1 corrections on/off, etc...) in order to study the effects methodically. We have taken more data since then at various opportunities, sometimes with the complicity of the CTIO Mosaic engineering team. Based on Dave Wittman's (Bell Labs) original programs, Dara Norman (CTIO) has built up additionnal tools to calculate the mean ellipticity vector in the field, substract it from all the stars and do combined plots showing the data before and after substraction. There has been a substantial support from both Dave and Dara to get these tools running and they are now working very efficiently and robustly. Sincere thanks to both of them. The programs and a README file explaining how to use them can be found in /ua76/boccas/4m/ellipticity/.
These ellipticity plots have allowed us to investigate deeper mostly 2 issues: the effects of the ADC in the image quality, and a method to build astigmatism lookup tables for M1. Most images are 10sec unguided R filter exposures (unless written otherwise).
The Atmospheric Dispersion Corrector (ADC) is part of the Prime Focus Corrector (PFC). It consists of 2 rotating pairs of cemented prisms as descibed in this paper [36]. These are fairly large piece of refractive optics (40cm in diameter) that can introduce wavefront distorsion if their surfacing has residual aberrations and/or if their mounting introduce stress into the glass. We conducted tests near the zenith (so that any gravity effect is azimuthally uniform and no dispersion has to be compensated) by rotating the prisms and observing the ellipticity patterns.
* One prism rotating, one fixed:
* Both prisms rotating together maintaining the neutral 180deg angle difference:
Since the active optics were implemented on the Blanco 4m telescope, we have been building the PF lookup tables with the Hartmann screen method. We have used a few times curvature sensing with EF too. Both techniques are applied on one on-axis star only, mostly because of the time needed for the data reduction with our existing software tools. The ellipticity maps have revealed in some cases that measuring one star in the center of the field is not appropriate to determine the best overall correction for the entire field. The ellipticity approach, because it does a statistical analysis of all the stars in the field in a fairly short time, yields the precise information of the optimum correction to apply to compensate astigmatism. Other aberrations at PF can not be measured (nor corrected) by this technique but astigmatism is the dominant static telescope aberration that needs to be corrected, thus the ellipticity measurements are best suited for that task.
A Mean Ellipticity Vector MEV (for the entire field) above 0.04 indicates that there is some astigmatism worth correcting. The existence of a MEV > 0.04 means:
Example: through-focus sequence [38] of 6 images taken with steps of 75um and a forced astigmatism (M1 tweak) of 1um at 0deg (10sec, R, ADC off, corr off, zenith). One can clearly see the 90deg rotation (from horizontal to vertical in this case) of the astigmatism/ellipticity pattern when going through focus. From the ellipmap program we get:
Image | Focus | e | pa | fwhm |
obj019 | 15875 | 0.07 | 7 | 2.71 |
obj018 | 15800 | 0.04 | 2 | 2.21 |
obj017 | 15725 | 0.02 | 106 | 2.18 |
obj016 | 15650 | 0.10 | 84 | 1.91 |
obj020 | 15575 | 0.08 | 91 | 2.71 |
obj021 | 15500 | 0.15 | 87 | 2.52 |
The image with least astigmatism is the 3rd one (obj017) but it is the 4th image (obj016) that has the best fwhm. Based on the pattern of the plots, it seems like there would be an intermediate focus (about 15760) between the 2nd and 3rd images where the ellipticity would be lower in average (i.e. rounder images). Thus in this case we would conclude that the best fwhm focus (15650) is different from the 'roundest' focus (15760). Furthermore, an 'mscfocus' analysis of the focus sequence corresponding to these 6 images yields a best focus of 15704 at 1.83".
M.B., 30 Sept 01
En construcción todavía
Esta breve información explica como reconocer los típicos problemas encontrados al telescopio con la calidad de imagen. Debería ser de ayuda para el operador de telescopio que quiere analisar la situación y actuar consecuentemente y rapidamente, si es que el observador no entiende o reconoce el mismo el problema. De forma general, es necesario quedar atento a cualquier 'queja' del observador para asegurarse que el telescopio entrega su mejor potencial y que el observador sabe como enfocar el telescopio y mantener buen foco toda la noche. Recuerden que un 50% de los casos de imagenes malas o 'más-o-menos' se debe a un foco de mala calidad!
Lo más importante y la primera acción que deben tomar cuando se presenta una imagen rara, es hacer una secuencia de foco (debe extenderse bastante y simetricamente de ambos lados de foco) para:
Para analizar la secuencia de foco, se debe utilisar la funcción 'imexam' de IRAF y graficar los perfiles (r) para ver el mejor fwhm y los contours [39] (e) para ver la redondez de la imagen. El mejor perfil debe coincidir con el mejor contour, sino hay que examinar otra estrella (puede ser que el objeto selecionado fue una galaxia). Aqui va un ejemplo de secuencia de contours, y la secuencia de perfiles [40] asociados, asi que un gráfico de fwhm versus focus [41] (es la funcción 'mscfocus' de 'mscred'en IRAF). En este caso la imagen #5 es claramente la mejor.
Cuando se ha realizado esta secuencia, hacerse las siguientes preguntas:
Les ruego siempre avisarme cuando detectan una de estas aberraciones, aunque no les parezca significativa, ya que su observación será útil para diagnóstico más fino. GRACIAS.
d50 = EE50 = FWHM
d80 = EE80 = 1.48 FWHM
Do^2 = Dt^2 + Dcoma^2 + Dastig^2 + Dtref^2
D^5/3 = Do^5/3 + Dsa^5/3.secz + Ae^5/3.DTe^2 + Ac^5/3.DTc^2
donde z es la distancia zenital, DTe es la diferencia de temperatura entre el espejo Te y la cúpula Tc, Ae es un coeficiente que vale 0.4 si Te>Tc y 0.13 si Te es menor que Tc, DTc es la diferencia de temperatura entre la cúpula y el exterior, y Ac es un coeficiente que vale 0.1.
FWHM_Z1 = FWHM_Z2 x (cosZ2/cosZ1)^0.6
FWHM_0deg = FWHM_10deg x 0.991
FWHM_0deg = FWHM_20deg x 0.963
FWHM_0deg = FWHM_30deg x 0.917
FWHM_0deg = FWHM_40deg x 0.852
FWHM_0deg = FWHM_50deg x 0.767
FWHM_0deg = FWHM_60deg x 0.660
FWHM_0deg = FWHM_cenit, se usa para comparar con los valores del Dimm.
FWHM(l1) = FWHM(l2) x (l1/l2)^-0.2
FWHM_V = FWHM_U x 0.919
FWHM_V = FWHM_B x 0.947
FWHM_V = FWHM_Bj x 0.954
FWHM_V = FWHM_R x 1.034
FWHM_V = FWHM_I x 1.078
FWHM_V = FWHM_Z x 1.113
Para comparar el FWHM del telescopio con el Dimm, hay que corregir por la distancia cenital Y la longitud de onda.
M2-M1 = 2.5 log B1/B2
o en forma equivalente: B1/B2 = 10^((M1-M2)/2.5)
Una diferencia de magnitud de +1 representa 2.5 veces más luz. 2 magnitudes representan 6.3 veces más luz, 5 magnitudes son 100 veces más luz,...
Maxime Boccas, 3 febrero 2001, revised 18 june 01
Blanco 4.0-m Optical Status 2010
pf_shap.in.11Mar05.txt [48] | pf_shap.in.12feb02.txt [49] | f_shap.in.130809.txt [50] | |
pf_shap.in.230410_lut-offset0deg.txt [51] | pf_shap.in.230410_lut-offset180deg.txt [52] | ||
T. E. Ingerson
(1997)
Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatories
Cerro Tololo Interamerican Observatory, Casilla 603, La Serena, Chile
The National Optical Astronomy Observatories are operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.
Abstract:
A new set of corrector optics incorporating atmospheric dispersion compensation is now in routine use at the prime focus of the 4m Victor M. Blanco telescope at CTIO. This corrector is described and direct photographic measurements of the optical field angle distortion (OFAD) coefficients are compared with the values predicted from the optical design. The results are used to quantify the baseline behavior of this corrector and then extended to provide predictions of the telescope's performance with the new optics under conditions which have not been directly measured.
When the 4m Blanco telescope at CTIO was designed in the late 1960's, it is doubtful that the designers anticipated that it would ever be used at prime focus with any detector other than photographic plates. Wide field imaging was to be done with a camera using a pair of non-achromatic triplet correctors, optimized for use in red and blue light.
The telescope has changed greatly since then, as have other large telescopes constructed during the same era. Imaging is now done almost exclusively with CCDs. Image quality has been significantly improved by careful control of environmental variables and upgrading the optics where feasible (Baldwin et al. (1996)).
A new corrector, the Prime Focus Atmospheric Dispersion Compensator (PFADC) has been installed to take advantage of the telescope's improved imaging capability. The PFADC provides high-quality, wide-field achromatic imaging at prime focus and incorporates atmospheric dispersion compensation (ADC). It is used mainly with a CCD imager and a fiber-fed, multi-object spectrograph known as Argus. Direct photography is still supported, though this option is now little used.
In principle, everything there is to know about a system like this can be computed directly from the optical design. However, there are at least 70 independent variables involved in the design and fabrication of this set of optics, such as spacing, radii, tilts, decenterings and refractive indices. Sufficient error in any one of these is capable of rendering the system's image quality unacceptable.
Each of the parameters can be measured, though always with some uncertainty. The corrector cannot be tested as a unit except on the telescope where the only variables which can be accurately measured are the image size and the optical field angle distortion (OFAD). Photographic plates are the classical and still the most appropriate method of directly measuring the OFAD. The large detector area, flatness, continuous nature of the detecting medium and high dimensional stability of plates makes them ideal for the job. Monolithic CCDs of the requisite size, flatness and number of pixels still lie in the future.
The OFAD coefficients for the old CTIO prime focus UBK-7 triplets were determined experimentally using plates by Cudworth & Rees (1991) and Guo et al. (1993). A similar photographic determination of the OFAD for the PFADC has been made recently by Guo et al. (1996).
Photographic measurements are not sufficient to fully characterize the optics. At CTIO, several instruments with differing optical configurations are used at prime focus and some of the elements of the PFADC are moveable. It is impractical to directly measure the OFAD under all possible permutations. What we have done here is to carefully compare the empirically determined OFAD under a single known set of conditions to the predicted performance under the same conditions and quantify a baseline behavior.
Monte Carlo simulations permit us to show that the observed performance of the optics is within the range which would be expected to occur as a result of normal manufacturing tolerances. This gives us confidence that we understand the corrector and allows us to make useful predictions as to how it can be expected to work in other configurations. The analysis represents a synthesis of theory and measurement and results in a better characterization of the corrector's behavior than would have been possible using the information provided by either computer modeling or direct measurement alone.
The results presented here are intrinsically interesting and not merely to potential users of this corrector. We certainly have benefitted from the exercise. Even the answer to such an apparently mundane question as "What happens when a filter is changed?" can be more interesting and significant than one might think. This kind of sub-arcsecond absolute astrometry will also be necessary for modeling a second ADC corrector now under construction. It will be used with "Hydra-CTIO" (Bardeen 1991), a new multiple object fiber-fed spectrograph now being constructed at NOAO-Tucson.
For the moment, our extrapolations of the PFADC's behavior only involve changes of the optical parameters which deal with the effect of changing filters and the corrector back focal distance. We do not yet have enough information to allow us to do comparisons of direct measurement with theoretical models of the ADC function. This is a different and more complex problem which we hope to study in the near future.
The PFADC was designed by Richard Bingham at University College London under contract to CTIO. It is important to emphasize that the values shown in Table 1 are those of the nominal design, but of the system as built and measured. The theoretical performance of the final configuration is essentially identical to that of the original design.
Table1: Optical Design of PFADC for PFCCD on 4M Blanco Telescope
Surface | Radius of Curvature | Axial Separation | Material | Clear Dia. |
1 | 21369.00 | 9991.8 | Air | 4000 |
2 | 2920.60 | 25.0 | LLF1T | 400 |
3 | 1466.49 | 39.3 | PSK3T | 392 |
4 | -12682.9 | 2.9 | Air | 385 |
5 | 303.97 | 25.0 | PSK1T | 356 |
6 | 289.60 | 31.3 | LLF1T | 339 |
7 | 298.62 | 122.9 | Air | 321 |
8 | 748.58 | 15.0 | BK7T | 273 |
9 | 244.89 | 328.2 | Air | 255 |
10 | 294.17 | 27.8 | BK5T | 213 |
11 | 1715.95 | 91.9 | Air | 209 |
12 |
∞
|
|||
All parameters as measured. All dimensions in mm. Hyperbolic primary: conic constant=-1.09863 Surface 3 cemented with .1mm RTV: Inclined at 1.17 degrees Surface 6 cemented with .1mm RTV: Inclined at 1.37 degrees 91.9mm in space 11 includes 4mm filter and 6mm window "T" suffix glasses are adjusted fro melt variations Both doublets are free to rotate over 360° |
This corrector is a descendant of the triplets originally provided with the Blanco telescope (Wynne, 1968). Addition of a fourth element provides broadband color correction and significantly improves image quality. The basic optical configuration is similar to a 4-element design first described by Wynne (1967) for the Hale 5m. Though the 1967 design is for a classical Cassegrain optical system, Wynne (1987) later showed that it could be adapted for use on a Ritchey-Chretièn telescope.
Wynne and Worswick (1988) then demonstrated that an ADC version could be built by putting a pair of rotating, curved, zero-deviation, Risley-like prisms with an oiled mating surface in front of the basic 4-element configuration. Bingham (1988) soon produced a simpler design in which a pair of rotating ADC prisms with an oiled, flat, rotating contact surface served as the first element of a 4-element corrector. This reduced the number of elements from 8 to 7. Glass-air interfaces were decreased from 10 to 8.
While designing the PFADC for CTIO and a similar corrector for the WHT, Bingham was able to further improve the design by replacing both of the front two elements of the 4-element configuration with doublets having shapes similar to those in the corresponding elements of the basic 4-element corrector. Each doublet is made of glasses (LLF1 and PSK3) which have almost the same indices of refraction but different dispersions. The cemented surfaces of the doublets are slightly inclined, so both act like zero-deviation prisms with a small dispersive power. When the axes of the prisms are 180° out of phase, their dispersions cancel and the system has essentially the same image quality as the basic 4-element design. The final optical system contains 6 pieces of glass and 8 glass-air interfaces. The rotating surfaces are not in contact.
Both doublets can rotate independently over 360°, allowing an artificial dispersion of variable magnitude to be added in any direction. This permits the corrector to compensate for atmospheric distortion with very little image degradation at any azimuth and at zenith angles to 70°. The optical design provides excellent unvignetted images at all wavelengths from 3400A to past 10000A over 48 arcmin field. There is little image shift with ADC. Chromatic effects are small. The quality of imaging at all air masses is primarily seeing-limited.
The four surfaces on the two singlets have been coated with broad-band anti-reflection coatings having high transmission from 3500- 10000A. The four surfaces of the doublets were coated with MgF2 instead of the broad-band coatings. Use of these new coatings was felt to involve too much risk because their long-term characteristics were not well known. So far they appear to be stable and robust.
Transmission of the corrector including coatings and glasses is 85% or higher at all wavelengths from 3700A to 8700A, falling to 75% at 3650A and 10000A and 54% at 3500A. Excellent BVRI photometry can be done using the PFADC. The short wavelength transmission limit makes photometric calibrations somewhat more difficult in U, though good results have been obtained in this band.
The original design specification called for image quality of .25'' full width half maximum (fwhm) in the center of the field and .5'' fwhm at the edge. The corrector meets this specification. However, the images produced by ADC correctors tend to have irregular profiles which often makes fwhm a misleading representation of image size. In the rest of this paper, we will refer to image size by specifying the diameter of a circle in which 70% of the incident energy is contained (D70). This is a somewhat more stringent specification for image quality than the original. For various reasons, we believe that D70 provides as accurate a quantification of the useful image quality of the instrument as can be provided by a single number. For the purpose of theoretical OFAD modeling, the images are considered to lie at the centroid of the spot diagram.
The PFADC was planned with a CCD imager as the default instrument. The design assumed that a 4mm BK7 filter would normally be placed within the back focal space (distance 11 in Table 1 [55]) in front of a 6mm window of fused silica. With the corrector as built, theory predicts the best imaging with the focal plane of the detector 91.9mm behind the rear face of the nominal corrector. Under these conditions, the focal plane is very nearly flat and the system is achromatic. So long as the surfaces of the window and filter are flat, their precise locations within the back focal distance have almost no effect on the optical behavior of the system.
Argus places its fiber tips directly in the image plane. As a result, there is 10mm less refractive material in the system than the design calls for, which causes an image shift and a small amount of chromatism. To maintain the same optical distance between corrector and detector, the Argus fibers must be placed closer (88.6mm at 4400A) to the rear surface of the nominal corrector. Over the entire field, more than 90% of the transmitted light at all wavelengths from 3500A to 10000A falls into a .7 arcsecond circle when the system is focussed through a B filter. This image quality is sufficient to do efficient broadband spectroscopy through Argus' 1.86'' diameter fibers.
The nominal thickness of the filters used in the Prime Focus Camera is 2mm. For best imaging with 2mm filters, the film surface should be 89.3mm from the nominal corrector. The filters normally used for photography have different thicknesses and compositions. The image quality is much better than was achievable with the old triplet correctors.
In all three cases, the instruments have been mounted with back focal distances which are nearly optimum for the respective configurations in the nominal design. The actual "as built'' and measured distances (+/-.1mm) between the rear of the corrector and detector plane are 91.6mm, 88.5mm and 89.2mm respectively for the PFCCD, Argus and the PF Camera.
In an astrograph, the spherical sky is presumed to be projected onto a flat plate perpendicular to the beam of the astrograph. In this ideal case, the distance r0 from the optical axis to a point on a plate is given by r0=f tan(A), where f is the focal length of the astrograph and A the angular distance from the optical axis to the same point.
Correctors such as the PFADC deviate from this model via radial pincushion distortion, called optical field angle distortion (OFAD), which varies as a function of the distance from the optical axis. We will represent distortion using the model in Chiu's 1976 paper
r = f tan(A)[1+d3 tan2(A) +d5 tan4(A)]
Here, r is the measured distance from the center of the field to the image in the detector plane. Distortion is modeled via the third and fifth order dimensionless distortion coefficients d3 and d5.
The inverted model
r0 = r b3 r3 +b5 r5
is usually preferred for analyzing plates, along with the image scale S, usually expressed in arcsec/mm. The two models are equivalent for our purpose and easily interchangeable via the simple relations
f = 206265/S, d3 = -b3f2 and d5 = (3b32 -b5) f4
In Table 2, results of theoretical analysis of the OFAD for the "as built'' PF camera using Zemax tm are presented along with the values empirically determined by Guo et al.(1996) from plates taken in 1995. In both cases, the two ADC doublets were set in a "neutral'' position with their dispersive axes opposed in the north-south direction. UBVRI bands in the observations are approximated respectively by the conventional wavelengths of 3600A, 4400A, 5500A, 7000A and 9000A.
Table 2: Theoretical and Experimental OFAD Coefficients for the PF Camera
Source | Band | f.l. | d3 | d5 | Comments |
Guo | U | 11465.4 | 360.0 | 775000 | Measured |
Guo | B | 11467.3 | 360.2 | 695000 | Measured |
Guo | V | 11467.8 | 357.6 | 687000 | Measured |
Zemax | U | 11461.9 | 360.2 | 880000 | Predicted |
Zemax | B | 11464.2 | 357.4 | 840000 | Predicted |
Zemax | V | 11465.6 | 354.7 | 820000 | Predicted |
Zemax | R | 11466.2 | 352.4 | 810000 | Predicted |
Zemax | I | 11466.9 | 350.7 | 800000 | Predicted |
d3 and d5 are dimensionless Images have been refocussed for each passband All values are from 2mm BK7 filters |
The photographic exposures were made through UG-5, GG385 and GG485 filters with thicknesses of 2.73mm, 1.96mm and 1.84mm respectively. The focal lengths in Table 2 have been corrected to the values they would have had if the filters had all been 2mm thick and made of BK7.
These two sets of models predict star positions with an rms difference between theoretical and empirical positions of less than 13µ over the field in all three colors. Nowhere does the predicted position of a star image differ from its measured location by more than 17µ (.31 arcsec). Still, the measured focal lengths of the system are slightly greater than the theoretical values. The rms difference between measured and predicted positions can be reduced to 4µ by adjusting the focal lengths of the system to be 1.8mm greater than predicted. As we will show, an adjustment of this order is what might be expected as a result of manufacturing tolerances.
Theory and experiment agree that there is a gradual increase in f with increasing wavelength while d3 and d5 decrease. Most of this variation of the OFAD is caused by secondary chromatism coming from color dependencies in the image distortion. Moving away from the optical axis, the blue images at first fall slightly closer to the center than those in the red so the focal lengths are lower in the blue. Farther out in the field, the shorter wavelength images begin to be displaced more because of larger values of d3 and d5, passing the longer wavelength images near the edge. The U images are as much as .36'' from the I images in parts of the field. This shift is the reason the broad band images often required by Argus are somewhat larger than the narrower band images generally used for CCD exposures. With Argus and the PF Camera, there is a small additional shift of image position with color resulting from primary chromatism caused by the incorrect filter thickness.
The photographic calibrations used here are based on eight plates of two fields, all taken on the night of February 23/24, 1995. These fields are called LP543 and M68 by Guo et al. The measured OFAD coefficients in Table 2 [56] are averages in which equal weight is given to all plates.
The focal lengths measured from the LP543 plates are approximately 3mm longer than those derived from the M68 series while the focal length determined from plates taken in the same color of the same field differed by less than a millimeter. This difference is difficult to explain since the images were taken in uninterrupted sequence during the same night. The air mass at which the LP543 plates were exposed is somewhat higher than for those of M68 so an error may have been made in correcting for atmospheric refraction.
The errors can be put into perspective by observing that the models determined for each plate predict measured image positions on that particular plate with an rms precision of 1.5-2micron. The measured values of the OFAD fluctuate between plates within the same series by approximately 3-4micron of position uncertainty, roughly the same as the difference between the theoretical and experimental models one a correction has been applied to the focal length. The rms position difference caused by the 3mm focal length difference between the LP543 and M68 plates is 14micron . This means that uncertainty in focal length is the principal source of error in our knowledge of the corrector's behavior. The experimental focal lengths in Table 2 [56] are an average of the two plate sets.
The values for the paraxial focal lengths predicted by Zemax at all wavelengths were taken to be the "f'' terms in the predicted OFAD. Values for d3 and d5 were then obtained by fitting the OFAD model to the positions given by Zemax for the centroids of a number of images distributed uniformly throughout the field. This procedure yields models which predict Zemax's theoretical image locations with an rms error of less than 4µ in U and 2µ in all other colors.
As previously mentioned, the parameters given in Table 2 [56]are not those of the corrector as it was designed, but come from measurements made after construction. To estimate the effect of any error in these measurements, Monte Carlo (MC) calculations were done during which the mechanical and optical parameters of the system were varied at random within the tolerances which were maintained during manufacture and final assembly. Every MC iteration creates a new, slightly different optical system which represents the way the corrector might have been put together. Each MC design was modeled in the same way as the nominal configuration, optimizing the image quality by refocussing after each iteration.
Image quality after a MC perturbation always remained within or very near to the design specifications, i.e. with the monochromatic D70 not exceeding .25'' in the center and .50'' at the edge. The image center moved by as much as several hundred µs as a result of tilts introduced by the Monte Carlo process, but after recentering, a new OFAD model could always be found which was able to predict the new theoretical positions to an rms precision of 6µ or less. The system focal length varied from the nominal value by an average of +/-5mm from after each Monte Carlo calculation. The MC perturbations changed d5 by an average of 30,000 units. Increases of d5 were seen more often than decreases. Changes in d5 were usually accompanied by changes of d3 in the opposite sense.
Theory should accurately predict the shape of the distortion curve, yet the measured values of d5 were consistently approximately 100,000 units smaller than expected. According to the Monte Carlo calculations, d5 is unlikely to have decreased as a result of manufacturing.
A difference of 100,000 in values of d5 causes a maximum difference in image positions of 17micron (.3 arcsec) at the edge of the field. When the theoretical and empirical models are adjusted to coincide as well as possible, larger values of theoretical d5 produce the best fit with slightly lower, compensating values of f and d3, reducing the residual errors to about rms 4micron, roughly the same as the intrinsic errors of the measuring process. Thus, the difference between the experimental and theoretical values of d5 is not significant here and can be safely ignored for the present, but it is unclear why this discrepancy exists. The most likely explanation is that it is some kind of systematic difference in how positions are predicted with a computer and measured photographically.
The MC calculations indicate that due to fabrication tolerances, the measured focal length might vary by be as much as 5mm from the predicted values. As previously mentioned, the best agreement occurs when the focal lengths are shortened by 1.8mm. The fact that a correction of this degree is sufficient to minimize the difference between experiment and theory strongly suggests that the corrector was assembled within specifications.
Adjusting the focal length by reduces the rms difference between the predicted and measured image positions to less than 4micron (.08 arcsec), which is comprable to the experimental error in the positions predicted by the measured OFAD. Once this adjustment has been made, the measured and predicted values tabulated for the OFAD of the PF camera in Table 2 [56] are essentially indistinguishable.
This focal length adjustment can be put into further perspective by noting that the theoretical focal length agrees almost perfectly with the plate scale derived from the M68 plates while it differs by 3mm from the scale on the LP543 plates. This provides some support to the supposition that the M68 scale is more likely to be correct and that an error may have been made correcting for refraction on the LP543 plates.
Summarizing, the theoretical OFAD coefficients are probably the more reliable, certainly for determining how d3 and d5 vary with wavelength. The photographic modeling gives us assurance that the true image scale is within the expected range. However the errors in fabrication appear to have been smaller than those made in the measurement of the OFAD. The theoretical values appear to be the best predictors we have of the corrector's behavior until we can obtain another, more accurate measurement of the paraxial focal length.
Table 3: OFAD Coefficients for Nominal PFCCD
Band | f.l (mm) | d3 | d5 |
U | 11466.5 | 359.5 | 900000 |
B | 11468.3 | 355.9 | 875000 |
V | 11469.3 | 353.8 | 840000 |
R | 11469.8 | 351.3 | 830000 |
I | 11470.3 | 350.2 | 810000 |
With 4mm filter and 6mm window d3 and d5 are dimensionless Errors are mainly in focal length: see text |
Zemax can now be used to calculate the OFAD to use for the PFCCD and Argus. The OFAD for the nominal PFCCD with a 4mm BK7 filter and 6mm fused silica window are given in Table 3. Argus should be focused through a blue filter and the B band OFAD used, i.e. f=11466.5mm, d3 = 357.9 and d5 =835000.
The focal lengths for the nominal PFCCD are approximately 1.5mm longer than for the PF Camera while d3 and d5 are negligibly different. The focal length difference is because the PFCCD is .3mm from the nominal position while the PF Camera is within .1mm of the best location. It is also interesting to note that there is a slightly greater variation of focal length with color for the PF camera. As previously mentioned, this comes from a small amount of chromatic aberration in Argus and the photographic camera caused by the incorrect thickness of the filters.
Recent measurements indicate that .70'' fwhm images have been observed with the PFADC in the center of the field under very good conditions of seeing. These images are undersampled because the CCD currently used has a scale of .43"/mm. At present we are unable to determine if the actual image size is smaller than this reported value.
This observation implies that with perfect seeing the PFADC is probably capable of producing central images with D70 well under .5''. The images are clearly very good, though we are unable to measure how closely the central images approach the level of D70 < .25" that theory predicts they should.
Changing a filter is generally equivalent to moving the instrument with respect to the corrector because different filters will generally have different optical thicknesses. Obviously the system has to be adjusted to compensate. One naturally reaches for the "focus" control to perform this operation.
Focusing the Blanco telescope moves the prime focus pedestal up and down. The pedestal is a rigid assembly which moves the corrector and detector as a unit. This is an inappropriate way to adjust for an error in back focal distance.
Such a movement forces a change in the back focal distance by relocating the corrector assembly with respect to the primary mirror. This refocusses the images, but does so by moving the corrector away from the optimum location. This degrades image quality and makes a significant change in the telescope's effective focal length.
This is not a serious problem with Argus nor with the Prime Focus camera. Argus is permanently mounted with its fiber tips in the correct plane. Observations with the prime focus camera are made with a set of filters which are nominally 2mm thick. Even though these filters actually vary in thickness from 1.8 to 3mm, the variation is small enough so there is no significant image degradation, though there is a noticeable change in focal length with wavelength and filter thickness.
The Prime Focus CCD (PFCCD) is another matter. Currently, the detector is permanently mounted 91.6mm behind the corrector. This is close to the optimum distance (91.9mm) assuming it has the 4mm filter and 6mm window for which the corrector was designed. However, the system as built uses a fused silica window 8.85mm thick. The window is a meniscus lens which compensates for curvature of the CCD. This lens acts as a Barlow, significantly increasing the focal length. With the nominal dimensions, this predicts an increase of 66.5mm in the focal length to 11542.9mm in V with a 5.1mm filter. The measured value of the focal length is 11531.5mm, the difference in the offset coming from the fact that we currently lack precise knowledge of all the dimensions, including the exact CCD pixel size at the working temperature. For the rest of this paper, we will consider the dewar window to be a plane quartz window 8.85mm thick with a flat detector.
The PFCCD normally uses filters which are between 5mm and 10mm thick, meaning further excess material is placed in the back focal space. This extra material moves the detector optically closer to the corrector. Compensating for these back focus errors by moving the pedestal causes image degradation and a substantial change in the effective focal length of the telescope.
In principle, the proper way to compensate for the problems introduced by changing filters would be to have two focussing mechanisms; one like the present pedestal height control to focus the telescope and a second adjustment which moves the detector with respect to the corrector to maintain the back focal distance at the optimum value. There is no mechanism like this currently on the PFCCD, nor are there any plans to install one.
Table 4 shows what happens when back focal distance is wrong and has been corrected by moving the pedestal. Image size and focal length as a function of back focus error (BFE) are listed. The table begins by showing the behavior of the main instruments as they now exist. As can be seen, Argus and the photographic camera are mounted in very nearly the optimal locations, while the PFCCD has a rather substantial BFE.
Instrument | BFE mm | f.l. (B) mm | D70(center) | D70 (32" dia) |
Photographic Camera | 0.0 | 11467.0 | 0.20" | 0.25" |
Argus (Broad Band) | 0.1 | 11466.5 | 0.50" | 0.60" |
PFCCD (5mm filter) | -1.3 | 11476.4 | 0.30" | 0.35" |
PFCCD (10mm filter) | -3.0 | 11489.4 | 0.50" | 0.50" |
PFCCD (Nom. +3mm) | 3.0 | 11443.4 | 0.65" | 0.65" |
PFCCD (Nom. +2mm) | 2.0 | 11451.1 | 0.50" | 0.50" |
PFCCD (Nom. +1mm) | 1.0 | 11458.8 | 0.25" | 0.30" |
PFCCD (Nominal) | 0.0 | 11466.4 | 0.20" | 0.25" |
PFCCD (Nom. -1mm) | -1.0 | 11474.1 | 0.25" | 0.30" |
PFCCD (Nom. -2mm) | -2.0 | 11481.7 | 0.35" | 0.40" |
PFCCD (Nom. -3mm) | -3.0 | 11489.4 | 0.50" | 0.50" |
Focal lenghts are give fro B band. Increase focal lenghs by 54.3mm when using meniscus CCD. Images sizes are given to nearest .05". |
In the second part of the table, the theoretical behavior of the PFCCD is shown with the detector at incremental locations one mm apart, beginning with the detector 3mm farther from the corrector than optimum and ending with it 3mm closer. This listing clearly shows that BFE greater than 1mm should be avoided and BFE of more than 3mm causes serious image degradation.
As can be seen in Table 4, theory predicts a linear change in effective focal length as a function of BFE at a rate of -7.67 mm of focal length change per mm change in BFE. This change could either be produced directly by physical change in BFE or by the insertion of an extra thickness of a refractive material within the back focal space. For a material of thickness T and refractive index n, this causes a back focal shift of T(1-1/n) and a change in focal length of 7.67 times this value. The variation in n with wavelength can cause significant chromatism. About .5mm of the 4.4mm focal shift with wavelength in Table 2 is caused by this effect.
This -7.67mm difference in focal length per mm of back focus change should not be confused with the classical shift in the "focus" of the telescope. The two are strictly proportional, but the pedestal only needs to move by -.86mm to cause one mm of back focus change, which in turn changes the focal length of the telescope by 7.67mm. This is probably the reason no one seems to have paid attention to this problem in the past. It is not intuitively obvious that refocussing by moving the pedestal by 1mm will cause the focal length of the telescope to change by almost 9mm. This relationship was used to calculate the effect on focal length caused by differences in the thicknesses of the filters used to measure the values in Table 2 [56].
Due to a fortuitous error, we are able to demonstrate that these predictions are accurate. Plates were first taken in 1993 to measure the OFAD. After our observations, we realized that the camera had been incorrectly mounted with a back focus of 91.5mm. The focal plane was lowered by 2.11mm before a second run in 1995. This increased the measured focal length by 15.9mm. This change is almost exactly the 16.2mm predicted for the increase by the BFE/focal length relationship, indicating that the focal length shift occurred as predicted. As expected, the change did not change the measured distortion coefficients.
The quality of the images also varies with wavelength. An estimate of the magnitude of this effect is also given in Table 4. These estimates are only approximate because image shape varies wildly, but they are nonetheless interesting. The values shown are based on theoretical analysis of the spot diagrams combined with some subjective weighting to attempt to make them reflect the real situation as well as is possible in a single number.
In summary, our results are consistent with the hypothesis that the corrector was fabricated and assembled quite well. The 2m difference between the measured and predicted focal lengths is a slight focal change caused by random manufacturing variations of the parameters of the optics within the specified tolerances. Image quality is excellent, as far as we are able to tell, with intrinsic image quality in perfect seeing of .5" or better in the center of the field.
Table 3 [57] gives the final OFAD to use for the PFCCD in the default location with the correct window and filter thicknesses. It is straightforward to extrapolate these results to determine the focal length and estimate image quality for other configurations by using the offsets from the B focal lengths in Table 4 [58] and the -7.67 mm/mm relationship between e.f.l. and BFE. These changes should not have a significant effect on d3 and d5.
The image plane of the PFCCD in its proper configuration is achromatic even though there is a 3.7mm shift in focal length from U to I. This is a manifestation of chromatic difference in distortion, not change in focal plane. No focus change with color is required if the filters are all the standard thickness and composition. In Table 2 [56] the PF Camera has a 4.4mm focal length shift over the same range, of which .5mm is a color shift in the focal plane caused by the filter and the window being thinner than the design calls for. With filters of differing thicknesses and composition the focal length shifts will be different from those shown here. The proper values are easy to compute if filter thicknesses and indices of refraction are known.
It is clear from Table 4 [58] that the image plane of the PFCCD should be moved to a better location. Installing a spacer 2.1mm thick will keep the BFE to under 1mm with any filter in current use and not cause significant image degradation, though the focal length will obviously change as filter thickness is varied. This solution to the back focus problem is reliable and easy to implement. It will significantly improve image quality and will provide a new fixed focal plane location which can be used to attempt a more precise determination of the system's focal length than we have been able to obtain so far.
Moving the detector farther from the corrector in this way will change the telescope's focal length to a value very near to the optimum for filters 7.5mm thick. There will be a very slight focal shift with color. This shift will have the opposite sign of the shift in the photographic camera because the PFCCD has too much refractive material in the beam rather than too little, as is the case from the PF camera.
The author would like to thank members of the CTIO staff, especially Daniel Maturana, John Filhaber, Gabriel Pérez, Nick Suntzeff and Alistair Walker for their invaluable help in accumulating and presenting the data given here.
1
Baldwin, J. et al. NOAO Newsletter 45, Mar. 1996
2
Bardeen, S. et al.
3
Bingham, R.G. 1988, Proceedings of the ESO Conference on Very Large Telescopes and Their Instrumentation, ed. L.B. Robinson (Springer-Verlag, New York), 1167
4
Cudworth, K. M., & Rees, R. F. 1991, PASP, 103, 470
5
Chiu, L.-T. G. 1976, PASP, 88, 803
6
Guo, X. 1995, PhD Thesis, Yale University
7
Guo, X., Girard, T. M., van Altena, W. F., & López, C. E. 1993, AJ, 105, 2182
8
Guo, X. et al. To be published in PASP, 1996 as a companion paper to this one.
9
Wynne, C.G. 1967, Ap. J., 152, 675
10
Wynne, C.G. 1968, Ap. J., 152, 675
11
Wynne, C.G. 1987, Observatory, 107, 31
12
Wynne, C.G. and Worswick, S.P. 1998, MNRAS, 230, 457
Empirical and Theoretical Modeling of the PFADC Corrector on the Blanco 4m Telescope
The original document was generated using the LaTeX2HTML translator Version 96.1 (Feb 5, 1996) Copyright © 1993, 1994, 1995, 1996, Nikos Drakos, Computer Based Learning Unit, University of Leeds.
The command line arguments were:
latex2html pfadc_tei.tex.
The translation was initiated by t.ingerson x292 on Thu Jan 2 12:28:34 CDT 1997
This page is obsolete.
The Blanco Telescope is equipped with an active optics system in which variable pressure is applied to the rear surface of the primary mirror via 33 pads. This system can modify the figure of the primary to improve image quality. Normally, the the calibration of this system is verified and, if necessary, modified using ImAn every few months.
The primary mirror is supported radially by 24 lever arms articulated to push on the mirror from below and to pull on it from above. These are not normally adjustable.
Note: the primary mirror and f/8 secondary mirror active controls have been upgraded as of 2014, these documents apply to the old system. Contact CTIO staff for up to date documentation.
The pages related to this one are:
This page is very old and much work has been done on the active optics system, including a major upgrade in 2014. The value of the information here is uncertain.
J.Baldwin, 15 October 1998
1.0 PRIMARY MIRROR CORRECTION FROM LOOKUP TABLE.
Corrections should normally be ON for all foci (prime, f/8).
The present table causes the primary mirror to be bent to correct for a systematic astigmatism effect which is due to problems with the primary mirror support system.
2.0 F/14 COMA CORRECTION FROM LOOKUP TABLE.
Should normally be OFF whenever f/14 is in use.
3.0 IMAGE ANALYZER.
3.1 Before start of night,
3.2 Just before using IMAN
3.3 Measuring a star.
4.0 TWEAKING.
5.0 ERROR RECOVERY
This page is very old and much work has been done on the active optics system, including a major upgrade in 2014. The value of the information here is uncertain.
J.Baldwin, 14 November 1995
Last revised: M. Boccas, 3 February 2001
Active Optics systems are now in use on a number of telescopes (ESO NTT, WIYN) and are planned for all future large telescopes. They correct the shape and alignment of the telescope optics on a slow time scale (once every few minutes). This greatly simplifies getting the telescope properly tuned up to start with, and then allows the optics to be continually adjusted in order to compensate for flexure, etc. as the telescope moves around the sky. There is generally a lookup table which automatically changes the Active Optics corrections as a function of telescope position, and often also an image analyzer which uses fairly bright stars to make measurements during the night for additional fine tuning. Gemini will use an image analyzer in this mode almost all of the time.
The system on the 4m Blanco Telescope operates primarily from lookup tables which contain pre-calibrated correction values which can be interpolated to the present telescope position. There also is a provision for occasionally using an image analyzer on a bright star to fine tune (or "tweak") the corrections before observations for which high angular resolution is of special importance, but this will take enough telescope time (10 min?) that it is not expected to be the normal mode of operation.
Active Optics is not Adaptive Optics. Adaptive Optics refers to high speed corrections for seeing effects in real time. Sorry, all we offer is the boring low-speed stuff. (The f/14 secondary, now under development, offers high speed tip-tilt corrections to the image position to compensate for image motion arising from dome and atmospheric seeing and wind-shake of the telescope. This will be our first implementation of ADAPTIVE optics.)
The telescope intercepts light waves coming from distant objects and brings them to a focus. A wavefront is a locus of adjacent points where the electromagnetic wave has the same phase. Except for seeing, the incoming wavefronts, before striking the primary mirror, would be perfectly flat planes perpendicular to the direction to the object being observed. After bouncing off the mirror(s), when approaching the foci, the perfect wavefronts would be spherical in order to arrive at focus in phase.
However, there is seeing, and the telescope is not perfect, so the actual wavefronts are distorted. The distortions can be described as the amplitude A of the displacement of the wavefront, along the direction of travel, from where it should be in the perfect case. It is convenient to use a circular coordinate system oriented perpendicular to the direction of travel. Any point can be specified by radial coordinate r and angular coordinate phi.
The amplitude of the wavefront displacements, A, at that arbitrary point can then be described as a superposition of a series of terms of different radial and angular shapes; this is analogous to describing a complex sound as a sum of simple musical tones, or frequency spectrum.
The typical way to describe the wavefront errors is to use Zernike Polynomials. These are rather complicated functions, usually depending on more than one power of r, which have the nice property (among others) of being mathematically independent of each other (orthogonal). We don't do that. Instead, we follow the example of the ESO NTT (that's where we stole our software from), and describe the wavefront as:
A = c(1,1) * r * cos(phi) + c(2,2) * r2 * cos(2 phi) + ...
... + c(n,m) * rn * cos (m * phi)
summed over all possible values of the integers n and m. c(n,m) is a coefficient giving the amplitude of each term.
The individual terms in this series are called the "Quasi-Zernike Polynomials". The terms are not precisely orthogonal to each other, but under the real conditions in the real telescope, they are close enough.
The Active Optics System includes an image analyzer (IMAN) which measures the shape of the wavefront and then calculates a set of a few low-order quasi-Zernike functions which accurately represent the shape of the wavefront.
There are only a limited number of alignment or bending adjustments which we can make to the telescope's mirrors. Conveniently, each of these potential errors can be related to a different Quasi-Zernike mode. These are all low-spatial-frequency modes, with small values of m and n. The higher frequency modes are caused mostly by seeing and by small-scale polishing errors on the mirror surfaces; the active optics system cannot correct these because the mirror is too stiff.
Table 1 shows the low-order errors that we can measure with the image analyzer and how they are removed (cured) using the Active Optics System.
Table 1: Wavefront errors
Aberration | Quasi-Zernike | Cure | Comments |
Defocus | r2cos(0*pi) | Refocus | Easily confused with spherical |
Spherical | r4cos(0*pi) | Bend Primary | Or move focal plane, change primary-secondary spacing |
Decenter | r1cos(1*pi) | Repoint | Easily confused with telescope. astigmatism |
Coma | r3cos(1*pi) | Translate or tilt secondary | |
Astigmatism | r2cos(2*pi) | Bend primary | Easiest way to bend mirror |
Trefoil | r3cos(2*pi) | Bend Primary | Usually print-through from hard points |
Quadrafoil | r4cos(4*pi) | Bend primary | Not expected to be significant |
The Active Optics System has three main components: the 4m Active Primary system (4MAP), the Secondary Mirror Alignment System, and the Image Analyzer (IMAN).
The 4M Active Primary System (4MAP) is able to bend the mirror in modes which will correct for spherical aberration, astigmatism, trefoil and quadrafoil. For each aberration (but spherical aberration) and each focus, there is a lookup table containing corrections as a function of telescope position.
[[REVISION 3Feb01:]] These tables are text files which are stored in /ut02/4map/ and are called: 4mapXY.cof, where X is the aberration (2 is astigmatism, 3 is trefoil and 4 is quadrafoil) and Y is the focus (pf, f8 or f14). Thus there are 9 '.cof' files overall. In addition, there is a file called zero.cof that is a null table (ie. filled with 0) which can be used to replace whatever 4mapXY.cof to cancel/zero the corrections whenever one doesn't want to use the lookup table (note that the telescope operator is instructed to ALWAYS use the lookup tables by selecting 'Corr ON focusxx' in the TCS menu). At a specific focus, the fact that you activate the M1 corrections means that 3 lookup tables -one for astigmatism, one for trefoil and one for quadrafoil- are under use, their values being added vectorially. Usually, only the astigmatism table actually contains numbers, the trefoil and quadrafoil tables beeing filled with 0 (this is because the telescope doesn't suffer from significant trefoil or quadrafoil aberrations). When the 4MAP PC boots, it first reads these 9 files in /ut02/4map/ in order to update its default files to the latest versions. This modification (putting the 4MAP PC on the network) was made in order to allow updating remotely the lookup tables, instead of having to physically seat in front of the 4MAP PC on the mountain as in the old days. Therefore, in order to make effective a newly-entered lookup table, one has to bring the telescope to zenith, turn off the air to M1, exit the 4MAP program and start it again (the 4MAP booting message will tell actually that it updated its .cof file). Correction values are automatically interpolated from this table (which contains 49 standard positions in the sky) to whatever is the current telescope position. [[end REVISION]]
Optionally, we can also apply an additional small constant correction for each aberration. We call it the "tweak" correction. The lookup-table and tweak values are added together vectorally. The contents of the lookup table are only rarely changed (as an engineering-time activity), while the tweak values can be remeasured (using IMAN) each time the telescope is moved to a new part of the sky, if the astronomer wants to take the time. If the astronomer prefers to take the default image quality, using only the lookup tables, the tweak correction can be disabled.
The f/8 and f/14 secondary mirrors each have their own computer-controlled collimation system which tilts the mirror around a point near its vertex. This system permits the removal of coma, and is part of the Active Optics package. In addition, there is a system for manually translating the mirror sideways, intended as a rare daytime adjustment, to handle cases when the tilt adjustment does not have enough range.
Tests show that the collimation does not change significantly as the telescope moves around the sky during the night, but that it does occasionally change (for unknown reasons) over a period of weeks or months. The standard operating procedure therefore is to use the image analyzer on a regular once-per-week basis to check the collimation (and adjust it if necessary), but otherwise to leave it unchanged during routine operation. Any time the collimation value is changed, the new value should be entered in the Active Optics logbook and also written on the white board.
[[REVISION 3Feb01:]] A coma lookup table is now implemented to take into account loss of optimum collimation (due to flexures) when the telescopes moves around the sky. That table is called Xtbl.cof (where X is the focus, either f14 or f8) and is stored in /ut20/tcp4m/tcp/. The coma lookup table is similar to the 4MAP lookup tables of the primary mirror, except that it acts only by producing a tilt adjustment (a 'tweak') of the secondary mirror on top of the nominal tilt values determined by the collimation procedure using IMAN (stored in Last Log Entry). Once you select that option, an 'ON' label will show up next to the focus number in the central window of the TCP blue status window. The label will say 'OFF' if the coma lookup table is not active. For the time being, it should normally always be OFF. [[end REVISION]]
In addition, observers have the option of using the image analyzer to measure the collimation error at any time during their run, and then tilting the secondary to remove that error. This is the equivalent of making a tweak correction to the primary mirror, except that the new correction should be valid all over the sky. If the telescope is recollimated in this way, the new collimation value should be entered in the Active Optics logbook and also written on the white board, and should become the new default value until the next routine check is made.
The Image Analyzer (IMAN) consists of four components:
IMAN is always available at f/8 and f/14. It can be used by the night assistant at any time. It writes its results into a log file. With easy-to-use TCS commands, the night assistant can take results from this log file and use them as input for changing the collimation or the tweak values. There are options to take either the results from the most recent IMAN measurement, or to search through the log file and select some earlier result, or to type in values at the terminal. The IMAN program also makes a recommendation about which tweak values need to be changed and which do not. When tweak values are taken from the log file, the TCS program allows you to either follow these recommendations (the default) or override any of them.
This will be found in /ut22/iman/iman.log The results from a typical measurement will look like:
***************************************************************************
UT 00:44 08/27/95 HA -01:14; DEC -31:23 f/8 ROT 90.0 | ||||||||||
SECONDARY | PRIMARY | |||||||||
coma3 | spher | astig | triang | quad | d80 | |||||
um | d | um | um | d | um | d | um | d | arcsec | |
1 | 0.22 | 80 | -1.57 | 0.64 | 440 | 0.02 | 367 | 0.17 | 12 | 0.47 |
1 | 0.28 | 73 | -160 | 0.64 | 452 | 0.03 | 273 | 0.20 | 6 | 0.49 |
1 | 0.33 | -71 | -193 | 0.64 | 471 | 0.08 | 292 | 0.18 | 9 | 0.50 |
Average | 0.09 | 36 | -1.70 | 0.63 | 94 | 0.04 | -64 | 0.18 | 9 | |
Sigma | 0.15 | 0.17 | 0.02 | 0.03 | 0.01 | |||||
d80 | 0.01 | 0.19 | 0.21 | 0.01 | 0.08 | |||||
Tweak? | N | N | Y | N | N |
d80 (arcsec) |
TEL.FOCUS=172301 GDR: x=0.045 y=-0.04 |
||||||||
npts | defoc | decen | init | coma | full | ||||
1 | 1 | 218 | 1.34 | 21.17 | 219 | 0.57 | 0.56 | 0.47 | |
2 | 2 | 218 | 1.24 | 24.00 | 216 | 0.56 | 0.56 | 0.49 | |
3 | 3 | 217 | 1.71 | 24.57 | 214 | 0.59 | 0.59 | 0.50 |
The output first shows results for the three independent 30 sec measurements. Magnitudes of the aberrations are given in microns (um), and the position angles in degrees (d). The rightmost column shows the residual 80% encircled-energy diameter that the image would have after correcting for all of the fitted aberrations (this residual includes the effects of slowly changing dome seeing components, but most of the effects of atmospheric seeing have been averaged out).
The next line gives the vector average for each aberration. After that is a line giving the standard deviation (1 sigma) of the magnitude of each aberration, and then a line giving the 80% encircled image diameter (in arcsec) which would be expected from each average value.
The line labelled "Tweak?" gives a recommendation about whether or not a correction should be made for each aberration: yes (Y) ==> make a correction; no (N) ==> do not change anything. A tweak adjustment is generally recommended for aberrations producing d80 values in excess of 0.1 arcsec, unless there is large scatter in the individual measurements. However, the spherical aberration measurements tend to show huge scatter, and we currently do not recommend making a tweak adjustment for that under any circumstances.
Finally, additional information about each measurement is grouped at the bottom left of the output. "npts" is the number of spots used in the fit; "defoc" is the fitted defocus term (in microns); "decen" gives the fitted decentering term (in microns and degrees). The entries under "d80" are 80% encircled energy diameters at three different levels of correction: "init" is for no corrections; "coma" is with coma removed; "full" is with all fitted aberrations removed.
Commands are invoked by typing the first letter of the command, except for the STAR SEQUENCE and CAL SEQUENCE commands which are invoked with * and /, respectively.
IMAGE ANALYZER | |
CALIBRATION POSITION | |
LARGE APERTURE | |
SMALL APERTURE | |
OBSERVE POSITION | (to power off the camera) |
POWER ON CAMERA | |
*STAR SEQUENCE | |
MORE STARS | |
/ CAL SEQUENCE | |
ABORT STAR SEQUENCE | |
FLAT MIRROR (IN or OUT) | (IN for GUIDER; OUT for IMAN) |
!! PELLICLE (IN or OUT) | (IN for IMAN; OUT for GUIDER) |
IMAN COMMAND TO PC | |
TILT SECONDARY | |
INIT TILT | |
RELATIVE TILT | (tilt to new value) |
ABSOLUTE TILT | (tilt to new value) |
LAST LOG ENTRY | (tilt to last value in IMAN log file) |
OLD LOG ENTRY | (select any value from IMAN log file) |
DISPLAY TILT | |
!! ON/OFF AUTO TILT | (activate or not the Coma lookup table) |
!! PERFORM AUTO TILT | (adjust the tilt to the value of the Coma lookup table for the current position) |
!! SET TO REFERENCE TILT | (adjust to tilt stored in Last Log Entry) |
PRIMARY MIRROR CONTROL | |
GO | |
HALT | |
RESET ERRORS | |
CORRECTIONS ON/OFF | (whether or not to use the Lookup Tables for each focus) |
TWEAK ADJUST ON/OFF | (options are ENABLE, DISABLE, RESET) |
SHOW TWEAK | (display entries for lookup table & tweak) |
MIRROR ADJUST | |
LAST LOG ENTRY | (set tweak to last value in IMAN log file) |
OLD LOG ENTRY | (set tweak to any value from IMAN log file) |
KEYBOARD ENTRY | (set tweak to values entered from keyboard) |
!! shows the REVISED TEXT (3Feb01).
When the LAST LOG ENTRY or OLD LOG ENTRY commands are used from the PRIMARY MIRROR CONTROL menu, the user is asked:
USE DEFAULTS ?
If Y, the changes TO THE PRIMARY MIRROR FIGURE recommended by the IMAN program will be made. This command cannot change the Secondary Mirror's tilt.
If N, then the user is asked:
SPHER :
ASTIG :
TREFOIL :
QUAD :
Answer Y to cause the corrections to be applied.
This accompanying document gives current instructions for:
The idea of the tweak correction is that if the adjustment of the optics is not quite right, you should use IMAN to measure the error and then change the adjustment by the required amount. Therefore, you want to add that change to whatever was the previous setting.
For the secondary mirror tilt, tweaking consists of applying a RELATIVE TILT correction (see Section 6.3), which is always a differential tilt correction from the mirror's present position.
In the case of the primary mirror, if the previous tweak values are not reset to zero (see below) at the time a new tweak command is sent out, the new tweak values get added (vectorially) to the old tweak values. If the lookup table is "ON", the total tweak corrections get added to the lookup table corrections. Normal use is to leave the Lookup Table "ON" (if the f/8 focus is being used; otherwise leave it OFF), but to reset the tweak values to zero (Section 6.2) before making an IMAN measurement to determine the tweak values in a new part of the sky.
This command is used to enable/disable/reset the tweak corrections. When the corrections are "enabled", the TCS Status Screen shows a flashing "TWEAK ON" message and whatever values are in the tweak table are applied to the primary mirror. When the tweak is "disabled", the values in the tweak table are left unchanged, but no tweak correction is applied to the primary mirror shape and the TCS status screen says "TWEAK OFF". When "reset" is selected, the values in the tweak table are set to zero, the tweak correction is disabled, and the TCS status screen says "TWEAK OFF".
up arrow
down arrow
PgUp
PgDn
CTRL-Home
CTRL-End
The lookup-table and tweak corrections can be individually toggled ON and OFF using the LOOKUP TABLE and TWEAK commands in the PRIMARY MIRROR menu. After a tweak correction is enabled, it's up to the astronomer or night assistant to decide when to (and remember to) turn it off. The telescope status screen tells whether LOOKUP TABLE and TWEAK are ON or OFF. "OFF" can mean that the tweak has either been disabled or reset to zero; use the SHOW TWEAK command if you need to know which.
The CCD camera head incorporates a Peltier electrical cooler of the same type as are used with the CCDTV. This is located *inside* the offset guider module, and generates a considerable amount of heat which can escape up the telescope's chimney, directly in the light path. The cooler is not always enabled, but when it is, leaving the IMAN power on for a long time is likely to generate bad seeing. The power is therefore remotely controlled, and should only be turned on for brief bursts when IMAN is actually in use. Use the menu command POWER ON CAMERA to turn it on; use OBSERVE POSITION to turn it off.
back to top
Check the list of error messages provided on the IMAN page.
This message usually indicates a failure in the NFS link between IMANPC and IMANSUN.
See Section 3.4 of the Iman Image Analyzer WWW page or manual.
Appears in a separate small blue box if a star sequence is aborted using the ABORT STAR SEQUENCE command in the IMAN menu. Use CTRL-F2 to clear the blue box from the screen.
1. | Menu Commands | |
2. | Command Mode commands | |
3. | Units, etc |
This page is very old and much work has been done on the active optics system, including a major upgrade in 2014. The value of the information here is uncertain.
J.Baldwin, G. Schumacher, 14 November 1995
The f/7.8 secondary mirror is controlled by a CTIO "Smart Motor Controller". The mirror can be both focused and tilted by the operation of three computer-controlled jack screws which are spaced 120 degrees apart on the back of the mirror cell. Each screw is driven by by its own servo motor, which includes an incremental encoder. In addition, a Futaba linear encoder is mounted next to each of the jack screws, and gives an independent reading of the position of the jack screw to an accuracy of nominally 1 micron.
Control commands are normally issued from the "Tilt Secondary" and "Focus Secondary" menus on the TCS screen. The commands are:
TILT SECONDARY
INIT TILT
RELATIVE TILT (tilt to new value)
ABSOLUTE TILT (tilt to new value)
LAST LOG ENTRY (tilt to last value in IMAN log file)
OLD LOG ENTRY (select any value from IMAN log file)
DISPLAY TILT
FOCUS SECONDARY
INIT FOCUS (reset zero points of encoders, then return to present focus position)
MOVE TO VALUE
STEP FOCUS
Commands for the mirror can also be typed into the TCS using the Command mode:
sec encoder
Return readings of Futaba encoders A, B1 and B2, and differences, in the order A B1 B2 (B1-A) (B2-A). Units are microns of motion at the secondary mirror. All other commands dealing with focus motions use units of microns of movement of the focal plane.
sec tilt [tilt amplitude] [tilt azimuth]
Tilt secondary to specified absolute position.
sec focus [value]
Change focus by specified DIFFERENCE from present focus.
sec afocus [value]
Change focus to specified absolute value.
sec display
Show present values of tilt and azimuth.
sec fast [value]
Set fast focus speed, in arbitrary units. Default = 120.
sec slow [value]
Set slow focus speed, in arbitrary units. Default = 50.
sec init
Moves mirror to fiducial position and rezeros encoders. Does NOT restore previous focus value (unlike the menu command).
sec reset
Zeros out all registers and hardware; leaves smart motor controller ready to receive commands.
The three jack screws and their accomapnying Futaba encoders are labelled A, B1 and B2. A is on the South side of the secondary mirror when it is in its observing position; B1 is on the NW side and B2 is on the NE side.
Focus motions are achieved by driving all three jack screws by the same amount. Focus units are microns of travel of the focal plane, = 9.56819 times the motion at the secondary mirror (but Beware!, the command "sec encoder" returns the values at the secondary mirror). Positive focus changes move the focal plane upwards.
Tilt is produced by driving the three jack screws by differing amounts, so as to tilt the mirror about a point located 4.68 inches behind its vertex. This center of tilt was chosen because it is in the plane defined by the three rollers which provide the lateral support beween the inner mirror cell (which moves) and the outer mirror cel (which doesn't move).
Tilt units are microns of wavefront error for coma3 at the edge of the pupil (the units returned by IMAN), and the azimuth of the error. The mirror will then tilt so as to remove that amount of coma. This is to maintain consistency between values pulled from the IMAN log and values entered manually. The conversion to the actual angular tilt of the mirror is:
.0133 degrees of tilt = 1 micron of coma3.
The tilt azimuth is defined as 0 deg azimuth to the west, and then increasing as you go around to the north. Including the fact that the mirror is moved so as to remove the entered coma value, a tilt request containing a positive coma amplitude will cause the side of the secondary mirror in the specified PA to move closer to the primary mirror while at the same time the opposite side moves away from the primary mirror. Therefore, relative to the tilt=0 fiducial position:
sec tilt 1 0 |
Lowers W side, raises E side through a 0.0133 degree tilt. |
|
sec tilt 1 90 | Lowers N side, raises S side. |
The above tilt changes cause the absolute tilt (read out using the DISPLAY TILT menu command) to change by the requested amplitude but with a position angle which is the requested PA - 180 degrees. This will be added vectorially to the previous absolute tilt. For example, a relative tilt of:
sec tilt 1 90
will produce an absolute tilt of
1.0 micron PA 270 | if the starting point was abs. tilt = 0 0. | |
1.4 micron PA 225 | if the starting point was abs. tilt = 1 180 |
Contents | ||
1.0 | Primary Mirror control Program description | |
2.0 | Command description | |
3.0 | Program Databases | |
4.0 | Program Maintanance | |
5.0 | Position Angle conventions | |
6.0 | Amplitude conventions |
This page is very old and much work has been done on the active optics system, including a major upgrade in 2014. The value of the information here is uncertain.
4MAP
G.Schumacher, 14 December 1995
FOR MORE INFO: Hard-copy manual "4M Active Primary Mirror Support System Operating Manual", by G.Perez et al.
Also: Calibration Positions for 4MAP Lookup Tables [68].
Controlling the primary mirror consists of applying a calculated pressure to the support pads. There are 33 pads distributed uniformly in two concentric rings: one called the outer ring, having 21 pads and the other called the inner ring, having 12 pads. In the outer ring there are also three hard points, separated at 120 degrees each, where the mirror sits when there is no pressure applied.
Associated to each pad, there is a pressure controller named MAMAC CONTROLLER, that outputs a pressure proportional to a voltage applied to it. The output pressure in turn is sensed and converted back to a voltage that is read by an analog to digital converter. Therefore, in order to control each MAMAC there is a DAC and an ADC device connected to it.
A control cycle consists then on calculating the pressure to apply to each pad, convert that pressure to a voltage, instruct the DAC to generate that voltage, and read back the voltage proportional to the output pressure sensed by the ADC. In between control cycles, the program constantly monitors each device and takes several actions on error conditions.
The control program is designed to operate in one of two modes. The first mode is called EMULATION MODE, and consists of emulating the behaviour of the old "passive" mechanical controllers. That behaviour is based on applying an equal pressure to every pad in each ring, proportional to the cosine of the zenith distance of the telescope. This pressure is called the Nominal Pressure and can be defined independently for the outer and inner ring. The second mode is called ACTIVE MODE and consists of adding different pressures to the basic Nominal ones, calculated based on known aberrations, parameterized in terms of tables of coefficients for each term of the distortion model. Switching between modes is done with the ACTIVE coefficients command.
The control program runs in one of five states: The START state, the HALT state, the ERROR state, the ADJUST state and the CHECK state.
An error condition causes the pressure to be dropped abruptly by activating the safety valves. A zero voltage is also written to the DAC's. In order to activate the control again, it is necessary to change to the HALT state by issuing the RESET command, followed by the GO command.
The ADJUST state is entered from the START state or from the CHECK state by an ADJ command. In this state, the pressures are calculated and then converted to voltages that are applied to the MAMACS. Before applying the new voltages a check is made to lower first all pressures that will be lower than the present ones and then raising all pressures that will be higher than the present ones. This is to avoid an intermediate situation in that the mirror might be lifted due to the total sum of pressures might be larger than the mirror weight.
The CHECK state is entered after a successfull adjust process. In this state the program continuously monitors the condition of the DGH modules and the MAMAC modules. In particular, the pressure is read back and checked against the requested one. If a pressure changes, no attempt is made to correct it, but the ERROR state is entered if the change is greater than a certain limit (presently 2 psi). The TCS link is also monitored. If no TCS command is received after 1 second has elapsed from the last one, it is assumed that the RS485 link or the TCS is broken and the pressure gets dropped by openning the safety valves.
The user interacts with the program by giving commands in a Command Window at the PC terminal. Several of the commands could also be issued from the TCP user interface. In that case, all commands should be preceded by the "box id". The id for the 4M Active Primary control PC is "4map".
act
This command turns on or off the calculation of active corrections for a given mirror position. By default, the program starts in the off state. Format:
act [on / off]
adj
This command causes the program to calculate a new set of pressures and apply them to the MAMAC controllers. This command takes as its arguments the present telescope hour angle (hours) and declination (degrees).
Format:
adj hour_angle declination
adj -1.23 -47.35
IT IS ILLEGAL AND DANGEROUS TO GIVE ADJUST COMMANDS WITH ERRONEOUS POSITION INFORMATION SINCE THE CONTROLLER WILL APPLY THE WRONG PRESSURES TO THE MIRROR.
c0, c2, c3, c4
Specify new values for the individula active corrections. c0 specifies spherical, c2 astigmatism, c3 trefoil and c4 quadrafoil.
These commands set the total value of the corresponding correction.
Format:
c0 amplitude(nm)
c0 2000
c2 amplitude(nm) PA(deg)
c2 1000 45
c3, c4 have same format as c2.
c0twk,c2twk,c3twk,c4twk
Specify values which will be added vectorially to the existing amplitude and PA of the corresponding correction. "twk" refers to the "tweak" command in the TCP. Format same as c0,c2,c3,c4.
din
This command reads the digital input port of a DGH module. The result is returned as an hex number.
Format:
din module_address
din Q
dout
This command writes to the digital output port of a DGH module. The value should be given as an hex number.
Format:
dout module_address value
dout x 2
go
This command activates the control cycle. The telescope must be at zenith with air on and the program must be in the HALT state. A test is made of all modules, and if satisfactory, the mirror gets supported with the proper pressures.
halt
This command halts the control cycle by sending a zero voltage to all the MAMACS. In this state, all periodical TCS communications ceases.
help
Lists help info on screen.
i
This command defines the DGH addresses for the inner ring pads. See the Nomenclature Diagram for the numbering scheme.
Format:
i pad_number DAC_address ADC_address
i 8 2 Y
o
This command defines the DGH addresses for the outer ring pads. See the Nomenclature Diagram for the numbering scheme.
Format:
o pad_number DAC_address ADC_address
o 8 J q
pin
This command changes the default Nominal Pressure for the inner ring. The pressure is given in units of psi.
Format:
pin [pressure]
pin 9.0
pout
This command changes the default Nominal Pressure for the outer ring. The pressure is given in units of psi.
Format:
pout [pressure]
pout 8.5
pp
This command calculates and prints the pressures on the screen. The command arguments are an hour angle and a declination. This command doesn't interfere with the normal calculations done with the adj command, so it's useful for debugging the active corrections.
pp hour_angle declination
reset
This command resets an error condition and place the program in the HALT state. This command must be given prior to go, after an error condition.status This command returns a textual description of the program status. Possible responses include:
OK CORRECTIONS ON/OFF
This message indicates that the system is active and no errors are present.
ERROR 5: HALT
This message indicates that the system is in the HALT state. To activate it, a go command must be given.
ERROR 5: MAMAC 12 BAD 2.351 0.000
This message indicates that when checking the MAMAC voltage (number 12 in this case), a difference of more than 0.5 volts was detected. This might be due to a bad DAC, a bad ADC or a bad MAMAC. To determine the offender, a specific test should be run for each module associated with that MAMAC unit (see the Nomenclature Diagram).
ERROR 5: DGH 2 NO RESPONSE
This message indicates that the specific module (2 in this case) is not responding to commands issued to it.
test
This command orders the execution of test for the DGH modules or MAMAC units. The tests are run on all modules or units. If you want to test a specific module, use the vin or vout commands. The responses are similar to the ones described under the status command.
Format:
test dgh/mamac
vin
This command reads the voltage of one DGH module or all ADC modules. The argument is the module address. If the address is '*' then read all ADC modules.
Format:
vin module_address (or *)
vout
This command outputs a voltage to one or all DAC modules. Be aware that this is an active command so if air is on, a pressure will be applied to the pads. Use with care and only if you know what you are doing. As a rule of thumb, the relation of voltage to pressure is close to 1 to 4 (i.e. 1 volt 4 psi).
Format:
vout module_address (or *) voltage
vout * 0.0
x
This command defines the DGH addresses for modules not related with the pads. This are the ones that act on the solenoid valves or receive information on the various switches.
Format:
x module_number module_address
zero
This command sets all voltages to zero. This is equivalent to vout * 0.0.
?
Lists help info on screen.
The program uses two databases for its proper functioning: a Parameters Database, called "4map.par" and a Coefficients Database, called "4map.cof". These are currently located on ctiot0, on the /ut02 disk, in the 4map directory.(8Jul04).
The Parameters Database is a collection of commands that defines the starting values for the program. Any valid command could be placed in this file, that gets executed at startup. In particular, the DGH addresses are to be found here so, if a module is changed the new address should be modified accordingly. A '*' character at the beggining of the line indicates a comment; therefore, the file is self documented.
The Coefficients Database contains the parameter values for the different aberrations, mapped around the sky. The map is made in terms of zenith distance and azimuth positions. Each line contains the values for a certain azimuth. Normally, there are 10 values per line, corresponding to zenith distances of 0°, 15°, 30°, 45° and 60°. The first 5 values corresponds to the amplitude parameter and the next 5 values corresponds to the angle parameter. The azimuth values span the range of 0° to 360°, in steps of 30°. Again, an '*' character at the beginning of the line indicates a comment. The hour angles and declinations at which the IMAN measurements for this table should be made are listed in "Calibration Positions for 4MAP Lookup Tables" [68].
All the source code resides in directory \AP\SOURCE on drive C: of the control PC. The program is entirely written in C and the MICROSOFT C/C++ compiler rev 8.0 is used to produce the object modules.
The process of making a new executable is automated by using the NMAKE utility. There is a MAKEFILE that declares all the files and libraries needed. The procedure then consist of editting the necessary files and then typing the command 'NMAKE'.
The active force patterns are generated by using the Mamac controllers to increase or decrease the air pressure in specific air bags, as compared to the nominal air pressure required to support the mirror at a given telescope position. A positive correction to the air pressure moves the corresponding part of the mirror upwards, while a negative correction lowers the corresponding part of the mirror.
4MAP can correct abberations with the azimuthal position cos(m*phi - phi0), for the following values of m:
m | abberation |
0 | spherical |
2 | astigmatism |
3 | triangular (trefoil) |
4 | quadrafoil |
The corresponding cos(m*phi-phi0) force patterns are then superimposed on the mirror. The sinusoidal force pattern is repeated m times going around the mirror. An amplitude and a position angle must be specified in order to generate this pattern.
The position angle convention for phi0, when a positive amplitude is requested, is:
When TWEAK commands are entered through the TCP menu system, the requested amplitudes are accepted in the units measured by IMAN, and are then scaled by calibration factors before being passed on to 4MAP. The current calibration factors are:
Abberation | m | Calibration factor |
Spherical | 0 | 0.00288 |
Astigmatism | 2 | 0.00101 |
Trefoil | 3 | 0.00117 |
Qaudrafoil | 4 | 0.00123 |
where the values entered through the menu commands are DIVIDED by the calibration factor before being passed on to 4MAP.
However, when force patterns requests are entered directly into the 4MAP PC using the commands c0,c2,c3 or c4, the amplitudes must be specified without the scale factors. The units then correspond to the deflections predicted by a simplified analysis of the mirror performed by Lothar Noethe at ESO.
The calibration factors also convert the micron units used by IMAN into the nanometer units used by 4MAP, and would be 0.001 if the calculations by Noethe had been perfect. So Lothar's analysis came really close on every abberation except spherical.
This page is very old and much work has been done on the active optics system, including a major upgrade in 2014. The value of the information here is uncertain.
German Schumacher
5 December 1995
The following table lists the hour angles and declinations at which IMAN measurements should be taken in order to calibrate the lookup tables for 4MAP (the 4M Active Primary mirror support system). The HA and Dec entries are chosen to give an equally spaced grid in azimuth and zenith distance; azimuth varies as you move vertically through the table and zenith distance as you move horizontally.
Start and end at zenith. In between, do the following:
|
AZIM/ZD | 15 | 30 | 45 | 60 | |
HA (h m) | 0 | 0 00 | 0 00 | 0 00 | 0 00 | |
DEC (d m) | -15 09 | -00 09 | 14 50 | 29 50 | ||
WEST | 30 | 0 31 | 0 58 | 1 24 | 1 52 | |
-16 57 | 03 29 | 10 01 | 23 24 | |||
60 | 0 55 | 1 45 | 2 31 | 3 16 | ||
-21 55 | -12 39 | -02 50 | 07 04 | |||
90 | 1 08 | 2 14 | 3 16 | 4 13 | ||
-29 01 | -25 47 | -20 48 | -14 33 | |||
120 | 1 04 | 2 19 | 3 38 | 4 56 | ||
-36 40 | -40 38 | -41 22 | -38 43 | |||
150 | 0 40 | 1 40 | 3 17 | 5 30 | ||
-42 46 | -54 03 | -62 13 | -64 06 | |||
180 | 0 00 | 0 00 | 0 00 | 0 00 | ||
-45 09 | -60 09 | -75 09 | -89 50 | |||
EAST | 210 | -0 40 | -1 40 | -3 17 | -5 30 | |
-42 46 | -54 03 | -62 13 | -64 06 | |||
240 | -1 04 | -2 19 | -3 38 | -4 56 | ||
-36 40 | -40 38 | -41 22 | -38 43 | |||
270 | -1 08 | -2 14 | -3 16 | -4 13 | ||
-29 02 | -25 47 | -20 48 | -14 33 | |||
300 | -0 55 | -1 45 | -2 31 | -3 16 | ||
-21 55 | -12 39 | -02 50 | 07 04 | |||
330 | -0 31 | -0 58 | -1 24 | -1 52 | ||
-16 57 | -03 29 | 10 01 | 23 24 |
For wide-field use, especially with Hydra, a new corrector has been installed at the R/C focus of the Blanco Telescope. It is referred to as the "RCADC" (Ritchey-Chrètien Atmospheric Dispersion Compensator) corrector. It is located in the telescope chimney. Click here [69] to see just where it is.
Hydra MUST be used with this corrector. Any optical R/C instrument can use the RCADC if desired, but there is not much justification. The R/C and echelle spectrographs do not need its wide field though they sometimes might benefit from the ADC function. The RCADC can only be installed by Observer Support personnel via a motorized system operated from the Cass. cage.
The RCADC has six elements in four groups. This Optical Diagram [70] shows its configuration. It contains two meniscus "corrector" elements of fused silica at the front and back surfaces of the assembly. They provide images with D80 less than .3 arcsec over the entire 42 arcminute Hydra field. The corrector also makes the image "telecentric", which means that the pupil is located at the center of curvature of the field so that the optical axis of the images is perpendicular to the focal surface over the entire field. This minimizes light lost due to focal ratio degradation (FRD) in the fibers.
Between the two corrector elements, there are two cemented doublet prisms of silica and a light flint glass (LLF6). All surfaces of these prisms are plane, inclined appropriately so that the light passes through with zero deviation at an intermediate wavelength (4200A). Each prism provides a small amount of dispersion and rotates under control of the TCS though an angle of 360 degrees. When the two elements are oriented 180 degrees apart, their dispersions cancel so that the prisms have essentially no effect on the images. Orienting them at different angles can provide an artifical dispersion in any direction desired, which can compensate for atmospheric dispersion up to the limiting power of the prisms which in the case of the RCADC is at Air Mass 2.4 (65 degrees zenith angle).
The RCADC is coated with sol-gel over MgF2 on all eight surfaces. Sol-gel over MgF2 has very low reflectivity over a broad wavelength range. Although it has not been directly measured, the overall transmission of the corrector is believed to be above 95% at all wavelengths from 4000-10000A. Transmission falls in the UV due to the LLF6 elements in the ADC prism. Throughput of the corrector is roughly 85% at 3500A, 60% at 3340A and 20% at 3200A.
If dispersion correction is not desired or has been disabled for some reason, the ADC elements MUST be set in the neutral position. This is easily done via the TCS. Zero and 180 degrees is the standard setting but any orientation of the prisms 180o apart is equivalent. Normally, the ADC is left on and dispersion correction is automatic.
Observers sometimes ask when ADC should be used. The safest answer is "always". If there is significant dispersion in the field, correcting for it will improve the efficiency of the observation. It will never make it worse. The only reason not to use the ADC function is to avoid any possible effect on the pointing accuracy or if the control system is malfunctioning. Optical analysis indicates that rotating the elements does not significantly alter the field model, though for lack of time this has not been explicitly verified.
The expected effect of atmospheric refraction on the observing efficiency can be estimated from the following diagrams.
1. Differential refraction at 2km altitude [71]
2. Flux captured by Hydra fibers as a function of seeing and centering [72]
3. Image movement during exposure caused by refraction [73]
The first diagram quantifies the effect of refraction while the second lists fiber efficiency using the standard (Wolff) model of the profile of images degraded by seeing. Using the two diagrams it is relatively easy to estimate the effect of refraction on system efficiency.
For example, when the seeing is 1.0 arcsec, 85% of the incident light will enter a perfectly centered Hydra fiber. If the image is decentered by 0.5 arcsec, the efficiency falls to 73%. A decenter of 1.0 arcsec decreases the efficiency to 39%. Thus, if refraction decenters a star by 0.5 arcsec, in 1" seeing, overall system efficiency will decrease by approximately 14% (.85-.73/.85). Correspondingly at this seeing the efficiency will decrease by 54% if there is a 1 arcsec centering error.)
One can study the table as a function of seeing and estimate how much effect seeing might have on overall efficiency in a particular observing situation. If (say) the 10-15% efficiency degradation produced by an .5 arcsec offset is deemed acceptable, then an overall dispersion of 1 arcsec could be tolerated. Diagram 1 then tells us that someone observing from 3500-5000A could observe to an air mass of 1.3 without using the corrector. Observations from 4000-6000A could be done to an air mass of 1.45 while observations from 6000-9500A could be made at any air mass up to 2.40.
Important! Note that these tables can be used to determine the optimum central wavelength for positioning the fibers. If the corrector is not used, centering the guide star(s) on the wrong wavelength will offset the entire field. Either a filter must be used in the FOPS guide camera or FOPS stars of appropriate color must be used. Of course if the ADC function is enabled, no filter need be installed in the guide camera and the spectral type of the FOPS stars will have no significant effect on the positioning accuracy of the system.
Yet another consequence of refraction is to cause an apparent relative movement of points in the image as the field moves across the sky. This effect is quantified in the third diagram above.
Here, the Hydra field is shown with the locations of star images at 9 points in the field at -70 degrees during ten hours as the telescope tracks from 5 hours east to 5 hours west of the meridian. As can be seen, the image appears to rotate about a point approximately on the edge of the field with an amplitude of about .5 arcsec per hour of telescope motion at the other side of the field and the images drift with respect to the overall rotaion.
This effect is relatively small though it can be significant under some circumstances. Differential motion is the reason that Hydra asks for the approximate time of the middle of the exposure before positioning the fibers. In some situations it is desirable to reposition the Hydra fibers between exposures and to select the location of the guide star(s) in the field with care.
Deciding on what, if anything to do about this effect is up to the observer. One can use the information given in the first diagram to make an estimate as to the relative size of refraction effects at different zenith angles. The information in the third diagram can be used to make an educated guess as to how the images will drift during and between exposures. Since the effect is small, this is all that is ever necessary.
29 May 2000
by T. Ingerson
More obsolete Blanco web pages will be group here.
Hydra: | Javier Rojas | |
Mosaic: | David Rojas | |
ISPI: | David Rojas | |
Motor Controllers | Javier Rojas | |
SOAR | Esteban Parkes | |
Gerardo Gomez |
The Instrument Rotator
All instruments used at the cassegrain foci of the Blanco telescope mount on an offset guider, which is in turn mounted on an instrument rotator which includes the acquisition TV. The instrument rotator has two side ports and a main, straight-through port. At present, all of our facility instruments are used only in the straight-through (up-looking) port.
CCD-TV Acquisition Camera
A CTIO CCD-TV acquisition camera is located on the North sideport of the instrument rotator. It can either view the sky directly, through a focal reducer lens, or it can use a periscope to view light reflected off the jaws of the spectrograph slit.
This camera is quite sensitive. Under good conditions, objects as faint as V = 22-23 can be seen in the direct sky viewing mode, and as faint as V=21-22 on the slit jaws. The field of view is 150" × 114" arcsec in the direct sky viewing mode, and 56" × 43" arcsec in the slit viewing mode.
The night assistant will operate this camera for you.
The Rotator Mirror
The instrument rotator includes a large mirror assembly which can be moved into different positions in order to send the telescope beam to different places. It is called the "rotator mirror" because it is part of the instrument rotator; it actually slides back and forth.
The rotator mirror has four positions, which perform the following functions:
The Offset Guider
The offset guider module was designed to have two independently movable probes, one covering each half of the telescope's 40 arcmin field-of-view. However, one of the probes was never installed, so at a given position angle of the instrument rotator only half of the field of view can be covered.
Map of field accesible to offset guider [74]
The detector system for the guider is another CCD-TV running with special software provided by Steve Shectman (Carnegie Institute [75]). It can guide on stars in the magnitude range V = 12-18, but works best with V = 14-16.
Guide stars sometimes can be hard to find. The night assistant can enter the RA and DEC of a guide star and the probe will move to that position (if it is in range). In theory, the HST guide star catalogue is on-line at the telescope, and the night assistant can quickly find the coordinates of a suitable star. However, the catalogue used at CTIO is on rather flakey CD drives, so it doesn't hurt to come to the telescope with lists of potential guide stars for each object; for example, all of the 14-16 mag stars within a 40 arcmin field centered on your object.
Search HST Guide Star Catalogue [76]. This is the direct link to STScI...a bit slow from Chile.
Computing Exposure Times with the IRAF Task CCDTIME [77]
ISPI Exposure Time Calculator [78]: for ISPI infrared imager on Blanco 4-m telescope.
SMARTS Imager Exposure Calculator [79]: for 0.9-m CCD and 1.0-m Y4KCam
Object Visibility [80]: ING utility which plots altitude against time for a particular night (Staralt), plots the path of your objects across the sky for a particular night (Startrack), plots how altitude changes over a year (Starobs), or gets a table with the best observing date for each object (Starmult).
La Serena recinto tape drives
IP address |
Hostname |
Location |
139.229.4.100 | ctiokq.ctio.noao.edu |
Remote Observing Room |
Type |
Model |
System device |
IRAF device |
Media supported |
DAT | SDT-11000 | /dev/st0 /dev/nst0 |
-- | DDS3 |
Type |
Model |
System device |
IRAF device |
Media supported |
DAT | SDT-10000 | /dev/st0 /dev/nst0 |
mtd | DDS3 |
EXABYTE | EXB-8505SMBANSH2 | /dev/st1 /dev/nst1 |
mtx | D8 |
DLT | DLT7000 | /dev/st2 /dev/nst2 |
mtd | -- |
Cerro Tololo tape drives
IP address |
Hostname |
Location |
139.229.13.132 | ctioa8.ctio.noao.edu |
4m console |
Type |
Model |
System device |
IRAF device |
Media supported |
DAT | SDT-10000 | /dev/st0 /dev/nst0 |
-- | DDS4 |
DLT | DLT8000 | /dev/st1 /dev/nst1 |
-- | -- |
Type |
Model |
System device |
IRAF device |
Media supported |
DAT | SDT-11000 | /dev/st0 /dev/nst0 |
-- | -- |
EXABYTE | EXB-8505SMBANSH2 | /dev/st1 /dev/nst1 |
-- | -- |
IP address |
Hostname |
Location |
139.229.12.3 | ctio60.ctio.noao.edu |
4m computer room |
Type |
Model |
System device |
IRAF device |
Media supported |
DAT | SDT-10000 | /dev/st0 | -- | -- |
For more information go the Optical Engineering pages [84]
This document lists all the 4-M TCS commands that can be given through serial ports A, B and D, or via RPC connection. The commands are given as messages consisting of a command keyword and optional parameters. A message is terminated with a message delimiter, that could be a CR or LF character.
All commands returns a specific response as a numeric string, or a status of the requested operation. Normally this is the string "ok", meaning that the command was accepted and acted upon. If the operation is a motion that takes some time to complete, then the string "moving" is returned. To determine the end of the motion, you need to poll by sending again the same command but without arguments, until the string "ok" is received. An error condition is reported with a message consisting of the word 'error', followed by a number, then the character ':' and finally a short text describing the error. For example: error 4: motion already active. Then, the possible responses to a command are:
The following notation is used to describe the commands syntax:
[ ]
Square brackets indicate an optional item; it is not mandatory to give that item in the command line.
ra
denotes right ascension. It is given in units of time, i.e. hours, minutes, seconds, with each number separated by colon (:). For example, 14 hours, 23 minutes, and 15.37 seconds is represented as 14:23:15.37.
dec
denotes declination. It is given in units of arc, i.e. degrees, minutes, seconds, with each number separated by colon (:). For example, 43 degrees, 57 minutes and 15 seconds south is represented as -43:57:15.
ha
denotes hour angle. It is given in units of time, i.e. hours, minutes, seconds, with each number separated by colon (:). Negative numbers mean east while positive numbers mean west. For example, 2 hours, 15 minutes and 43 seconds east is represented as -02:15:43.
n, s, e, w
denotes the directions north, south, east, west respectively.
ra_offset:
dec_offset:
denotes right ascension and declination offset respectively. An offset is given in units of arc, i.e. degrees, minutes, seconds, with each item separated by colon (:). Alternatively, it is possible also to give a single number that is to be understood in units of seconds. An offset must also be preceded by one direction character (n, s, e, w). For example, an offset to the south of 2 minutes and 30 seconds could be given as s 00:02:30 or s 150.
ra_rate:
dec_rate:
rates are given in units of arc_seconds/second.
4map command_string
With this command you send messages to the 4map PC. This PC controls the primary mirror active support system. See the 4map manual for a description of the commands.
adc [enable, disable, stop, calc, move]
This commands performs operations related to the Atmospheric Dispersion Corrector devices. There is one device at prime focus and another one at cass. The selection of the active one is implicit in the instrument selection: Hydra selects the cass unit. Pfccd and Mosaic selects the prime focus one. The devices are controlled by an SMC: the prime focus SMC is called "pf4m" and the cass SMC is called "cfadc". The command options are:
enable:
enables the corrector to adjust itself as the telescope moves.
disable:
disables the auto adjust option
stop:
stops the motion of the device.
calc:
calculates the position of the corrector elements. If no argument is given (i.e. adc calc) then use the present telescope hour angle and declination. Otherwise the next two arguments are taken to be the hour angle and declination (in decimal hours and degrees resp.) for the calculation. It returns a string with the calculated inner and outer positions, the zenith distance and azimuth. For example:
adc calc 2.5 -67.3
18 235 27.3 112.4
move:
moves the corrector elements to a certain angular position. If no argument is given then use the present telescope coordinates to calculate the element positions. Otherwise, the arguments are considered to be the inner and outer angle position of the corrector.
If no argument is given, the command returns a string with the inner and outer angle position of the elements. For example:
adc
27 moving
apoff ra1 dec1 ra2 dec2
Calculates apparent offsets between two mean positions. Returns ra and dec offsets in arcseconds.
base
Sets the present telescope position as base position. The base position is the reference to calculate tracking and pointing corrections. This command is executed automatically at the end of every slew.
bsw [a, b]
Performs a beamswitch offset. If the parameter is "a", then the motion is in the declared direction, as given with the command bsw_set. If the parameter is "b", then the motion is in the reverse direction. If no parameter is given, then the command returns the status of the motion. For example:
bsw a
moving
bsw
moving
.
.
.
bsw
ok
bsw_set [ra_offset, dec_offset]
This command declares the magnitude and direction of a beamswitch offset. If no parameter is given, then returns the present values. For example:
bsw_set n 35
ok
bsw_set
N 35
clamp n [on, off]
This command handles the comparison lamps. "n" must be 1 or 2. For example:
clamp 1 on
ok
clamp 1
on
coords
Returns telescope information in the following order: mean ra, mean dec, hour angle, dome position, sidereal time and universal time. For example:
coords
12:27:33.4 -30:10:50 00:12:28.3 214.3 14:23:37.3 05:46:02.1
date [date string mm/dd/yyyy]
Sets or gets the present date. The year could be given as a 4 or 2 digits number. For example:
date 04/25/1999
ok
date
04/25/1999
dome [enable, disable, pause, move]
This command performs operations related to the dome.
enable
enables dome to follow the telescope
disable
disable dome motions
pause n
Pause dome motion for "n" seconds
move n
Move the dome to certain angle position given by "n". If the dome is disabled, it gets enabled just for this motion. At the end of the motion the dome is always disabled. For example:
dome move 270
moving
enco
returns a string consisting of raw ha and dec derived from PMAC encoder counters and the telescope absolute encoders. For example:
enco
INC 01:23:34.5 -30:10:50 ABS 01:23:30.1 -30:10:20
epoch [epoch_number]
Sets the epoch for coordinates display. For example:
epoch 2000.0
ok
f8sec [tilt, absolute, absnot, atilt, afocus, focus, display, fast, slow, SMC_string]
Command to perform operations with the f8 secondary mirror. The mirror is controlled by an SMC whose name is "f8sec". It is possible to pass commands directly to the SMC, but some operations require preprocessing at the TCS level.
tilt [tilt_distance azimuth]
Performs a relative tilt motion of "tilt_distance" and "azimuth". The telescope performs an offset to compensate for the mirror motion. If no arguments are given then returns the 3 encoder values or the state of the motion. For example:
f8sec tilt 0.0145 87.3
moving
absolute tilt_distance azimuth
Performs an absolute tilt motion of "tilt_distance" and "azimuth". The telescope performs an offset to compensate for the mirror motion. You must always give arguments with this command. To check for motion completion use f8sec tilt. For example:
f8sec absolute 0.304 117.8
moving
absnot tilt_distance azimuth
This is the same as absolute but the telescope doesn't move.
atilt encoder1 encoder2 encoder3
Move the mirror to the given encoder positions. The telescope doesn't move. For example:
f8sec atilt 12345 11917 12743
moving
afocus [focus_value]
Move the mirror to an absolute focus value. If no parameter is given then returns the present focus value or the state of the motion. For example:
f8sec afocus 326800
moving
f8sec afocus
326800
focus [focus_value]
Move the mirror "focus_value" units relative to the present position. If no parameter is given then returns the present focus value or the state of the motion. For example:
f8sec focus -5000
moving
f8sec focus
321800
display
Returns the present tilt and azimuth values. For example:
f8sec display
0.304 117.8
fast [fast_speed]
Sets the fast focus speed. The default value is 50. For example:
f8sec fast 45
ok
f8sec fast
45
slow [slow_speed]
Sets the slow focus speed. The default value is 25. For example:
f8sec slow 20
ok
f8sec slow
20
SMC_string
The string should not start with any of the keywords mentioned before. The string is passed directly to the SMC.
f14sec [tilt, absolute, absnot, atilt, afocus, focus, display, fast, slow, SMC_string]
f14sec [adj, go]
This command is similar to f8sec, but acts on the f14 secondary system. Two new parameters are added:
adj n
Enables (n = 1) or disables (n = 0) the coma correction adjustment. This correction is performed at the end of a slew motion.
go
Performs the coma correction at this position.
G ra_error dec_error
This is the command to send guider information to the TCS. The command was imposed to us when we installed the Shectman guider. This command can only be given through serial port A. The guider errors are given as 2 digit integer numbers in units of hundreds of arcseconds, with numbers greater than 50 being negative numbers. The digits are contiguous. For example:
G1764 means 0.17" error in ra and -0.36" error in dec
gg ra_error dec_error
This command is used to send guider error information from the Hydra guider. The numbers are scaled by the factors introduced with the commands ggha, ggdec and ggrot (see below). The numbers are decimal numbers. For example:
gg 4.3 -1.27
ggdec [dec_factor]
This command is used to enter a scale factor to multiply the dec guider error given with the command gg, to convert it to arcseconds. The default value is -0.05.
ggha [ha_factor]
This command is used to enter a scale factor to multiply the ra guider error given with the command gg, to convert it to arcseconds. The default value is 0.05.
ggrot [angle]
This command is used to enter a rotation angle, that is applied to the ra and dec guider errors given with the command gg. The default value is 0.
go_flag n
This command enables (1) or disables (0) the TCS. This command is given automatically when the TCP user interface starts.
grot
This command returns the angle position of the instrument rotator.
guider [enable, disable, move, stop, type, x, y, park, optical, xrate, yrate]
This command operates on the guider devices. If no parameter is given then returns the present x, y positions or the status of the motion.
enable
Enables tracking of the telescope motion. In order for this to be active, both the follow and guider switches must be on.
disable
Disables following the telescope.
move mean_ra mean_dec epoch
Moves the guider probe to the given coordinates. A check is done for out of limits condition. For example:
guider move 05:27:43.3 -65:37:56 2000.0
moving
stop
Stops the guider motion. The enable condition is preserved.
type n
Defines the type of guider to utilize. At present times the following devices are defined:
1 ---> Shectman guider
2 ---> Leaky guider
3 ---> Fast Tip-tilt guider
4 ---> Hydra guider
x pulses
Moves the device in the x direction a certain number of pulses
y pulses
Moves the device in the y direction a certain number of pulses
park
Park the device.
optical
Moves the device to the optical axis
xrate [rate ramp]
Enters a new maximum rate and ramp for the device x motor. It only applies to the main Cass guider. The default values are 700 and 1000.
yrate [rate ramp]
Enters a new maximum rate and ramp for the device y motor. It only applies to the main Cass guider. The default values are 700 and 900.
iman [cals, pc, star, mstar, cal, small, large, stop, camera, flat, pell, ap]
Commands for the iman system. If no argument given returns the present position bits or the state of the motion, if any. Also by sending the command twice without parameters, clears any internal state of timeout or initialization, if present.
cals
Starts a calibration sequence. The state of the camera is checked and the sequence is granted if it is on.
pc string
Send string to iman pc and returns response from the device.
star
Starts a star sequence. The state of the camera is checked and the sequence is granted if it is on.
mstar
Performs a more star sequence. The state of the camera is checked and the sequence is granted if it is on.
cal
Moves the aperture wheel to the led or cal position. The bit pattern sent is as follows:
PELLICLE_IN | FLAT_OUT | AP_LED | CAMERA_ON or
PELLICLE_OUT | FLAT_OUT | AP_LED | CAMERA_ON
small
Moves the aperture wheel to the small position. The bit pattern sent is as follows:
PELLICLE_IN | FLAT_OUT | AP_SMALL | CAMERA_ON or
PELLICLE_OUT | FLAT_OUT | AP_SMALL | CAMERA_ON
large
Moves the aperture wheel to the large position. The bit pattern sent is as follows:
PELLICLE_IN | FLAT_OUT | AP_LARGE | CAMERA_ON or
PELLICLE_OUT | FLAT_OUT | AP_LARGE | CAMERA_ON
stop
Moves the devices to the stop or observe position. The bit pattern sent is as follows:
PELLICLE_OUT | FLAT_IN | AP_SMALL | CAMERA_OFF
camera [on, off]
Turns the camera on or off. If no argument given, returns the present state.
flat [in, out]
Moves the flat mirror in or out.
pell [in, out]
Moves the pellicle in or out. The state of this selection is remembered and the bit pattern is sent according to it.
ap [led, small, large]
Moves the aperture wheel to the led, small or large position.
index [ra_zero, dec_zero]
Adjust the zero point of the encoders. If no argument given, the zero points are adjusted to coincide with the last slew coordinates. Otherwise, the ra_zero and dec_zero values are added to the present zero point values.
info
Returns long telescope info. The order is as follows:
date
universal time
mean ra
mean dec
epoch
hour angle
sidereal time
dome azimuth
airmass
zenith distance
For example:
info
04/23/1999 17:34:23.1 05:34:02.1 -34:43:56 2000.0 -00:30:16.1 05:04:01.1 260.0 1.015 12.5
instrument [n]
Selects instrument configuration. The selection of the instrument also sets the foci and default guider. The present assignments are:
1 ---> F/8 spectrograph
2 ---> Irs
3 ---> Echelle
4 ---> Pfccd
5 ---> Mosaic
6 ---> Cob
7 ---> IR-F30
8 ---> Hydra
local string
This command sends a string to serial port C where all SMC devices are connected.
mark n [ra_offset] [dec_offset]
Place the current telescope position values into the mark table as item #n. There are presently 100 slots in that table. If n < 0 then return the position values as ra and dec for that entry. Optionally add the ra and dec offsets if given.
mir [n]
mirror [n]
Moves the rotator mirror to position n (1 to 4). If no argument given, then returns the present position or state of the motion.
move [n] [ra_offset] [dec_offset]
Move the telescope to the position stored in the mark table entry #n. Optionally add the ra and dec offsets if given. If no argument is given then return the status of the operation.
muxinit
Initializes the "rot4m" SMC.
offset [ra_offset] [dec_offset] [stop]
Move the telescope relative to the current position, the specified angular amounts. This is corrected by the cosine of the declination. If no arguments are given then return the status of the motion. Use the stop argument to stop the motion. For example:
offset e 23.3 n 47.1
moving
offset
moving
pedi [angle]
Moves the inner ADC element to the given angle.
pedo [angle]
Moves the outer ADC element to the given angle.
planet [ra_rate, dec_rate]
Enters telescope rates to be added to the normal tracking rate. To restore conditions, enter the command with zero rates (i.e. planet 0 0).
pointing
Returns pointing data information. The fields are:
slew ra
slew dec
raw ra
raw dec
sidereal time
raw
Returns raw and apparent coordinates. The fields are:
raw ra
raw dec
apparent ra
apparent dec
rot [angle]
Moves the instrument rotator to the given angle.
rot4m string
Sends "string" to the rot4m SMC.
s [time]
This command is used to initiate or terminate the recording of tracking and guiding information. The command acts as a toggle. The optional recording time is given in units of minutes. By default the time is 10 minutes. On the TCP status display, a field flashes whenever the recording is active.
sec [mirror n]
This is the generic command for the secondary mirror control system, being F/8 or F/14. The TCS sends the command to the appropriate SMC depending on which mirror is selected. All the parameters for the F/8 or F/14 system, could be sended with this command.
mirror n
Selects the mirror.
1 ---> F/8
2 ---> F/14
set variable_name [value]
This command is used to set or display certain internal TCS variables. By giving the name of the variable, its present value gets displayed. By giving the variable name and a value, the variable gets updated with the new value.
zha : zero point hour angle in 0.1 arcseconds
zdec : zero point declination in 0.1 arcseconds
track_rate : track_rate in arcseconds/seconds
fkh : encoder pulses to arcseconds conversion factor for hour angle
fkd : encoder pulses to arcseconds conversion factor for declination
zx : guider x zero point in encoder counts
zy : guider y zero point in encoder counts
hset : set rate for hour angle in arcseconds/seconds
dset: : set rate for declination in arcseconds/seconds
hguide : guide rate for hour angle in arcseconds/seconds
dguide : guide rate for declination in arcseconds/seconds
hstep : step distance for hour angle in arcseconds
dstep : step distance for declination in arcseconds
rate_hoff : offset rate for hour angle in arcseconds/seconds
rate_doff : offset rate for declination in arcseconds/seconds
cstbl : stabilization time after offset, in 0.1 seconds
ih : index ha pointing coefficient
id : indec dec pointing coefficient
ch : collimation pointing coefficient
np : non-perpendicularity pointing coefficient
ph11 : polinomial pointing coefficient
d4hc : declination flexure pointing coefficient
d2ds : declination gears pointing coefficient
me : polar axis elevation pointing coefficient
ma : polar axis azimuth pointing coefficient
hf : horseshoe flexure pointing coefficient
flx : tube flexure pointing coefficient
scale : telescope scale in arseconds/mm
config : telescope configuration (1 = CASS 2 = PRIME)
dome : dome flag (1 = enable 0 = disable)
guider_follow : enable (1) or disable (0) guider follow option
handpaddle : select handpaddle normal (0) or x-y (1)
cosdec : enable (1) or disable (0) the cosdec option
set : returns a string with the following information
track rate
set hour angle rate
set declination rate
guide hour angle rate
guide declination rate
offset hour angle rate
offset declination rate
step hour angle distance
step declination distance
telescope scale
go flag state
guider follow flag
handpaddle flag
track switch state
telescope configuration
dome flag
instrument
telescope focus
rotator angle
slew [stop, white_spot, zenith, app, previous, next, coordinates]
Slew the telescope. The motion is activated by pressing the enable switch in the control box. If no argument is given, returns ths status of the motion.
stop
aborts the slew operation. The dome is left disabled.
white_spot 'c'
Slew to the white spot position as selected by the character 'c' : n for north or s for south.
zenith
Slew to the zenith. The dome stays at the present position and it's left disabled.
app hour_angle declination
Slew to an apparent place given by the hour angle and declination coordinates.
previous
Slew to the previous position stored in the coordinates stack.
next
Slew to the next position stored in the coordinates stack.
ra dec [epoch, pm_ra, pm_dec]
Slew to a mean position given by the coordinates. The order is right ascension, declination, epoch, proper motion ra, proper motion dec. The last three fields are optional. For example:
slew 12:27:43.2 -43:03:16 2000.0
stack [reset, top, bottom, pointer, set, list]
This command is used to manipulate the coordinates stack. After every slew, the coordinates are store in a stack. It's possible to add more coordinates if desired. The limit is 500 coordinates. If no argument is given, returns the present stack size.
reset
Resets the stack pointer. In other words, clears the stack.
top
Moves the stack pointer to the the top position.
bottom
Moves the stack pointer to the bottom position
pointer #n
Moves the stack poiter to the #n position.
set ra dec epoch
Push a new coordinates set.
list [next]
To get the coordinates stored in the stack a sequence of commands is necessary. Start by sending the command "stack list". After receiving the first coordinates keep sending the command "stack list next" until the string "end" is received.
telfocus [focus]
Gets or sets the telescope focus. This command acts on the selected focus (F/8 or F/14). If no argument given, returns the present focus value or the status of the motion.
time [hh:mm:ss]
Gets or sets the time.
tt command string
Send command string to the tip-tilt control PC.
xy [zm, zr, zx, zy, rx, ry, string]
Commands to interact with the tip-tilt camera x-y table.
zm
Sets the present position as the middle position
zr
Sets the present position as the roi position
zx
Returns the middle x position
zy
Returns the middle y position
rx
Returns the roi x position
ry
Returns the roi y possition
string
Any other string string is passed to the x-y SMC ("f14fgc").
CTIO TCS ROUTER (Rev. 1.0)
The following explains the idea behind the TCS Router software. On one hand you have the TCS router and on the other hand applications (Mosaic, Arcon, Hydra, etc.) wanting to send commands to the TCS. All of them are connected to the GWC router. When applications want to send a request to the TCS (i.e current focus, time, coordinates, etc.) they publish the request in a variable subscribed by the TCS router. The TCS router see the variable change and send its contents to the TCS. The result returned by the TCS to the TCS router is then published in another variable subscribed by the originators. To avoid race conditions every originator has to use a different variable.
The idea of this architecture to pass requests to TCS is a consequence of the lack of support for GWC libraries under the VxWorks environment in which the TCS program was written. Under those circumstances the TCS router was born as an auxiliary program to route TCS requests arriving through the GWC router. Soon it became obvious that the TCS router program could hold another macro style functionalities like controlling the Hydra comparison lamp system.
The TCS router software leaves in /ut22/newgui/tcsrouter. The structure of the directory tree is as follows:
The TCS router software consists of an extended TCL/TK interpreter plus a set of TCL/TK scripts that build the functionality required by the application. The extended TCL/TK interpreter leaves at sub directory "src". Support is provided for compiling the interpreter under Linux, SunOs and Solaris. The TCL/TK scripts leave at sub directory lib/tcsrgui.
A bare bones implementation of the TCS router under a TCL/TK environment would be as following:
TCS Router Part
---------------------------------------------
proc tcs_command_callback {var command type value} {
# Here goes the code to send the command to TCS
}
connect ctio_4m tcsrouter
ctio_4m newwvar tcs.main.etalon etalon string
set etalon(value) off
ctio_4m put tcs.main
ctio_4m comevent "tcs.main.command" tcs_command_callback
---------------------------------------------
The Hydra Part
---------------------------------------------
proc etalon_callback {var action type value} {
# Here goes the code to handle the status of the etalon variable
}
connect ctio_4m hydra
ctio_4m atevent "tcs.main.etalon" etalon_callback
ctio_4m newcvar tcs.main.command tcsCommand set string
set tcsCommand(action) set
---------------------------------------------
Both scripts will run eventually in different machines. The code for the TCS router opens a connection to the router, create a variable to publish the result of an operation (etalon) and binds a callback function to command stream. The code for Hydra on the other hand, opens a connection to the router, bind a callback function to the etalon variable and creates a new variable associated to the command stream.
The TCS router starts along with the TCP interface on ctiot2. Starting a TCP session runs a script called "start_tcsrouter" that actually launches the program. This start up shell script will search the home directory for file .tcsrrc to set the environment before running. If not found it will look for the default version of that file at /usr/local/tcsrouter/bin. Following is the file that actually leaves at /ut20/tcp4m.
---------------------------------------------------------------
#
#
# .tcsrrc
#
# Environment variables for the TCS Router program
#
#********* Check these out and set them as you wish ************
# Environment variable for the TCS_ROUTER home directory
setenv TCS_ROUTER_HOME /ut22/newgui/tcsrouter
# Home directory of the TCL/TK library
setenv TCL_LIBRARY $TCS_ROUTER_HOME/share/lib/tcl7.6
setenv TK_LIBRARY $TCS_ROUTER_HOME/share/lib/tk4.2
# The MPG_ROUTER variable designates the name of the host in which
# the router run. When not defined the the mpg router is supposed
# to be running in indus.tuc.noao.edu.
setenv MPG_ROUTER ctioa1
# The variable MPG_ROUTER_PORT designates the port in which the mpg
# router is listening for incoming connections. The default value
# for this variable is 1 plus the the wiyn router port (2345).
setenv MPG_ROUTER_PORT 2347
# Hostname for the RPC server (TCS).
setenv TCP_NAME ctiox0
# This tell the program where to find the binaries and configurations file.
setenv TCS_ROUTER_BIN $TCS_ROUTER_HOME/bin
# Make sure that guidebin is in the search path
set path = ( $TCS_ROUTER_BIN $path )
# Make sure we have the right man path
if ($?MANPATH) then
setenv MANPATH {$MANPATH}:$TCS_ROUTER_HOME/man
else
setenv MANPATH {/usr/man}:$TCS_ROUTER_HOME/man
endif
# Uncomment this line if running in SunOs environment
setenv LD_LIBRARY_PATH /usr/lib:/usr/local/X11R5/lib:/usr/openwin/lib
---------------------------------------------------------------
The graphic user interface of the TCS router program allows the user to check for resent requests to the TCS and their result as well as for the current status of the communication link to the TCS and to the GWC router.
The GUI also provides a means for sending commands to the TCS in a similar fashion as the TCP command mode does.
When the application starts it opens one connection to the TCS and one connection to the GWC router. Then subscribe to some GWC variables of interest and publish others of its own. Incoming request are logged into the logging panel along with a time stamp and a correlative number. Messages to the TCS are prefixed with the words "to TCS'. When an exception occurs the error message is put in the log with the word "ERROR" preceding the message.
The menu bar has three menus: Options, Windows and Help.
Use the options menu to activate/deactivate the alarm bell and to quit the application. When selected the alarm bell flag activate an audible tone to signal that the communication link to either the TCS or the GWC router is broken.
Use the windows menu to pop up a console window to send commands to the TCS. Right now the console supports only two commands: "complamp" and "local".
complamp [lamp] - turn the comparison lamps system on or off. Valid options for this command are "off", "tha", "etalon", "qua", "hene" and "pen".
local [command] - send string command to serial port C of the TCS, where all SMC devices are connected.
The logging area shows all the incoming requests to the TCS and the exceptions that have occurred during the session. All messages are prefixed with a time stamp and a correlative number. Use the scroll bar to move across the log messages.
The status bar presents the current status of the communication link to the GWC router and to the TCS. When either link is broken the correspondent label will go red and will start blinking signaling that the communication has been lost. After that the program will start a reconnection sequence trying to connect every ten seconds to either the GWC router or to the TCS.
To send command requests to the TCS router the program subscribes to some command variables and publish an associated variable to respond to each of those command variable.
The TCS router subscribes to the following GWC variables:
tcs.main.command - non specific owner command variable to send TCS requests
tcs.main.Hcommand - hydra command variable to send TCS requests
tcs.main.Icommand - icsInfo command variable to send TCS requests
tcs.main.clamp - command variable to move the comparison lamp system
To publish the results of the requests on the first three command variables, the TCS router creates the following write variables:
tcs.main.response - results to TCS request through tcs.main.command
tcs.main.Hresponse - results to TCS requests through tcs.main.Hcommand
tcs.main.Iresponse - results to TCS requests through tcs.main.Icommand
The tcs.main.clamp variable is used in a more GWC way and no variable is required to publish the request results. Instead a set of write variables are created to publish the status of the various parts of the comparison lamps system. The variables created are:
tcs.caliblamps.flat - flat mirror status
tcs.caliblamps.sphe - spherical mirror status
tcs.caliblamps.plamps - diffuse lamps mirror status
tcs.caliblamps.lamps - lamp selector mirror status
tcs.caliblamps.etalon - Etalon lamp status
tcs.caliblamps.tha - Tha lamp status
tcs.caliblamps.qua - Quartz lamp status
tcs.caliblamps.hene - He-Ne-Ar lamp status
tcs.caliblamps.pen - Pen rays lamp status
"ERROR: tcs router can't connect to GWC ROUTER..." - Check that the GWC router is actually running on its host machine. If its running check that the machine in which the TCS router is running is an enabled machine. Check the /usr/local/gwc/config/routersetup.tcl file for your machine name. If not present add the name using the rest of the file as a template. Check also that the environment variables MPG_ROUTER and MPG_ROUTER_PORT are set to the proper values in the tcsrrc file.
"WARNING: tcs router not connected to GWC ROUTER..." - This warning message appears to warn the user he chose not to connect to the GWC router. Consequences are that no header information will be available when image acquisition with the Arcon system.
"WARNING: system busy" - This warning message tell the user that a request for moving the comparison lamp system has arrived while executing a previous request. The warning shows at the logging panel.
"ERROR: timeout while waiting SMC response" - This message tell the user that no response was received while waiting for the SMC box to finish some operation. The timeout has been preset to 120 seconds.
"ERROR: "local... failed (...)" - This error message appears when the response to an SMC command is an error message of the form "err(...) (box.motor) ......". The message in parenthesis is the actual response from the SMC box.
"ERROR: timeout while waiting TCS response" - This message tell the user that no response was received while waiting for the TCS to finish some operation. The timeout has been preset to 120 seconds.
"WARNING: tcs router not connected to TCS..." - This warning message appears to warn the user he chose not to connect to the TCS. Consequences are that no header information will be available when image acquisition with the Arcon system.
Last Updated: April 25, 2000
rcantaruttiATnoao.edu
A page to gather pages of staff reponsibilities that were copied in one page http://www.ctio.noao.edu/noao/content/CTIO-Staff-Responsibilities [85]
29 July 2020 (SDP)
TELESCOPES | |||
Blanco 4-m Telescope: [86] | Tim Abbott | tabbottATctio.noao.edu [87] | |
SOAR 4-m Telescope: [88] | César Briceño | cbricenoATctio.noao.edu [89] | |
SMARTS Consortium [90] | Todd Henry | thenryATchara.gsu.edu [91] | |
SOAR 4-M INSTRUMENTS | |||
Goodman Optical Spectrograph: [92] | Sean Points | spointsATctio.noao.edu [93] | |
SOAR Optical Imager (SOI): [94] | Sean Points | spointsATctio.noao.edu [93] | |
SOAR Adaptive Optics Module (SAM): [95] | César Briceño | cbricenoATctio.noao.edu [89] | |
Spartan IR imager: [96] | Jay Elias | jeliasATnoao.edu [97] | |
TripleSpec 4.1: [98] | Sean Points | spointsATctio.noao.edu [93] | |
BLANCO 4-M INSTRUMENTS | |||
COSMOS: [99] | Sean Points | spointsATctio.noao.edu [93] | |
Dark Energy Camera (DECam): [100] | Alistair Walker | awalkerATctio.noao.edu [101] | |
TCS | Rolando Cantarutti | |
CCDTV Cameras | Peter Moore | |
CCDs | Peter Moore | |
CCD software | Marco Bonati |
Electronics and mechanics staff at Cerro Tololo, Blanco Telescope.
Electronics: | David Rojas | |
Javier Rojas | ||
Humberto Orrego | ||
Mechanics: | Jorge Briones | |
Alvaro Soto | ||
Yuse Jure |
CTIO Technical Support for observations:
Telops Manager | Esteban Parkes |
Observer Support | Hernan Tirado Manuel Hernández |
Floater Assistant Observer | Rodrigo Hernández Jacqueline Serón |
Nigh Assistant | Claudio Aguilera Alberto Alvarez |
Differential Atmospheric Refraction at an Altitude of 2KM relative to a reference wavelength of 5000A
Sec Z | 3000A | 3500A | 4000A | 4500A | 5000A | 5500A | 6000A | 6500A |
1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
1.05 | 0.68 | 0.38 | 0.20 | 0.08 | 0.00 | -0.06 | -0.11 | -0.14 |
1.10 | 0.97 | 0.55 | 0.29 | 0.12 | 0.00 | -0.09 | -0.15 | -0.20 |
1.15 | 1.20 | 0.68 | 0.36 | 0.15 | 0.00 | -0.11 | -0.19 | -0.25 |
1.20 | 1.40 | 0.80 | 0.42 | 0.17 | 0.00 | -0.13 | -0.22 | -0.30 |
1.25 | 1.59 | 0.90 | 0.48 | 0.20 | 0.00 | -0.14 | -0.25 | -0.33 |
1.30 | 1.76 | 1.00 | 0.53 | 0.22 | 0.00 | -0.16 | -0.28 | -0.37 |
1.35 | 1.92 | 1.09 | 0.58 | 0.24 | 0.00 | -0.17 | -0.30 | -0.40 |
1.40 | 2.07 | 1.18 | 0.62 | 0.26 | 0.00 | -0.19 | -0.33 | -0.44 |
1.45 | 2.22 | 1.26 | 0.67 | 0.28 | 0.00 | -0.20 | -0.35 | -0.47 |
1.50 | 2.37 | 1.34 | 0.71 | 0.29 | 0.00 | -0.21 | -0.37 | -0.50 |
1.55 | 2.51 | 1.42 | 0.75 | 0.31 | 0.00 | -0.23 | -0.40 | -0.53 |
1.60 | 2.64 | 1.50 | 0.80 | 0.33 | 0.00 | -0.24 | -0.42 | -0.56 |
1.65 | 2.78 | 1.58 | 0.84 | 0.34 | 0.00 | -0.25 | -0.44 | -0.59 |
1.70 | 2.91 | 1.65 | 0.88 | 0.36 | 0.00 | -0.26 | -0.46 | -0.61 |
1.75 | 3.04 | 1.73 | 0.92 | 0.38 | 0.00 | -0.27 | -0.48 | -0.64 |
1.80 | 3.17 | 1.80 | 0.95 | 0.39 | 0.00 | -0.29 | -0.50 | -0.67 |
1.85 | 3.29 | 1.87 | 0.99 | 0.41 | 0.00 | -0.30 | -0.52 | -0.69 |
1.90 | 3.42 | 1.94 | 1.03 | 0.42 | 0.00 | -0.31 | -0.54 | -0.72 |
2.00 | 3.54 | 2.01 | 1.07 | 0.44 | 0.00 | -0.32 | -0.56 | -0.75 |
2.05 | 3.67 | 2.08 | 1.10 | 0.45 | 0.00 | -0.33 | -0.58 | -0.77 |
2.10 | 3.91 | 2.22 | 1.18 | 0.48 | 0.00 | -0.35 | -0.62 | -0.82 |
2.20 | 4.15 | 2.36 | 1.25 | 0.51 | 0.00 | -0.37 | -0.66 | -0.87 |
2.30 | 4.38 | 2.49 | 1.32 | 0.54 | 0.00 | -0.40 | -0.69 | -0.92 |
2.40 | 4.62 | 2.62 | 1.39 | 0.57 | 0.00 | -0.42 | -0.73 | -0.97 |
Sec Z | 7000A | 7500A | 8000A | 8500A | 9000A | 9500A | 10000A |
1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
1.05 | -0.17 | -0.19 | -0.21 | -0.23 | -0.24 | -0.25 | -0.26 |
1.10 | -0.24 | -0.28 | -0.30 | -0.32 | -0.34 | -0.36 | -0.37 |
1.15 | -0.30 | -0.34 | -0.38 | -0.40 | -0.42 | -0.44 | -0.46 |
1.20 | -0.35 | -0.40 | -0.44 | -0.47 | -0.50 | -0.52 | -0.54 |
1.25 | -0.40 | -0.45 | -0.50 | -0.53 | -0.56 | -0.59 | -0.61 |
1.30 | -0.44 | -0.50 | -0.66 | -0.59 | -0.62 | -0.65 | -0.67 |
1.35 | -0.48 | -0.55 | -0.60 | -0.64 | -0.68 | -0.71 | -0.73 |
1.40 | -0.52 | -0.59 | -0.65 | -0.69 | -0.73 | -0.77 | -0.79 |
1.45 | -0.56 | -0.63 | -0.69 | -0.74 | -0.79 | -0.82 | -0.85 |
1.50 | -0.60 | -0.68 | -0.74 | -0.79 | -0.84 | -0.87 | -0.91 |
1.55 | -0.63 | -0.72 | -0.78 | -0.84 | -0.89 | -0.93 | -0.96 |
1.60 | -0.67 | -0.75 | -0.83 | -0.88 | -0.93 | -0.98 | -1.01 |
1.65 | -0.70 | -0.79 | -0.87 | -0.93 | -0.98 | -1.03 | -1.06 |
1.70 | -0.73 | -0.83 | -0.91 | -0.97 | -1.03 | -1.07 | -1.11 |
1.75 | -0.77 | -0.87 | -0.95 | -1.02 | -1.07 | -1.12 | -1.16 |
1.80 | -0.80 | -0.90 | -0.99 | -1.06 | -1.12 | -1.17 | -1.21 |
1.85 | -0.83 | -0.94 | -1.03 | -1.10 | -1.16 | -1.22 | -1.26 |
1.90 | -0.86 | -0.98 | -1.07 | -1.14 | -1.21 | -1.26 | -1.31 |
2.00 | -0.89 | -1.01 | -1.11 | -1.19 | -1.25 | -1.31 | -1.36 |
2.05 | -0.92 | -1.05 | -1.15 | -1.23 | -1.30 | -1.35 | -1.40 |
2.10 | -0.99 | -1.12 | -1.22 | -1.31 | -1.38 | -1.44 | -1.50 |
2.20 | -1.05 | -1.18 | -1.30 | -1.39 | -1.47 | -1.53 | -1.59 |
2.30 | -1.11 | -1.25 | -1.37 | -1.47 | -1.55 | -1.62 | -1.68 |
2.40 | -1.16 | -1.32 | -1.44 | -1.55 | -1.63 | -1.70 | -1.77 |
Notes:
1. Sec Z is essentially equal to air mass over this range.
2. The CFADC can correct for atmospheric dispersion up to Sec Z=2.4 (65 degrees zenith angle)
3. The useful short wavelength limit of the Hydra corrector is 3350A
4. Source of this table: ESO
Old filters not used anymore
The NOAO MOSAIC Imager II (as did the BTC before it) takes square filters 146 x 146 mm, 12 mm thick. We are slowly increasing our stock of filters in this size, so if you don't see what you need here, please contact us. What do we have, and what are the focus offsets? [102]
The SOAR Optical Imager (minimosaic of two 2Kx4K EEV CCDs) and the Schmidt use 4 inch square filters up to 10 mm thick. We have quite a selection of filters in this size, see the 3" & 4"filter list [103]. Recent acquisitions are:
For Cass imaging we use 3 inch square filters up to 10 mm thick. We have quite a good selection of filters in this size too. The cass filter wheel assembly has two wheels holding up to 8 3x3 filters each. We also have a single module that can hold 5 4x4 filters, so filters in this size can be used if we don't have a 3x3 equivalent.
Now and then people have asked to use one or more of our 2x2 inch interference filters due to not having it in 3x3 or 4x4 inch size, being prepared to accept some vignetting. Be warned! Most of these filters are many years old, and some have seen a lot of use. If you want to use some weird filter it's better to (a) buy one yourself, or (b) convince us to buy it for you. Filters can take a long time to make (several months to over a year for the 146x146 mm narrow band filters). Prices vary with manufacturer, and the specifications you ask for, we can recommend if you like. Plan on spending $2500 - $5000 for a 146 x 146 mm filter, half that for 3x3 inch or 4x4 inch.
Alistair Walker 17 April 2000, updated 4 April 2006
A. Walker 18 Dec 2002
The Mosaic II imager, used at the Blanco 4-m prime focus, takes filters that are 146x146mm and 12mm (nominal) thick.
Focus offsets are referred to the R filter, since this is the filter we use for taking focus frames each night when the Mosaic is installed in order to monitor telescope performance.
We are (slowly) measuring these filters, let us know if there is any one you particular want to have us scan. Note that the Sloan set (griz) and the Johnson-Cousins BVR (but not I) sets should be near-identical to those at KPNO, see the KPNO Mosaic Filters. [104]
A set of standardized filter names and IDs have been developed to ensure proper application of astrometric solutions and real-time display processing (as well as future archive uniformity). These official names are listed in the Mosaic filter list [105]web page.
Filter |
Center wavelegth |
fwhm |
focus offset microns |
NOAO code |
Status |
U | 3570 | 650 | -185 | c6001 | OK |
B | 4360 | 990 | +10 | c6002 | OK |
V | 5370 | 940 | +30 | c6026 | from 21 OCT 2000 |
R | 6440 | 1510 | 0 | c6004 | OK ... filter offset ref |
I | 8050 | 1500 | +10 | c6028 | from 24 May 2003 |
VR Stubbs aka VR Supermacho |
6100 | 2000 | 0 | c6027 | transmission curve [106] |
C (Wash) | 4000 | 1000 | +260 | c6006 | OK |
M (Wash) | 5020 | 1020 | +260 | c6007 | OK |
D51 (DDO) | 5130 | 154 | -55 | c6008 | OK |
[OII] | 3727* | 50 | ? | c3012 | not tested yet |
[OIII] | 4990* | 60 | +130 | c6014 | OK |
Halpha | 6563* | 80 | +65 | c6009 | cwl, fwhm nominal |
Halpha+8 | 6650* | 80 | -35 | c6011 | cwl, fwhm nominal |
[SII] | 6725* | 80 | +60 | c6013 | cwl, fwhm nominal |
u (SDSS) | 3600 | 400 | +230 | c6021 |
cwl, fwhm approx, Red Leak! [107] |
g (SDSS) | 4813 | 1537 | +30 | c6017 |
"set #2" (in use 8/2000-) |
r (SDSS) | 6287 | 1468 | +120 | c6018 |
"set #2" in use 8/2000-) |
i (SDSS) | 7732 | 1548 | -20 | c6019 |
"set #2" (in use 8/2000-) |
z (SDSS) | 9400 | 2000 | -15 | c6020 | OK |
Bj (Tyson) | 4350 | 1650 | ? | c6024 |
#3, on loan from A. Tyson |
I (Tyson) | 8800 | 2000 | ? | c6025 | cwl, fwhm approx |
White | 6500 | 5000 | ? | c6016 |
just a piece of fused silica |
|
|||||
Retired Filters | |||||
g (SDSS) | 4825 | 1380 | ? | c6015 |
"set #3", red cut-off a bit too red (in use <8/2000) |
V | 5370 | 940 | 115 | c6003 |
small chip in corner, in use <10/2000 |
Bj | 4350 | 1650 | ? | -- | broken... |
Bj | 4350 | 1650 | ? | -- | broken... |
I | 8050 | 1500 | +25 | c6005 |
Filter damaged Nov 2002- The are civered by CCD-1 (SW corner) is unusable |
* = NOTE that the central wavelength of narrow band filters (actually all filters, but it is only significant for narrow band filters) is shifted aprox. 15A to the BLUE in the f/2.87 beam of the Blanco 4m + PFADC corrector as compared to the transmission measured in parallel light. The central wavelengths quoted above are nominally for when the filters are used at PF, with the aprox. 15A shift included.
Last updated: 2003 June 4 by C.Smith
Staff Contacts:
Alistair Walker: awalkerATnoao.edu
Chris Smith: csmithATnoao.edu
Subject: There is a leak -- just how much does it matter -- your call
Date: Fri, 8 Mar 2002 16:25:43 -0700 (MST)
From: Buell Jannuzi
Hi Guys,
Well there is a red leak in the ctio SDSS u' filter -- at a very low level, but perhaps enough to explain the flat field counts Mauro reports -- I'm afraid I have not had time to think this through carefully. Below are attached the asci data files containing the traces (done in the center of the filter) made by Jim DeVeny. The good news is that in the band-pass the ctio SDSS u' filter is a good match to the tracing I have on file for the actual SDSS u' filter (measured in air -- not in vacuum as actually used). The bad news is that while the SDSS u' does not appear to have a red leak (actual measurements of that filter between 8100 and 1100 angstroms so nothing), apparently because in addition to the 1mm UG11 + 1mm BG38 there is a film to, and now I'm quoting the message I got in 1996 about this filter, "suppresses a strong leak around 7000 Angstroms and acts as an AR coating in the passband. Now, the ctio SDSS u' filter does not have strong leak at 7000 -- but does have a leak near H-alpha (0.04%, tiny), with an increasing leak longward of 8000, but again, not huge -- but very significantly different from the SDSS filter.
As I said, I'm not 100% sure the measured leak accounts for Mauro's measured count difference in the flats he took last night -- but given the tracing I'm hard pressed to understand how the ctio SDSS u' filter could yield more counts than the Harris U without there being a significant leak (one might have hoped that the poor red response of the CCDs might have helped, but it looks like they are hot enough in the red to see some of the leaked light).
Buell
Attached files:
Note that the two data files will differ ever so slightly in the region covered by both tracings, but the slit used was 5 times larger (lower res) in the second set up.
Band/ Wavelength |
Filter ID (Text Data) |
Filter ID (Graph) |
Available for ISPI * |
Comment |
Y | 191A [112] | 191A [113] | 30mm Barr | |
Y | 191B [114] | 191B [115] | 50mm Barr | |
Y | 191C [116] | 191C [117] | 65mm Barr | |
Y | 191D [118] | 191D [119] | 30mm Barr | |
I | 81 [120] | 81 [121] | 25mm inew | |
J | 40 [122] | 40 [123] | 25 mm Jcit | |
J | 82a [124] | 82a [125] | 25mm Jshort | |
J | 183 [126] | 183 [127] | 30mm Barr | |
J | 186 [128] | 186 [129] |
removed, 2004b |
60mm OCLI, Gemini, ISPI |
J | 192 [130] | 192 [131], scan [132] | Yes | 65mm Barr |
H | 44 [133] | 44 [134] | 25mm OCLI | |
H | 184 [135] | 184 [136] | 30mm Barr | |
H | 187 [137] | 187 [138] |
removed, 2004b |
60mm OCLI, Gemini, ISPI |
H | 190 | 190 [139] | Yes | 65mm Barr |
K | 50 [140] | 50 [141] | 25mm OCLI | |
K | 185 [142] | 185 [143] | 30mm Barr | |
K' | 188 | 188 |
removed, 2004b |
60mm OCLI, Gemini, ISPI |
Kshort | 129 [144] | 129 [145] |
25mm Barr /2MASS |
|
Kshort | 189 | 189 [146] | Yes | 65mm Barr, ISPI |
2.248 H2 | 125 [147] | 125 [148] | 25mm Barr | |
2.248 H2 | 199 | 199 | Yes | 65mm Omega |
2.19 He II | 138 [149] | 138 [150] | 25mm Omega | |
2.19 HeII | 198 | 198 | Yes | 65mm Omega |
2.166w Brg | 132 [151] | 132 [152] |
25mm Barr, wedged |
|
2.16 | 165 [153] | 165 [154] | 25mm Omega | |
2.16 Brg | 197 | 197 | Yes | 65mm Omega |
2.144w cont | 131 [155] | 131 [156] |
25mm Barr, wedged |
|
2.14 cont | 164 [157] | 164 [158] | 30mm Omega | |
2.14 cont | 200 | 200 | Yes | 65mm Omega |
2.122w H2 | 130 [159] | 130 [160] |
25mm Barr, wedged |
|
2.12 H2 | 89 [161] | 89 [162] | 25mm Barr | |
2.12 H2 | 163 [163] | 163 [164] | 25mm Omega | |
2.12 H2 | 196 | 196 | Yes |
65mm Omega, bad ghosts |
2.08 C IV | 136 [165] | 136 [166] | 25mm Omega | |
2.08 C IV | 195 | 195 | Yes | 65mm Omega |
2.06 He I | 135 [167] | 135 [168] | 25mm Omega | |
2.06 He I | 194 | 194 | Yes | 65mm Omega |
2.03 cont | 134 [169] | 134 [170] | 25mm Omega | |
2.03 cont | 193 | 193 | Yes | 65mm Omega |
1.644 [Fe II] | 128 | 128 [171] | 25mm Barr | |
1.28 Palpha | 110 [172] | 110 [173] | 25mm Barr | |
1.257 [FeII] | 111 [174] | 111 [175] | 25mm Barr |
* Check the ISPI pages [176] to see if the filter is currently in the ISPI Dewar.
The filters listed above have seen recent use in Tololo imagers. There are other filters available. Observers should check with the staff noted below if there is a filter or transmission curve not listed above which would be of interest.
In response to an increasing number of requests, we are starting to place digital versions of the transmission data for some of our filters here. The user should take some care to verify that the filter is valid for the instrument he or she is considering at the time of use in question. The actual filter in use will in general not be the exact filter for which we have transmission data, but rather be one of the same batch. The numbers refer to the CTIO filter ID by which the filter data is archived. In case of doubt, consult with Nicole van der Bliek, Patrice Bouchet, Bob Blum, Brooke Gregory.
10 March, 2006 [rdb]
Position | Filter |
Focus Offset relative to V |
Filter Transmission curves |
|
Plot | Data File | |||
2 | B | +25 | y4kcam_b.pdf [177] | y4kcam_B.txt [178] |
3 | V | 0 | y4kcam_v.pdf [179] | y4kcam_V.txt [180] |
4 | RC | -25 | y4kcam_r.pdf [181] | y4kcam_Rc.txt [182] |
5 | IC | +25 | y4kcam_i.pdf [183] | y4kcam_Ic.txt [184] |
6 | U+CuSO4 | +125 | ||
8 | SDSS u | -50 | y4kcam_sdss_u.pdf [185] | sdss_u.txt [186] |
9 | SDSS g | -25 | y4kcam_sdss_g.pdf [187] | sdss_g.txt [188] |
10 | SDSS r | -50 | y4kcam_sdss_r.pdf [189] | sdss_r.txt [190] |
11 | SDSS i | -25 | y4kcam_sdss_i.pdf [191] | sdss_i.txt [192] |
12 | SDSS z | -70 | y4kcam_sdss_z.pdf [193] | sdss_z.txt [194] |
D. Maturana April 28,1995, updated 29 March 1999
Warning! Many of the 2x2 interference filters are now VERY old, and are not in great shape physically (scratches, coating deteoriation etc). Passband shifts can be expected too. Filters this size vignette on all our present imaging CCD systems.
Click here [195] for tabulated transmissions of other filters where available.
FILTER /width |
SIZ (") |
Thick (mm.) |
Cent. (A.) |
fwhm (A.) |
Trans (%) |
FILTSET |
Transm curve (.txt) |
COMMENTS |
2x2 | 4.22 | B std PFCCD | ||||||
2x2 | 3.20 | I 34 PFCCD | ||||||
2x2 | 4.18 | V std PFCCD | ||||||
3085/75 [196] | 1"d | 7.27 | 3085 | 75 | 38.50 | Comet Set | 3085/75 [197] | |
3510/300 [198] | 2x2 | 9.24 | 3510 | 300 | 33.60 | u2 Strom.set 1 | 3510/300 [199] | |
3515/290 [200] | 2x2 | 9.30 | 3517 | 280 | 35.11 | u1 Strom.set 1 | 3515/290 [201] | |
3520/300 [202] | 2"d | 9.63 | 3520 | 296 | 37.50 | u Strom.set 2 | 3520/300 [203] | |
3525/320 | 2x2 | 9.03 | 3525 | 320 | 36.00 | u Strom.set 3 | ||
3530/280 [204] | 4x4 | 9.15 | 3530 | 280 | 37.14 | u Strom. 4x4 | 3530/280 [205] | |
3530/400 [206] | 2x2 | 6.03 | 3539 | 386 | 28.01 | u Gunn-T set 1 | 3530/400 [207] | |
3570/660 | 2x2 | 8.78 | 3570 | 660 | 84.34 | U liq.cuso4 1 | ||
3570/660 | 3x3 | 3570 | 660 | 80.59 | U liq.CuS04 Tek set#2 | |||
3572/665 | 2x2 | 8.68 | 3572 | 665 | 82.50 | U liq.cuso4 2 | ||
3575/600 [208] | 3x3 | 9.09 | 3575 | 600 | 74.21 | U liq.CuSo4 Tek set#1 | 3575/600 [209] | |
3575/670 | 2x2 | 8.73 | 3575 | 670 | 82.90 | U liq.cuso4 3 | ||
3580/610 [210] | 4x4 | 9.32 | 3580 | 610 | 74.66 | U Liq.Cuso4 set#1 | 3580/610 [211] | 4mts |
3590/660 | 2x2 | 3590 | 660 | 87.20 | U Liq.CuSo4 4 | 1mt. guider box | ||
3623/605 [212] | 3x3 | 8.83 | 3623 | 605 | 67.66 | U liq.CuSo4 Tek set#3 | 3623/605 [213] | |
3650/100 [214] | 1"d | 6.52 | 3651 | 79 | 44.00 | Comet Set | 3650/100 [215] | |
3650/600 [216] | 2x2 | 5.93 | 3641 | 470 | 34.56 | U ctio ("new") | 3650/600 [217] | |
3700/110 [218] | 2x2 | 4.03 | 3698 | 97 | 46.95 | 3700/110 [219] | red leak (9000A) | |
3727/21 [220] | 2x2 | 6.04 | 3735 | 24 | 30.39 | 3727/21 [221] | ||
3727/44 [222] | 2x2 | 6.19 | 3728 | 58 | 33.24 | H beta set | 3727/44 [223] | one face coated |
3727/45 [224] | 2x2 | 4.22 | 3727 | 40 | 28.06 | 3727/45 [225] | ghost images? | |
3765/45 [226] | 2x2 | 4.23 | 3770 | 43 | 24.52 | 3765/45 [227] | ||
3767/44 [228] | 2x2 | 6.20 | 3765 | 52 | 34.83 | H beta set | 3767/44 [229] | one face coated |
3800/110 [230] | 2x2 | 4.58 | 3797 | 110 | 34.85 | 3800/110 [231] | ||
3870/50 [232] | 1"d | 9.10 | 3877 | 39 | 25.00 | Comet Set | 3870/50 [233] | |
3980/400 [234] | 2x2 | 6.02 | 3987 | 398 | 47.95 | v Gunn-T set 1 | 3980/400 [235] | |
3986/1047 [236] | 2x2 | 5.99 | 3986 | 1047 | 62.70 | C Wash. set #3 | ||
3996/1042 [237] | 3x3 | 8.11 | 3996 | 1042 | 62.70 | C Wash. | ||
4000/1030 [238] | 4x4 | 8.45 | 4000 | 1030 | 62.45 | C Wash. | ||
4060/70 [239] | 1"d | 8.23 | 4061 | 75 | 46.50 | Comet Set | 4060/70 [240] | |
4100/160 | 2x2 | 9.73 | 4110 | 160 | 60.00 | v Strom.set 3 | ||
4110/190 [241] | 2x2 | 4.79 | 4125 | 182 | 44.99 | v Strom.set 1 | 4110/190 [242] | |
4118/146 [243] | 4x4 | 9.87 | 4118 | 146 | 52.04 | v Strom. 4x4 | 4118/146 [244] | |
4120/160 [245] | 2"d | 8.43 | 4126 | 172 | 59.11 | v Strom.Set 2 | 4120/160 [246] | |
4166/83 | 1"d | 7.53 | 4167 | 90 | 63.00 | DDO set | ||
4185/1030 [247] | 4x4 | 5.40 | 4185 | 1030 | 70.44 | B Harris set#1 | 4mts | |
4x4 | B Set# 2 Schmidt | |||||||
4201/1050 [248] | 3x3 | 5.17 | 4200 | 1050 | 66.48 | B Tek set#1 | ||
4202/1050 [249] | 3x3 | 4200 | 1050 | 66.16 | B Tek set#2 | |||
4203/1050 [250] | 3x3 | 5.26 | 4200 | 1050 | 66.72 | B Tek set#3 | ||
4257/73 | 1"d | 7.51 | 4260 | 77 | 77.00 | DDO set | ||
4260/65 [251] | 1"d | 6.04 | 4278 | 70 | 44.50 | Comet Set | 4260/65 [252] | |
4324/1050 [253] | 2x2 | 4.15 | 4300 | 1050 | 73.00 | B Harris set 1 | ||
4324/1056 [254] | 2x2 | 4.11 | 4324 | 1056 | 71.00 | B Harris set 3 | ||
4324/1156 [255] | 2x2 | 4.05 | 4324 | 1156 | 72.00 | B Harris set 2 | ||
4340/980 [256] | 3x3 | 6.38 | 4341 | 980 | 60.33 | Harris set 1 | 4340/980 [257] | |
4345/980 | 3x3 | 6.33 | 4345 | 980 | 60.85 | Harris set 2 | ||
4350/1680 [258] | 2x2 | 4.00 | 4350 | 1680 | 89.14 | B Tyson "J" | coated both sides | |
4357/1665 [259] | 4x4 | 3.65 | 4357 | 1665 | 88.19 | B Tyson "J" | coated both sides | |
4363/20 [260] | 2x2 | 5.98 | 4358 | 19 | 31.16 | 4363/20 [261] | ||
4380/1086 | 2x2 | 5.75 | 4380 | 1086 | 77.00 | B-14 | ||
4390/1060 | 2x2 | 5.68 | 4390 | 1060 | 78.00 | B-3 | ||
4390/1109 | 2x2 | 5.98 | 4390 | 1109 | 77.00 | B-15 | ||
4410/1109 | 2x2 | 5.71 | 4410 | 1109 | 78.00 | B-16 | ||
4440/1125 | 2x2 | 5.68 | 4440 | 1125 | 79.00 | B-13 | ||
4517/76 | 1"d | 7.59 | 4516 | 77 | 75.00 | DDO set | ||
4650/190 [262] | 2x2 | 3.56 | 4654 | 173 | 55.09 | b Strom.set 1 | ||
4685/44 [263] | 2x2 | 6.08 | 4682 | 42 | 75.85 | H beta set | 4685/44 [264] | one face coated |
4686/15 [265] | 2x2 | 4.72 | 4685 | 13 | 29.77 | 4686/15 [266] | ||
4695/15 [267] | 2x2 | 5.54 | 4692 | 15 | 34.60 | 4695/15 [268] | ||
4697/196 [269] | 4x4 | 9.85 | 4697 | 196 | 71.27 | b Str”m. 4x4 | 4697/196 [270] | |
4700/190 [271] | 2"d | 6.99 | 4724 | 190 | 69.12 | b Strom.set 2 | 4700/190 [272] | |
4705/175 | 2x2 | 8.18 | 4705 | 175 | 79.30 | b Strom.set 3 | ||
4845/65 [273] | 1"d | 6.18 | 4846 | 69 | 74.00 | Comet set | 4845/65 [274] | |
4857/12 [275] | 2x2 | 4.33 | 4858 | 14 | 51.73 | 4857/12 [276] | ||
4861/26 [277] | 2"d | 3.70 | 4854 | 27 | 56.00 | 4861/26 [278] | ||
4861/44 [279] | 2x2 | 6.07 | 4858 | 38 | 78.85 | H beta set | 4861/44 [280] | one face coated |
4861/50 [281] | 2x2 | 8.22 | 4872 | 53 | 58.66 | 4861/50 [282] | ||
4862/14 [283] | 2x2 | 8.22 | 4860 | 14 | 66.00 | 4862/14 [284] | ||
4866/12 [285] | 2x2 | 4.31 | 4859 | 15 | 48.34 | 4866/12 [286] | ||
4880/70 [287] | 2x2 | 4.26 | 4888 | 70 | 64.79 | 4880/70 [288] | ||
4886/186 | 1"d | 7.57 | 4890 | 195 | 76.00 | DDO set | ||
4905/44 [289] | 2x2 | 6.04 | 4899 | 40 | 77.30 | H beta set | 4905/44 [290] | one face coated |
4940/700 [291] | 4x4 | 8.95 | 4920 | 670 | 93.09 | Gunn g | 4940/700 [292] | |
4949/44 [293] | 2x2 | 6.06 | 4948 | 46 | 81.80 | H beta set | 4949/44 [294] | one face coated |
4993/44 [295] | 2x2 | 6.07 | 4993 | 40 | 80.65 | H beta set | 4993/44 [296] | one face coated |
5000/70 [297] | 2x2 | 4.04 | 4994 | 77 | 63.41 | 5000/70 [298] | ||
5007/22 | 2x2 | 9.33 | 5007 | 20 | 69.65 | old Fabry-Perot | ||
5007/44 [299] | 2x2 | 6.19 | 5005 | 39 | 77.19 | H beta set | 5007/44 [300] | one face coated |
5013/14 [301] | 2x2 | 9.61 | 5015 | 17 | 64.63 | Old Fabry Perot | 5013/14 [302] | LMC Redshift |
5019/50 [303] | 4x4 | 7.83 | 5027 | 50 | 79.48 | 5019/50 [304] | ||
5024/15 [305] | 2x2 | 3.46 | 5026 | 16 | 43.63 | 5024/15 [306] | internal fringes | |
5025/1020 [307] | 2x2 | 8.13 | 5025 | 1020 | 82.87 | M Wash. set#3 | ||
5025/1023 [308] | 3x3 | 8.08 | 5025 | 1023 | 88.60 | M Wash. | ||
5029/43 [309] | 2x2 | 3.92 | 5030 | 46 | 42.07 | Rutgers F-P | 5029/43 [310] | |
5032/15 [311] | 2x2 | 5.56 | 5032 | 15 | 41.50 | 5032/15 [312] | internal fringes | |
5037/44 [313] | 2x2 | 6.05 | 5036 | 39 | 83.59 | H beta set | 5037/44 [314] | one face coated |
5040/15 [315] | 2x2 | 5.60 | 5038 | 16 | 36.58 | 5040/15 [316] | ||
5040/990 [317] | 4x4 | 8.25 | 5040 | 990 | 88.23 | M Wash. | 5040/990 [318] | |
5049/15 [319] | 2x2 | 5.56 | 5049 | 14 | 38.15 | 5049/15 [320] | internal fringes | |
5057/15 [321] | 2x2 | 5.57 | 5057 | 14 | 39.28 | 5057/15 [322] | internal fringes | |
5081/44 [323] | 2x2 | 6.03 | 5083 | 39 | 82.41 | H beta set | 5081/44 [324] | one face coated |
5100/100 [325] | 1x1 | 5.16 | 5098 | 88 | 61.00 | 5100/100 [326] | 3/4"d usefull | |
5117/895 [327] | 2x2 | 5.07 | 5117 | 895 | 81.39 | g Gunn-T set 2 | 5117/895 [328] | |
5118/900 [329] | 3x3 | 5.05 | 5118 | 900 | 81.39 | g Gunn-T | 5118/900 [330] | |
5125/44 [331] | 2x2 | 6.03 | 5116 | 40 | 81.87 | H beta set | 5125/44 [332] | one face coated |
5130/155 [333] | 4x4 | 7.76 | 5121 | 133 | 84.13 | DDO 51 Wash. set | ||
5140/90 [334] | 1"d | 6.19 | 5137 | 87 | 62.00 | Comet set | ||
5140/153 [335] | 2"d | 9.36 | 5140 | 153 | 88.84 | DDO51-1 | in Wash set#3 | |
5145/30 [336] | 2x2 | 5145 | 30 | 56.84 | Rutgers F-P | |||
5145/80 [337] | 2x2 | 4.40 | 5152 | 80 | 60.69 | 3c | ||
5169/44 [338] | 2x2 | 6.07 | 5161 | 44 | 79.58 | H beta set | one face coated | |
5182/10 [339] | 2x2 | 5175 | 12 | 52.71 | Rutgers F-P | |||
5200/95 | 3/4 | 3.93 | 5187 | 95 | 64.00 | round filter | ||
5213/44 [340] | 2x2 | 6.05 | 5213 | 44 | 78.20 | H beta set | one face coated | |
5257/44 [341] | 2x2 | 6.03 | 5259 | 44 | 79.34 | H beta set | one face coated | |
5295/1590 [342] | 4x4 | 5.24 | 5292 | 1625 | 90.66 | HST "V" | thin film coating | |
5362/895 | 3x3 | 6.14 | 5362 | 895 | 76.80 | V Harris set 1 | ||
5370/900 | 3x3 | 6.18 | 5370 | 900 | 75.64 | V Harris set 2 | ||
5378/1018 [343] | 2x2 | 3.97 | 5378 | 1018 | 91.00 | V Harris set 3 | ||
5380/1000 [344] | 2x2 | 4.04 | 5380 | 1000 | 91.00 | V Harris set 1 | ||
5400/100 [345] | 2x2 | 5.57 | 5415 | 114 | 46.58 | |||
5409/948 [346] | 2x2 | 4.10 | 5409 | 948 | 90.50 | V Harris set 2 | ||
5435/1081 [347] | 2x2 | 5.72 | 5435 | 1081 | 72.00 | V-14 | ||
5438/1026 [348] | 3x3 | 5438 | 1026 | 91.91 | V Tek set#2 | |||
5443/1060 [349] | 4x4 | 5.12 | 5443 | 1060 | 88.50 | V Harris set#1 | 4mts | |
4x4 | V set#2 Schmidt | |||||||
5460/1118 | 2x2 | 5.72 | 5465 | 1118 | 74.60 | V-16 | ||
5461/100 [350] | 1x1 | 3.71 | 5447 | 96 | 55.00 | |||
5470/1114 | 2x2 | 5.69 | 5470 | 1114 | 74.00 | V-15 | ||
5475/1000 [351] | 3x3 | 5475 | 1000 | 87.71 | V Tek set#1 | |||
5497/241 [352] | 4x4 | 9.74 | 5478 | 244 | 70.83 | y Strom. 4x4 | ||
5500/200 [353] | 2x2 | 3.51 | 5514 | 224 | 62.76 | y Strom.set 1 | ||
5500a240 [354] | 2"d | 7.63 | 5513 | 238 | 74.45 | y Strom.set 2 | ||
5500b240 | 2x2 | 8.82 | 5500 | 260 | 80.00 | y Strom.set 3 | ||
5588/1127 | 3x3 | 5.09 | 5588 | 1127 | 89.44 | V Tek set#3 | ||
5755/20 [355] | 2x2 | 6.03 | 5758 | 20 | 60.19 | |||
5800/100 [356] | 2x2 | 5.55 | 5796 | 108 | 56.35 | |||
5850/1300 | 2x2 | 6.08 | 86.00 | |||||
5877/14 [357] | 2x2 | 9.36 | 5877 | 16 | 75.62 | old Fabry-Perot | ||
5890/40 [358] | 2"d | 8.05 | 5890 | 39 | 74.12 | Rutgers F-P | ||
5894/14 [359] | 2x2 | 5.79 | 5889 | 16 | 56.87 | Rutgers F-P | ||
5900/350 [360] | 2x2 | 6.09 | 5924 | 268 | 62.01 | x Gunn-T set 1 | ||
5915/40 [361] | 2"d | 6.77 | 5917 | 38 | 83.00 | Rutgers F-P | ||
5950/40 [362] | 2"d | 7.43 | 5950 | 44 | 79.4 | Rutgers F-P | ||
5997/40 [363] | 2"d | 7.94 | 5994 | 40 | 74.8 | Rutgers F-P | ||
6087/40 [364] | 2x2 | 7.94 | 6084 | 42 | 71.40 | Rutgers F-P | ||
6100/100 [365] | 2x2 | 5.12 | 6101 | 103 | 53.66 | |||
6120/140 [366] | 3x3 | 7.97 | 6115 | 135 | 85.89 | Supernova | ||
6130/590 [367] | 4x4 | 8.35 | 6130 | 590 | 56.19 | T1 Wash | .9% leak at 1.2u. | |
6152/625 [368] | 3x3 | 8.21 | 6152 | 625 | 58.06 | T1 Wash | 1% leak at 1.0u. | |
6170/590 [369] | 2x2 | 5.07 | 6170 | 590 | 50.88 | T1 Wash. set#3 | 1% leak at 1.0u. | |
6301/10 [370] | 2x2 | 10.98 | 6294 | 13 | 75.00 | old Fabry-Perot | ||
6330/100 [371] | 1"d | 5.03 | 6342 | 93 | 65.15 | 633fs10-25 | fringes | |
6400/1450 [372] | 3x3 | 6400 | 1450 | 81.09 | R Tek set#2 | |||
6410/1470 [373] | 3x3 | 5.23 | 6410 | 1470 | 81.76 | R Tek set#3 | ||
6420/1180 | 2x2 | 5.64 | 6420 | 1180 | 68.00 | R-13 | ||
6425/1500 [374] | 3x3 | 5.25 | 6425 | 1500 | 79.69 | R Tek set#1 | ||
6437/1525 [375] | 4x4 | 5.22 | 6437 | 1525 | 81.38 | R Harris set#1 | 4mts | |
4x4 | R set #2 Schmidt | |||||||
6440/1520 [376] | 2x2 | 3.98 | 6440 | 1520 | 86.00 | R Harris set 1 | ||
6454/1451 [377] | 2x2 | 3.98 | 6454 | 1451 | 85.00 | R Harris set 2 | ||
6465/1300 | 2x2 | 5.64 | 6465 | 1300 | 57.00 | R-10 | bubbles | |
6475/1600 | 3x3 | 6.18 | 6475 | 1600 | 81.70 | R Harris set 1 | ||
6477/1235 | 2x2 | 5.80 | 6477 | 1235 | 59.74 | R-11 | broken corner | |
6477/75 [378] | 2x2 | 6.12 | 6484 | 77 | 83.20 | H alfa set | ||
6484/1532 [379] | 2x2 | 4.06 | 6484 | 1532 | 86.00 | R Harris set 3 | ||
6493/1445 | 3x3 | 6.15 | 6493 | 1445 | 77.00 | R Harris set 2 | ||
6500/1330 | 2x2 | 3.00 | 6500 | 1330 | 92.00 | R 33 PFCCD | ||
6510/1300 | 2x2 | 3.02 | 6510 | 1300 | 90.00 | R 34 PFCCD | ||
6520/76 [380] | 2x2 | 6.15 | 6530 | 71 | 81.09 | H alfa set | ||
6552/40 [381] | 2"d | 6.63 | Rutgers F-P | |||||
6559/5 [382] | 2x2 | 9.08 | 6557 | 7 | 56.12 | old Fabry-Perot | ||
6560/110 [383] | 2x2 | 3.91 | 6591 | 118 | 62.28 | Corion | ||
6560/900 [384] | 4x4 | 9.19 | 6495 | 900 | 94.95 | Gunn r | ||
6563/110 | 2x2 | 4.10 | 6562 | 120 | 62.66 | 3C | ||
6563/12 [385] | 2"d | 7.62 | 6563 | 11 | 66.55 | Rutgers F-P | ||
6563/16 | 1x1 | 6.18 | 6573 | 15 | 79.00 | |||
6563/17 [386] | 2x2 | 9.50 | 6560 | 20 | 77.41 | old Fabry-Perot | bad corner | |
656375-3 [387] | 3x3 | 5.61 | 6559 | 64 | 89.37 | |||
656375-4 [388] | 4x4 | 5.54 | 6567 | 68 | 82.32 | |||
6563/78 [389] | 2x2 | 6.11 | 6568 | 68 | 82.36 | H alfa set | ||
6563/85 | 1x1 | 6.15 | 6586 | 103 | 83.00 | bad corner | ||
6568/20 [390] | 2x2 | 5.61 | 6568 | 19 | 69.81 | H alfa narrow | both faces coated | |
6571/15 [391] | 2"d | 6.01 | 6571 | 16 | 72.21 | Rutgers F-P | ||
6575/14 [392] | 2x2 | 12.33 | 6571 | 18 | 74.12 | Old Fabry Perot | LMC Redshift | |
6584/15 [393] | 2"d | 8.00 | 6583 | 16 | 74.56 | Rutgers F-P | ||
6586/20 [394] | 2x2 | 5.60 | 6583 | 20 | 70.80 | H alfa narrow | both faces coated | |
6586/40 [395] | 2x2 | 5.38 | 6590 | 40 | 80.50 | Rutgers F-P | ||
6600/100 [396] | 2x2 | 4.74 | 6593 | 118 | 62.08 | #1 | ||
6600a110 | 2x2 | 4.77 | 6593 | 118 | 62.08 | #2 | ||
6600b110 [397] | 2x2 | 4.46 | 6597 | 108 | 57.25 | 3c | ||
660075-3 [398] | 3x3 | 5.57 | 6598 | 69 | 87.77 | |||
660075-4 [399] | 4x4 | 5.57 | 6600 | 67 | 84.77 | |||
6602/20 [400] | 2x2 | 5.74 | 6596 | 18 | 70.04 | H alfa narrow | one face coated | |
6606/75 [401] | 2x2 | 6.14 | 6608 | 70 | 84.30 | H alfa set | ||
6618/20 [402] | 2x2 | 5.72 | 6610 | 18 | 72.22 | H alfa narrow | both faces coated | |
6636/20 [403] | 2x2 | 5.71 | 6628 | 19 | 72.49 | H alfa narrow | both faces coated | |
6649/76 [404] | 2x2 | 6.15 | 6650 | 77 | 87.49 | H alfa set | ||
6654/20 [405] | 2x2 | 5.73 | 6645 | 20 | 76.44 | H alfa narrow | both faces coated | |
6672/20 [406] | 2x2 | 5.72 | 6661 | 20 | 72.82 | H alfa narrow | both faces coated | |
6680/100 [407] | 2x2 | 4.54 | 6687 | 112 | 87.59 | CFA set | ||
6693/76 [408] | 2x2 | 6.02 | 6693 | 92 | 87.93 | H alfa set | ||
6700/350 [409] | 2x2 | 6.07 | 6696 | 316 | 61.71 | r Gunn-T set 1 | ||
6705/5 | 1x1 | 6702 | 7 | 42.00 | ||||
6716/13 | 2x2 | 5.23 | 6716 | 13 | 55.00 | |||
6718/20 [410] | 2x2 | 6.19 | 6708 | 26 | 80.32 | H alfa narrow | one face coated | |
6718/5 [411] | 1x1 | 6719 | 6 | 46.00 | ||||
6724/34 | 2x2 | 9.33 | 6726 | 36 | 82.71 | old Fabry-Perot | ||
6724/7 [412] | 2x2 | 5.22 | ||||||
6727/1015 [413] | 2x2 | 5.04 | 6727 | 1015 | 93.83 | r Gunn-T set 2 | ||
6728/1000 [414] | 3x3 | 5.05 | 6728 | 1000 | 93.83 | r Gunn-T | ||
6731/13 | 2x2 | 5.27 | ||||||
6731/6 [415] | 2x2 | 10.88 | 6733 | 7 | 50.61 | old Fabry-Perot | ||
6732/20 [416] | 2x2 | 5.93 | 6730 | 26 | 76.93 | H alfa narrow | one face coated | |
6732/5 | 1x1 | 6737 | 10 | 32.00 | ||||
6737/76 [417] | 2x2 | 6.06 | 6746 | 91 | 86.06 | H alfa set | ||
6738/50 [418] | 4x4 | 7.97 | 6744 | 50 | 87.83 | |||
6781/78 [419] | 2x2 | 6.12 | 6785 | 77 | 78.98 | H alfa set | ||
6820/100 [420] | 2x2 | 4.59 | 6820 | 100 | 87.00 | CFA set | ||
6826/78 [421] | 2x2 | 6.14 | 6832 | 81 | 82.32 | H alfa set | ||
6840/120 | 2x2 | 5.00 | 6903 | 130 | 63.40 | |||
6840/90 [422] | 1"d | 5.91 | 6848 | 90 | 76.80 | Comet set | ||
6850/80 | 2x2 | 4.88 | 6899 | 134 | 61.59 | |||
6860/80 | 2x2 | 4.96 | 6888 | 128 | 62.09 | |||
6871/78 [423] | 2x2 | 6.00 | 6867 | 85 | 86.73 | H alfa set | ||
6890/100 [424] | 2x2 | 6.45 | 6890 | 100 | 83.00 | CFA set | ||
6916/78 [425] | 2x2 | 6.15 | 6916 | 84 | 82.46 | H alfa set | ||
6961/79 [426] | 2x2 | 6.14 | 6967 | 90 | 84.01 | H alfa set | ||
7000/175 [427] | 1"d | 6.11 | 7125 | 175 | 82.00 | Comet set | ||
7007/79 [428] | 2x2 | 6.07 | 7007 | 81 | 75.00 | H alfa set | ||
7053/79 [429] | 2x2 | 6.14 | 7046 | 77 | 77.00 | H alfa set | ||
7080/100 [430] | 2x2 | 6.43 | 7080 | 100 | 83.00 | CFA set | ||
7099/80 [431] | 2x2 | 6.03 | 7101 | 82 | 78.00 | H alfa set | ||
7146/80 [432] | 2x2 | 6.12 | 7146 | 72 | 82.13 | H alfa set | ||
7193/80 [433] | 2x2 | 6.10 | 7198 | 65 | 77.14 | H alfa set | ||
7240/75 [434] | 2x2 | 6.06 | 7235 | 71 | 84.84 | H alfa set | ||
7288/82 [435] | 2x2 | 6.08 | 7280 | 85 | 84.65 | H alfa set | ||
7336/82 [436] | 2x2 | 6.03 | 7326 | 78 | 84.58 | H alfa set | ||
7384/84 [437] | 2x2 | 6.12 | 7367 | 87 | 82.25 | H alfa set | ||
7433/84 [438] | 2x2 | 6.09 | 7421 | 83 | 84.99 | H alfa set | ||
7482/84 [439] | 2x2 | 6.09 | 7469 | 98 | 83.30 | H alfa set | ||
7500/100 [440] | 2x2 | 4.02 | 7512 | 147 | 58.00 | |||
7531/84 [441] | 2x2 | 6.00 | 7532 | 90 | 80.40 | H alfa set | ||
7580/85 [442] | 2x2 | 6.07 | 7585 | 97 | 77.80 | H alfa set | ||
7630/85 [443] | 2x2 | 6.07 | 7636 | 85 | 81.53 | H alfa set | ||
7680/84 [444] | 2x2 | 5.95 | 7678 | 78 | 80.15 | H alfa set | ||
7700/110 [445] | 2x2 | 4.34 | 7708 | 108 | 64.00 | |||
7730/85 [446] | 2x2 | 6.04 | 7731 | 81 | 78.33 | H alfa set | ||
7781/86 [447] | 2x2 | 6.12 | 7774 | 77 | 74.33 | H alfa set | ||
7832/86 [448] | 2x2 | 6.04 | 7824 | 91 | 80.08 | H alfa set | ||
7860/2000 | 2x2 | 5.14 | 84 | |||||
7883/86 [449] | 2x2 | 6.12 | 7871 | 93 | 77.65 | H alfa set | ||
7935/88 [450] | 2x2 | 6.09 | 7926 | 98 | 75.46 | H alfa set | ||
8067/1485 [451] | 3x3 | 6.11 | 8067 | 1485 | 95.49 | I kc Tek set#3 | ||
8075/1500 [452] | 3x3 | 6.13 | 8075 | 1500 | 95.53 | I kc Tek set#1 | ||
8075/1500 [452] | 4x4 | 6.19 | 8075 | 1500 | 94.09 | I kc set#1 4mts | ||
8100/110 [453] | 2x2 | 4.03 | 8106 | 123 | 67.00 | |||
8100/1500 [454] | 3x3 | 5.08 | 8100 | 1500 | 93.00 | i Gunn-T | ||
8102/1505 [455] | 2x2 | 5.03 | 8102 | 1505 | 93.89 | Gunn-T set 2 | ||
8118/1415 [456] | 3x3 | 8118 | 1415 | 96.63 | I kc Tek set#2 | |||
8120/1500 [457] | 4x4 | 9.22 | 8065 | 1600 | 86.60 | Gunn i | ||
8123/1313 [458] | 2x2 | 7.99 | 8123 | 1313 | 84.30 | T2 Wash. set#3 | ||
8200/900 | 2x2 | 6.11 | 8186 | 943 | 90.00 | i Gunn-T set 1 | ||
8227/1865 | 2x2 | 4.62 | 8227 | 1865 | 71.65 | I-11 | ||
8200/1640 | 2x2 | 4.64 | 8200 | 1640 | 76.00 | I-10 | ||
8200/1640 | 2x2 | 4.53 | 8200 | 1640 | 76.00 | I-13 | bubble | |
8300/110 [459] | 2x2 | 3.76 | 8306 | 128 | 61.00 | |||
8300/2500 [460] | 4x4 | 5.43 | 8310 | 2560 | 98.73 | HST "I" | thin film coating | |
8542/18 [461] | 2x2 | 8540 | 19 | 60.20 | Rutgers F-P | |||
8549/25 [462] | 2x2 | 8560 | 28 | 77.17 | Rutgers F-P | |||
8585/100 [463] | 2"d | 8589 | 105 | 85.57 | Rutgers F-P | |||
8632/100 [464] | 2x2 | 8639 | 90 | 91.89 | Rutgers F-P | |||
9532/20 [465] | 2x2 | 7.10 | 9536 | 20 | 45.00 | |||
9900/ n [466] | 2x2 | |||||||
9900/ n [467] | 3x3 | 5.05 | 95.30 | z Gunn-T set 2 | from 8435 (45%) ---> | |||
4x4 | 5.07 | 95.50 | z Gunn-T | from 8490 (57%) ---> | ||||
z Gunn |
mkeaneATnoao.edu
WG335
WG345 [481]
WG360 [482]
GG385 [483]
GG420 [484]
GG455 [485]
GG495 [486]
OG515
OG570 [487]
OG590
RG610 [488]
RG665
RG695 [489]
Copper Sulfate (CuSO4) [492]
Corning 9780
Michael Keane (mkeaneATnoao.edu)
Jack Baldwin (jbaldwinATnoao.edu)
Telescopes no longer in operations by CTIO or SMARTS.
The SMARTS 1.3 meter telescope has been close since late August 2019.
The SMARTS 1.3-meter telescope was previously the 2MASS southern telescope before SMARTS took over its operation. A permanently-mounted, dual-channel, optical-IR imager called ANDICAM takes simultaneous optical and infrared data on the telescope. The 1.3-m was operated entirely in service / queue mode.
ANDICAM started regular operations at the 1.3-m in February 2003 by the SMARTS Consortium. Previously, it had been operated in queue mode on the 1.0-m (YALO Consortium) with the optical detector since the 1998B semester. The IR array was installed in July 1999, enabling simultaneous optical and infrared imaging, including dithering in the IR channel while the optical channel integrates. ANDICAM was constructed by the Ohio State astronomical instrumentation group led by Darren DePoy and its construction was funded in part by the National Science Foundation.
ANDICAM takes simultaneous optical and infrared data by using a dichroic with a CCD and a HgCdTe array. A moveable mirror allows dithering in the IR while an optical exposure is going on. The primary purpose of the instrument is for microlensing event follow-up to look for the presence of planets and other anomalous behaviour. ANDICAM is operated by the Prospero control software. It also has a twin--DANDICAM (Dutch ANDICAM)--that is used on a 1m telescope in South Africa. With ANDICAM one can obtain UBVRIJHK photometry within a 6 arcmin (optical) or 1 arcmin (near-IR) field.
ANDICAM Resources
FILTER | Plot | Data file | |
CCD Filters | KPNO-B | kpno_b.pdf [496] | kpno_b.txt [497] |
KPNO-V | kpno_v.pdf [498] | kpno_v.txt [499] | |
KPNO-I | kpno_i.pdf [500] | kpno_i.txt [501] | |
Infrared Filers | J-band | andi_j.pdf [502] | j_andi.txt [503] |
H-band | andi_h.pdf [504] | h_andi.txt [505] | |
K-band | andi_k.pdf [506] | k_andi.txt [507] | |
Legacy Filters | YALO B | yalo_b.pdf [508] | b_yalo.txt [509] |
YALO wide R | yalo_r.pdf [510] | r_yalo.txt [511] |
Operational Information
Reports
General Information
1.3m Usage Summaries (2004-2006)
NOTE: The 1.3m has been removed from the CTIO exposure time calculator. The values obtained using this calculator were found to be too optimistic by several orders of magnitude. Please estimate you exposure times using the values found at the ANDICAM detector website.
Telescope Operator Instructions [513]
Optical Processing Procedure [527]
Reports and Logs
Nightly 1.3m Observing Log Archive [515]
1.3m Nightly Observer's Reports [516]
1.3m Telescope Trouble Reports [528]
Report Forms
Photometric Standards and Measurements Reports [529]
Nightly Observing Logs [530]
Nightly Observing Reports [513]
Daily Processing Reports [517]
delete this page.
delete this page.
March 2009
To assist you in reducing your infrared images, we are now providing combined infrared flat field images for each filter. These are created by combining all of the flat images that are taken at each dither position, producing one flat image for each filter. These can be downloaded from the ftp site in /home/ftp/pub/smarts13m/flatsir.
Separate flat field images (at each of the dither positions) will continue to be available from the same ftp directory as before (/home/ftp/pub/smarts13m/calibsir).
Please direct any questions to either Michelle Buxton or Suzanne Tourtellotte.
If you have to generate schedules for a telescope (or anything else) and are interested in streamlining the process, we recommend the software developed at NASA Goddard by the Science Goal Montior (SGM) group. The main website can be found here and you can download the specific software developed for SMARTS here. Email Michelle Buxton if you need help with creating the specific sun and moon files needed (this is currently done using another piece of software, XEphem).
The 1.3m/ANDICAM now has neutral-density filters installed for viewing bright sources in V, I, H, and narrowband He 1038nm. Tests with standard stars show that the V+ND combination has an attenuation of 4.6 (a factor of 39,000, or 11.5 magnitudes) over that of the V filter, and the I+ND combination an attentuation of 3.0 (1100, or 7.6 magnitudes).
The ANDICAM instrument has two optical neutral density filters, V+ND4 and I+ND4, and two infrared neutral density filters, H+ND4 and 10830+ND3. (The 10830+ND3 filter is a narrowband He filter.) The optical ND filters are 5-arcminute diameter round filters, and the IR ND filters are 2.4-arcmin square filters. According to the previous paragraph, the V+ND filter has an attenuation of 4.6 (a factor of 39,000, or 11.5 magnitudes) over that of the V filter, and the I+ND combination has an attenuation of 3.0 (1100, or 7.6 magnitudes).
From observations of Eta Car in the ND4 filters done by Alan Whiting, the FWHM generally ranges from 2.5 to 4.9 pixels in V. He also notes that flat fields taken through the attenuated filters have not been successful in calibrating the data. However, the flats from the unattenuated V, I, and H filters seem to work fine with ND filter observations.
We have spotted a peculiarity in observing the Landolt standard PG1323. It appears as though the light of a bright star (most likely Spica) outside the field of view is not properly baffled, causing the raised level of the background, as shown here:
In principle, this should not affect the count rate in the standard stars themselves, but, we do not recommend using this particular standard for your observations.
The 1.3m has been removed from the CTIO exposure time calculator. The values obtained using this calculator were found to be too optimistic by several orders of magnitude. Please estimate you exposure times using the values found at the ANDICAM detector website (http://www.astronomy.ohio-state.edu/ANDICAM/detectors.html#sens [531]).
PLEASE NOTE: The U filter is currently broken and unusable.
SMARTS optical images are processed with the IRAF task CCDPROC using a bias prepared with the IRAF task ZEROCOMBINE and a domeflat or skyflat prepared with the IRAF task FLATCOMBINE. As of November 1, 2006, the SMARTS optical images are processed slightly differently. In order to remove the low-level horizontal "banding" that we have seen at times during the last six months, the overscan is now fit with a cubic spline function of order 11. All other steps remain the same. The old processing parameters can be found here.
Modified 11/01/2006
===============================================================================
Ten biases are taken each night and are combined into a single
bias frame using the IRAF task ZEROCOMBINE.
The IRAF task ZEROCOMBINE parameters are set as follows:
I R A F Image Reduction and Analysis Facility |
|||
PACKAGE = ccdred | |||
TASK = zerocombine | |||
input = | List of zero level images to combine | ||
(output = | ZERO) | Output zero level name | |
(combine= | average) | Type of combine operation | |
(reject = | minmax) | Type of rejection | |
(ccdtype= | ) | CCD image type to combine | |
(process= | no) | Process images before combining? | |
(delete = | no) | Delete input images after combining? | |
(clobber= | no) | Clobber existing output image? | |
(scale = | none) | Image scaling | |
(statsec= | ) | Image section for computing statistics | |
(nlow = | 1) | minmax: Number of low pixels to reject | |
(nhigh = | 1) | minmax: Number of high pixels to reject | |
(nkeep = | 1) | Minimum to keep (pos) or maximum to reject(neg) | |
(mclip = | yes) | Use median in sigma clipping algorithms? | |
(lsigma = | 3.) | Lower sigma clipping factor | |
(hsigma = | 3.) | Upper sigma clipping factor | |
(rdnoise= | 0.) | ccdclip: CCD readout noise (electrons) | |
(gain = | 1.) | ccdclip: CCD gain (electrons/DN) | |
(snoise = | 0.) | ccdclip: Sensitivity noise (fraction) | |
(pclip = | -0.5) | pclip: Percentile clipping parameter | |
(blank = | 0.) | Value if there are no pixels | |
(mode = | ql) |
===============================================================================
VRI dome flats are observed every night, 10 exposures of each.
JHK dome flats are observed every third night in rotation. 10 exposures are taken at each of the 7 dither positions (dither throw = 40). 10 additional exposures at each dither position are then taken with the dome lamps off. The final flat at each dither position is the difference between the combined lamp-on flat minus the combined lamp-off flat.
B sky flats are taken due to undesirable artifacts present in the B domes. A minimum of 3 images are taken every night weather permitting. It is required that individual skyflats have different RA and
DEC values.
In all cases, the individual flats are processed first with CCDPROC for the overscan and zero corrections, then combined with FLATCOMBINE.
FLATCOMBINE parameters are set as follows for the SKY flats:
I R A F Image Reduction and Analysis Facility |
|||
PACKAGE = ccdred | |||
TASK = flatcombine | |||
input = | List of flat field images to combine | ||
(output = | FLAT) | Output flat field root name | |
(combine= | median) | Type of combine operation | |
(reject = | minmax) | Type of rejection | |
(ccdtype= | ) | CCD image type to combine | |
(process= | no) | Process images before combining? | |
(subsets= | no) | Combine images by subset parameter? | |
(delete = | no) | Delete input images after combining? | |
(clobber= | no) | Clobber existing output image? | |
(scale = | mode) | Image scaling | |
(statsec = | ) | Image section for computing statistics | |
(nlow = | 1) | minmax: Number of low pixels to reject | |
(nhigh = | 1) | minmax: Number of high pixels to reject | |
(nkeep = | 1) | Minimum to keep (pos) or maximum to reject(neg) | |
(mclip = | yes) | Use median in sigma clipping algorithms? | |
(lsigma = | 3.) | Lower sigma clipping factor | |
(hsigma = | 3.) | Upper sigma clipping factor | |
(rdnoise = | 0.) | ccdclip: CCD readout noise (electrons) | |
(gain = | 1.) | ccdclip: CCD gain (electrons/DN) | |
(snoise = | 0.) | ccdclip: Sensitivity noise (fraction) | |
(pclip = | -0.5) | pclip: Percentile clipping parameter | |
(blank = | 0.) | Value if there are no pixels | |
(mode = | ql) |
FLATCOMBINE parameters are set as follows for the DOME flats:
I R A F Image Reduction and Analysis Facility |
|||
PACKAGE = ccdred | |||
TASK = flatcombine | |||
input = | List of flat field images to combine | ||
(output = | FLAT) | Output flat field root name | |
(combine= | average) | Type of combine operation | |
(reject = | crreject) | Type of rejection | |
(ccdtype= | ) | CCD image type to combine | |
(process= | no) | Process images before combining? | |
(subsets= | no) | Combine images by subset parameter? | |
(delete = | no) | Delete input images after combining? | |
(clobber= | no) | Clobber existing output image? | |
(scale = | mode) | Image scaling | |
(statsec= | ) | Image section for computing statistics | |
(nlow = | 1) | minmax: Number of low pixels to reject | |
(nhigh = | 1) | minmax: Number of high pixels to reject | |
(nkeep = | 1) | Minimum to keep (pos) or maximum to reject(neg) | |
(mclip = | yes) | Use median in sigma clipping algorithms? | |
(lsigma = | 3.) | Lower sigma clipping factor | |
(hsigma = | 3.) | Upper sigma clipping factor | |
(rdnoise= | 6.5) | ccdclip: CCD readout noise (electrons) | |
(gain = | 2.3) | ccdclip: CCD gain (electrons/DN) | |
(snoise = | 0.) | ccdclip: Sensitivity noise (fraction) | |
(pclip = | -0.5) | pclip: Percentile clipping parameter | |
(blank = | 1.) | Value if there are no pixels | |
(mode = | ql) |
===============================================================================
Images are processed, one filter type at a time, with a bias and a skyflat of the corresponding filter type using the IRAF task CCDPROC. The result is a processed image, prefixed with the letter "r", that have been OZF'ed (overscanned, flattened and zeroed) but not T'ed (trimmed).
When biases are not taken for a given night, the ZEROCOMBINEd bias from the nearest available night is used instead. This bias will have already gone through CCDPROC with images of its same night. The bias section for use in overscanning was determined by IMPLOT to extend from less than 3 and more than 14, so [3:14,1:1024]) was chosen as the overscan strip image section.
When contemporaneous skyflats are not available, FLATCOMBINEd skyflats from previous nights are used instead. These skyflats will have already been processed using their own contemporaneous biases.
The IRAF task CCDPROC parameters are set as follows:
I R A F
Image Reduction and Analysis Facility
PACKAGE = ccdred
TASK = ccdproc
I R A F Image Reduction and Analysis Facility |
|||
PACKAGE = ccdred | |||
TASK = ccdproc | |||
images = | @in.(filtertype) ) | List of CCD images to correct | |
(output = | @out.(filtertype) ) | List of output CCD images | |
(ccdtype= | ) | CCD image type to correct | |
(max_cac= | 0) | Maximum image caching memory (in Mbytes) | |
(noproc = | no) | List processing steps only? | |
(fixpix = | no) | Fix bad CCD lines and columns? | |
(oversca= | yes) | Apply overscan strip correction? | |
(trim = | no) | Trim the image? | |
(zerocor= | yes) | Apply zero level correction? | |
(darkcor= | no) | Apply dark count correction? | |
(flatcor= | yes) | Apply flat field correction? | |
(illumco= | no) | Apply illumination correction? | |
(fringec= | no) | Apply fringe correction? | |
(readcor= | no) | Convert zero level image to readout correction? | |
(scancor= | no) | Convert flat field image to scan correction? | |
(readaxi= | line) | Read out axis (column|line) | |
(fixfile= | ) | File describing the bad lines and columns | |
(biassec= | [3:14,1:1024]) | Overscan strip image section | |
(trimsec= | ) | Trim data section | |
(zero = | ccd(night).bias) | Zero level calibration image | |
(dark = | ) | Dark count calibration image | |
(flat = | ccd(night).sky/domeflat(filter) ) | Flat field images | |
(illum = | ) | Illumination correction images | |
(fringe = | ) | Fringe correction images | |
(minrepl= | 1.) | Minimum flat field value | |
(scantyp= | shortscan) | Scan type (shortscan|longscan) | |
(nscan = | 1) | Number of short scan lines | |
(interac= | no) | Fit overscan interactively? | |
(functio= | spline3) | Fitting function | |
(order = | 11) | Number of polynomial terms or spline pieces | |
(sample = | *) | Sample points to fit | |
(naverag= | 1) | Number of sample points to combine | |
(niterat= | 1) | Number of rejection iterations | |
(low_rej= | 3.) | Low sigma rejection factor | |
(high_re= | 3.) | High sigma rejection factor | |
(grow = | 0.) | Rejection growing radius | |
(mode = | ql) |
General-purpose photometric standards are observed every photometric night on the 1.3m telescope.
The procedure is as follows:
Each photometric night, 1 Landolt field is observed ONCE in all optical filters. In addition, 2 IR standards (one blue and one red) are observed ONCE in all IR filters. Because extinction coefficients cannot be calculated on such nights, "default" values (see below)are used for calculations of zeropoints and color terms.
Periodically, more thorough observations of the same standards are performed, observing each of the 3 standard fields (1 Landolt, 2 IR fields) at 3 different airmasses in order to calculate extinction coefficients. The medians of these values, taken over many months, are the "default" extinction coefficients mentioned above.
Standard star images are available to all users and are not charged against their allocation. We do our best to choose those Landolt fields with at least 3 standard stars available in the field of view. If your program requires additional standard observations, please include them in your PhaseII submission. Additional observations are charged against your allocation.
Photometric Results | Optical [535] | Infrared [536] | |
Extinction Coefficients Values | Optical [537] | Infrared [538] | |
Description of Photometric Calculation Methods | Optical [539] | Infrared [540] |
SMARTS Consortium [90]
ANDICAM & CTIO 1.3m Telescope Contact Information
Program coordinators are responsible for the coordinating their institution's shares of the SMARTS telescope time. Members of the U.S. and Chilean astronomical communities granted time on SMARTS telescopes and instruments through the NOAO TAC should work with the AURA/NOAO coordinator.
These contacts are for both SMARTS in general and ANDICAM in particular:
SMARTS Operations:
Prof. Charles Bailyn (charles.bailyn@yale.edu [541])
SMARTS Consortium General Manager
Victoria Gardner (victoria.gardner@yale.edu [542])
SMARTS Administrative Coordinator
Ohio State University:
Prof. Darren DePoy (depoy@astronomy.ohio-state.edu [543])
Instrument configuration and future upgrades
Prof. Richard Pogge (pogge@astronomy.ohio-state.edu [544])
Data-Acquisition and Observing Preparation/Tracking Software
ANDICAM Observing Queue Manager:
Dr. Michelle Buxton (Yale) (michelle.buxton@yale.edu [545])
Data Processing and Archving Manager:
Dr. Suzanne Tourtellotte (Yale) (swt@astro.yale.edu [546])
ANDICAM Instrument Scientist:
Prof. Darren DePoy (OSU) (depoy@astronomy.ohio-state.edu [543])
CTIO Operations:
Dr. R. Chris Smith (CTIO) (csmith@noao.edu [547])
ANDICAM Web Pages & Observing Preparation Tools:
Prof. Richard Pogge (OSU) (pogge@astronomy.ohio-state.edu [544])
NOAO Observer Programs:
Dr. R. Chris Smith (CTIO) (csmith@noao.edu [547])
This page provides access to tools for preparing, submitting, and tracking the progress of "Phase II" observing programs approved for scheduling on the CTIO 1.3-meter [532] telescope and ANDICAM [548] .
Access to these tools is via a login screen [549]. If you have been granted time with ANDICAM [548] but not yet received a SMARTS Project ID code for your observing program, please contact your program coordinator [550].
Login to the ANDICAM Phase II Observing Pages [549]
Information:
Phase II Submission Instructions [551]
Observation Template (Obs File) Creation Form Instructions [552]
Multi-Observation Script Creation Form Instructions [553]
Phase II Observing Program Submission Form Instructions [554]
Once a project has been approved for observing with ANDICAM, the PI needs to submit a detailed "Phase II" observing plan to the queue manager. This plan consists of a set of observations to be carried out, each "unit" observation of which is described by one or more data-acquisition template files called "Observation Templates" or "obs files". A set of written instructions for how to use these obs files to execute your program observations rounds out the Phase II submission package. Other elements may be required for more complex programs or those with long target lists.
We have adopted a web-based electronic submission process built around a suite of simple web forms. The observing program submission procedure is analogous to "Phase II" observing preparation for Hubble Space Telescope, Gemini, WIYN, or the ESO NTT and VLT. Indeed, many ideas and examples from those systems were used in considering the development of these tools. The CTIO 1.3m has only one instrument with three well-defined observing modes, so it should be very straightforward to use efficiently, and the Phase II process is therefore proportionally simpler than these other observatories. Our highly successful experience with this observing mode at the Yale 1-meter telescope bears out this expectation.
ANDICAM observing programs generally come in three broad types: Synoptic, Survey, and Target-Of-Opportunity.
These are programs in which you wish to observe a relatively small number of variable targets many times over the course of an observing season. For these programs, you will generally create a small number of single-target obs files that will get executed many times.
In cases where each target requires either a large number of separate obs files (e.g., 5 obs files, one for each of the UBVRI filters), or a small number of obs files to be executed in a specific sequence with repeats (e.g., I+H and V+H dual-mode observations, executed in the sequence "VIIV"), you have the option of creating an additional multi-observation script that will define the observing sequence made up of particular obs files. For "complex" synoptic programs, use of multi-observation scripts can improve the efficiency of your program (there is less for the on-site observer to type).
These are programs in which you have a relatively large number of targets that you wish to observe only once, but in many filters. For example, a program to obtain UBVRI+JHK images of a sample of 100 cool subdwarf stars would require you to create nearly 500 separate obs files using only single-target files. This is clearly ridiculous.
To make execution of such programs easier, you would settle on some standarized set of exposure times (e.g., either one set for all in each filter, or divide your sample into long and short exposure time groups), and then create a small set of multi-target obs files for each generic set. These obs files have no target specifications (name and coordinates), only filter and exposure settings.
You would then create a multi-observation script to wrap around these generic obs files which would be executed by the on-site observer to take your observations. The script prompts the observer to enter the target name each time, ensuring that the correct object name makes it into the header. A complete target list with coordinates, specifying which are to be observed with which multi-observation script, rounds out your Phase II submission.
For our example of the 100 star UBVRI+JHK observing program, we might divide the sample into two exposure time sets (long and short), and create 5 multi-target obs files for each filter combination for each set. This would reduce the number of Phase II observing files needed to execute the program from 500 to 12: 6 files for each of the long and short sets, each of which consist of 5 multi-target obs files and 1 multi-observation script to execute them. The advantages of combining generic obs files with scripts is considerable.
These are one-time programs triggered by transient events like novae, supernovae, gamma-ray bursts, etc. TOO programs must be pre-approved (if NOAO time), or you must warn the queue management team in advance if you think you will be requesting TOO observations. Politics apply, so keep on top of the situation. In the event of super-rare events (e.g., a Galactic or LMC/SMC Supernova), we will coordinate all observations by the SMARTS consortium as a whole.
TOO programs will be treated like single-target synoptic programs. You will need to prepare single-target obs files (and any optional multi-observation scripts) in advance of calling in the TOO trigger, and submit a Phase II program using the regular forms.
Important! TOO programs requested after 3:30pm Eastern Time (1530 EST or EDT) will be executed that night at the discretion of the queue manager, otherwise they will be deferred to the next night. We remind all principal investigators that they are specifically forbidden to call up the on-site observers directly, and note that the on-site observers are empowered to hang up on you politely (in fact, they are instructed to ignore all such extraneous calls). Maintaining a clear, unambiguous "chain of command" is absolutely essential for smooth remote queue operations, so no matter how important it is, please work through the proper channels. Repeat offenders will have their observing programs terminated with extreme prejudice.
The Phase II submission process has 3 steps, as follows:
Projects awarded time with ANDICAM on the CTIO 1.3m Telescope (either via the SMARTS consortium or the NOAO TAC) are assigned a Project ID code their programs. This ID is your entry point into the observation preparation tools on this web server. Using these tools, you can create obs files for your observing program, and edit or delete existing obs files. The obs files reside on the server in separate directories assigned to each approved project.
If you do not find your project ID in the list, contact the SMARTS queue manager or NOAO SMARTS Program Coordinator [558] (as appropriate). Please do not appropriate someone else's project space.
Observation Template Files ("obs files" for short) are used by the ANDICAM data-taking system to execute your observations. A set of web forms are provided to help you create obs files that have the correct format (eliminating syntax errors if you try to make them by hand). In addition, these obs file creation tools provide estimates of the amount of time required to execute an observation, exclusive of target acquisition and setup time. These estimates will help you optimize the data-acquisition for your program, especially for those programs that will be acquiring simultaneous IR and CCD images. Instructions for the creation of obs files is described in the ANDICAM Observation Template Files document. Please read this document carefully.
If you are submitting a survey-type program, you also need to create a multi-observation script to execute your multi-target obs files. Programs that make use of multi-target obs files are required to submit valid multi-observation scripts with their Phase II program.
Similarly, if you have a complex synoptic program, you may wish to also prepare one or more optional multi-observation script to execute your single-target obs files in a particular sequence. These scripts are optional for single-target programs, and should only be done if necessary.
Once you have created a complete set of obs files for all targets in your program (or a set of multi-target obs files and associated multi-observation scripts), the Phase II Observing Program Submission Form is used to submit the obs files, multi-observation scripts, and your detailed narrative instructions to the ANDICAM queue manager for eventual scheduling and implementation. This form is accessed from the main observing preparation menu after you have logged in (see Step 1 above).
The Phase 2 submission form copies your observing files and the instructions (in an ASCII text file) to an ftp staging disk, and emails the instructions to the queue management team (via the andicam-submit mailing list). Once on the staging disk, the files will be downloaded by the queue manager or by the on-site observers (at the queue manager's instructions) to CTIO where they will be used to execute your program when it is scheduled. Click here for detailed instructions for using the Phase II program submission form.
In preparing your Phase II submission for execution, the queue management team, in consultation with the instrument scientists, may require changes in your program if the proposed observations present an unusually complicated execution problem, or present book-keeping or execution-time problems for the on-site observers. Programs that require excessive execution time may be sent back for reduction in scope.
In addition to submitting your Phase II observing program, these forms can be used to submit updates, corrections, and amendments to your program. The nature of the submission should be clearly spelled out at the top of the narrative instructions.
NOTE: Phase II files and instructions must be submitted by 3:30pm EST/EDT for the targets to be scheduled in that night's queue. Please contact the queue manager if this deadline presents a major problem to your program's feasibility.
Time with the ANDICAM is generally awarded as a given number of hours of observing time to be devoted to a project. "Observing" in this context includes not only the amount of time spent collecting photons, but also the target acquisition, setup, and system overheads. These overheads are included in your time allocation (same as they would be if you were awarded, for example, a night of observing or some number of HST orbits). How efficiently you can observe determines what fraction of your time allocation is spent collecting photons.
Each obs file you create includes an estimate of the execution time. This execution time only includes the operations that occur between the observer typing "GO" for that obs file and when the last image in the obs file has finished being readout. This overhead calculation includes detector setup and readout times, as well as the requested integration times. These times are all highly predictable. Separate estimates are given for the CCD and IR channels (as appropriate), to help you evaluate how much deadtime there will be (the execution time for an obs file is the longer of the two estimates). Details on how this estimate is computed is included in the ANDICAM Observation Template Files document.
This is not the whole story, however. The individual obsfile execution time estimates do not include the following unpredictable overheads:
1. Instrument configuration times, which typically run a 1-4 seconds per operation, and usually at most 10 seconds per obs file. These times are so short to be treated as "noise" in the process. For example, if the filter and exposure times from the previous obs file are the same as yours, there is no overhead, but if they must be changed, it takes 1 second to change the exptime and 1-4 seconds to change a filter (depending on the amount of motion required). Hence why we don't compute them since they depend unpredictably on what observations came before.
2. Telescope Pointing & Target Acquisition (TP&TA). This typically requires between 3 and 5 minutes per pointing, and includes such unpredictables as telescope slew time, target acquisition offsets (though the 1.3m points admirably well, sometimes your target may be hard to identify the first time), and guide star acquisition (time to select a suitable guide star and lock the guider). If your program is simple (point to a target and take a series of images using a set of obs file), this TP&TA overhead will have a minimal impact on your time allocation. However, if your program requires a lot of pointings or offsets at a particular location, it will cut into the observing efficiency because of the greater TP&TA requirements, ultimately reducing the amount of your time allocation that is actually spent collecting photons.
In estimating the amount of time your Phase II submission will require, the ANDICAM queue managers at Yale will factor in a nominal TP&TA overhead, and combine the overheads from your individual obs files. If the amount of time you request exceeds your allocation, or looks to present an unusually low-efficiency observation, you will be contacted by them and asked to revise your observing project so as to both meet your scientific needs and have a program that does not present execution problems for the 1.3m on-site observers.
Note that requests for additional calibration data (e.g., special flats other than the ones acquired generally for all projects, or special flux calibration targets) do count against your time allocation. These are handled on a case-by-case basis by the queue management team at Yale.
In general, you will be informed by email when observations for your program have been acquired and are ready for pickup from the FTP server at Yale. In between times, however, you can track the progress of your program electronically in a number of ways:
You can receive a copy of the nightly observing logs by subscribing to the andicam-logs mailing list. Instructions for subscribing and unsubscribing to this list may be found in the ANDICAM Mail Lists document.
When you login to the Phase II Observing Tools page for your project, a simple search tool is provided that will extract all observing log entries for your Project ID. You can also extract observing log entries for a restricted range of dates, or for which a particular keyword (e.g., a target name) matches. All searches on keywords are case-insensitive. This allows you to get to the info you need on your program's observations without having to wade through all of the others.
If you have problems using these web tools, or have comments that you think will improve their usefulness, please send your feedback to the Queue Management personnel at SMARTS2 at Yale (see the contact list for the current personnel).
Updated: 2006 May 11 [rwp/osu]
SMARTS Consortium
Creating ANDICAM Multi-Observation Scripts
Updated: 2003 March 1
Table of Contents:
* Overview
* How to Create Multi-Observation Scripts
o Step 1: Select Obs files to execute
o Step 2: Prompt for Target Name?
o Step 3: Enter the Script Filename
* Example Multi-Observation Scripts
Overview
The ANDICAM is a 2-channel instrument with separately configurable CCD and IR cameras fed by a dichroic beam splitter. To enable efficient queue scheduling of observations, all ANDICAM data are acquired by means of Observation Template Files (or "obs files" for short) prepared by the astronomer. Obs files define "unit observations", specifying the instrument, detector, and target parameters and configurations needed to acquire a single observation.
In addition, astronomers can create simple Multi-Observation Scripts that are used to execute a sequence of obs files for a single target. There are two basic uses of Multi-Observation Scripts:
Complex Synoptic Observations:
A "synoptic" program is here defined as one in which you wish to observe a relatively small number of targets many times over a long period of time. A "complex" synoptic program is one in which the target is to be observed through a number of different filters in a specific sequence. In this case, you would create separate single-target obs files for each exposure-time and filter combination required for a given target (and do so for each of your targets). After your obs files have been created, you make a set of multi-observation scripts that would be used to execute each of these obs files in the preferred sequence each time, including repeats, for each target. Examples are given below.
Note that for standard single-target obs files, multi-observation scripts are optional, and should only be done if the observations are of particular complexity (e.g., many different exposure/filter combinations that must be executed in a particular sequence or a pattern of repeat observations required in a single continguous sequence). Don't make and submit multi-observation scripts if you don't really need them, as they do complicate the Phase II submission process, and are inappropriate for execution of just 1 or 2 single-target obs files.
Survey Observations:
A "survey" project is broadly defined as one in which you wish to observe a number of targets in the same way in many filters only once (or at most a couple of times). In this case, having to create a number of separate single-target obs files for all of the targets quickly becomes a burden for both the astronomer (who has to create them all) and for the observers (who have to keep them organized). The "one obs file per observation per target" mode that works well for synoptic programs is clearly impractical for even medium-sized survey projects, especially if you want to observe each target in many filters.
A better solution is to create a small set of generic multi-target obs files that contain exposure and filter settings, but do not specify the targets or their coordinates. A multi-observation script would then be created to execute these generic obs files for all of your targets, and the script would include the option to prompt the observer to enter the target name. Thus a single multi-observation script and a small set of generic obs files stands in for many separate obs files. The trade-off is that you must standardize exposure times, or divide your program into "long" and "short" exposure sequences and provide sets of generic obs files and associated multi-osbservation scripts for each. The examples section below discusses some strategy issues (a simple observing program is more likely to get executed than a very complex one). A separate target list with coordinates would be submitted with the Phase II instructions to round out your program submission.
For submission of survey-style projects, use of multi-target obs files and multi-observation scripts is mandatory.
In general, multi-observation scripts are not useful if you have relatively simple programs (at most one or two obs files per target). The gain in using them comes with large numbers of targets, or large numbers of observations per target that must come in a specific sequence.
This document describes how to create multi-observation scripts for your observing program, and gives worked examples.
[Contents]
How to Create Multi-Observation Scripts
Multi-observation scripts are created using a webform accessed by logging into the Observing Preparation Tools pages (via the Phase II front page), and using the Project ID assigned to your project when it was approved for implementation and scheduling. Scripts are created after you have created the obs files for your program. Once you have made your multi-observation scripts, you will submit them along with your obs files as part of the Phase II Observing Program Submission.
There are two basic types of multi-observation script:
1. Single-Target Scripts that execute a set of single-target obs files in a particular sequence, including repeats.
2. Multi-Target Scripts that execute a set of generic multi-target obs files in a specific sequence for many different targets, each time prompting the observer to enter the target name.
Step 0: Create the set of observing template files
Multi-observation scripts are created after you create your basic set of observing template files for your program. If there are no obs files, the script creation form will not have anything to work with.
Step 1: Select obs files to execute
Each multi-observation script may execute up to 10 obs files in sequence. This includes repeat observations of a given obs file. the form presents you with a set of 10 pull-down boxes, the menu containing a list of all of the obs files you have currently in your project's working directory on this server.
The obs files you select will be executed in the order selected, top to bottom in the form. Blank selections are ignored). If you wish to execute a given obs file twice in sequence, it must be selected twice.
Step 2: Prompt for Target Name?
If the obs files selected above are generic multi-target obs files that do not contain target names or coordinates, then your script will need to prompt the observer to enter the target name before the obs files are executed. Check the box to create a prompt in the script. If you omit this, no object name will be put into the image headers or observing logs, making it impossible to know what was observed.
If instead your script is executing standard single-target obs files, leave this box unchecked. If you do check it, the observer will have to type something at the prompt, and then what is typed will be overridden by what is in the subsequent obs files.
Step 3: Enter the script filename
Finally, you need to provide a unique filename for your multi-observation script. It should be descriptive of the obs files it contains, and should be unique to your project insofar as possible, so generic names like "myscript" or "script1" are discouraged. Filenames that conflict with other programs will be renamed at the discretion of the queue manager.
The filename you give must not have a file extension appended. A file extension (.pro) will be automatically assigned by the system, and has a specific meaning to the data-taking system. Adding a file extension could result in a script that cannot execute.
Example Multi-Observation Scripts
Example 1: Multi-Filter Synpotic Observations
In this example, the program is to make nightly observations of the microlensing source OB03018. Two obs files have been prepared
ob03018ih
ob03018vh
and each night the target is to be observed in the sequence
I+H
V+H
I+H
Using the form you would make 3 obs file selections, in order
ob03018ih
ob03018vh
ob03018ih
and leave the other 7 entries blank.
Since this is a set of single-target observations, you would leave the "Prompt for Target Name?" check box blank, as having the observer type in the target name would be redundant and a waste of time, since the target name in the obs files proper would override whatever they type.
Since this script is for a specific target, you would select a simple filename, the target itself:
ob03018
Which choice keeps the book-keeping simple for all concerned.
Example 2: Stellar Photometry Survey
This program is to acquire UBVRI and JHK images of a set of 200 low-mass stars from the 2MASS catalog. Since all of the stars are of comparable brightness, the same exposure times can be used for each star for the various filters. Since the H and K observations will take longer than J, we will double them up, taking J only with the most efficient R filter. The resulting set of 5 multi-target obs files is:
2masslm_uk
2masslm_bk
2masslm_vh
2masslm_ih
2masslm_rj
Here we have used "2masslm" as the base name (for "2MASS Low Mass") and specified the filters used in each obs files.
Using the form you would make 5 obs file selections, in order
2mass_uk
2mass_bk
2mass_vh
2mass_rj
2mass_ih
so that the optical imaging is acquired in the order UBVRI, and leave the other 5 entries blank.
Since this is a set of multi-target obs files, you would check the "Prompt for Target Name?" box. The observer will be prompted to enter the target name each time he/she executes the script.
Because this script is for many targets, a generic but suggestive name would be:
2masslm
this choice is the same as the "root name" of the obs files, making the association between them, and the program proper, clear.
Example 3: Multiple Targets, but long & short exposures
In this example, you have a large number of quasars from the LBQS, but about half the targets require relatively long exposures (e.g., 300s at V) whiel the others are brighter targets that would saturate in this time and can be observed with shorter exposures (e.g., 120s at V).
To handle this situation, you would create two sets of obs files, first a set of "long" observations templates:
lbqs_l_vh
lbqs_l_rh
lbqs_l_ij
and a parallel set of "short" observation templates
lbsq_s_vh
lbsq_s_rh
lbsq_s_ij
You then divide your sample into "long" and "short" targets, and create two multi-object scripts:
lbqs_long
lbqs_short
to execute the long and short sequences, respectively. In both cases, you need to makes sure you check the "Prompt for Target Name?" box so that the quasar's name is correctly entered by the observer.
As a general point of strategy, fine-tuning exposure times is a waste of time. If you really think one object has to have 320s at V and another 280s, then you will have to create separate single-target obs files for them. Since this places a greater book-keeping burden on the observers, it will cut into the observing efficiency, and it will require you to create each of the individual obs files. The on-site observers will not fine-tune obs files, and they will not edit obs files on the fly. That cuts too deeply into the observing efficiency. Inefficient Phase II programs will be returned to the astronomer with instructions for revision if it is felt that they will have to high of an impact on observing efficiency.
[Contents]
If you came here from one of the entry forms, use the "BACK" button on your browser to return to the obs file generation form in progress.
Updated: 2003 March 1 [rwp/osu]
SMARTS Consortium
ANDICAM Observation Template (Obs) Files
Updated: 2003 August 6
The ANDICAM is a 2-channel instrument with separately configurable CCD and IR cameras behind a dichroic beam splitter that can acquire simultaneous CCD and IR images. To enable efficient queue scheduling of observations, all data with ANDICAM are acquired by means of Observation Template Files (or "obs files" for short).
Obs files define the target parameters and the instrument and exposure configuration of the smallest schedulable "unit observation" that can be acquired with the ANDICAM. A "unit observation" means that the choice of filters and the base integration times for each channel are fixed, but multiple images with those filters and integration times may be acquired. Similarly, IR channel observations can be dithered between images using internal tip/tilt mirror. If observations with different filters or exposure times are required, the astronomer must create a different obs file. Some examples are described below.
Each obs file consists of the following basic blocks:
Project ID Block:
SMARTS Project ID used to assign "ownership" of the data acquired to a particular project.
Target Block:
Contains the target name and coordinates (RA, Dec, and Equinox). In a generic multi-target observing template, the target name and coordinates will be omitted.
Observation Block:
Specifies the observing mode (DUAL, CCD-only, or IR-only), and the exposure parameters, as follows:
CCD Block with the CCD observing parameters (filter, exposure time, number of images to acquire, etc.), if required.
IR Block with the IR observing parameters (filter, exposure time, number of co-adds and sequential images, dithering parameters, etc.), if required.
While obs files have been primarily designed for efficient simultaneous CCD and IR imaging, they also provide a consistent and logical way to schedule single-channel observations (i.e., CCD-only or IR-only imaging) with ANDICAM. This allows us to simplify the suite of commands needed to take data in each of the ANDICAM's 3 modes, which in turn simplifies the work of the on-site observers and the queue manager. It also ensures that the unused detector channel is kept idle while the other is active.
A set of obs files for a given target can be executed in a specific sequence by creating an optional multi-observation script. This is most often done for complex multi-wavelength observations (e.g., UBVRI+JHK photometry), or for "survey" projects in which many targets are observed once in the same way using a set of pre-defined templates. A special web form is provided to help you create simple multi-observation scripts as part of the Phase II observing preparation process. Use of such scripts can greatly simplify the execution of your observations. Note that if you are creating multi-target obs files for survey-type projects, use of multi-observation scripts is required.
Once you have created all of the obs files (and any associated scripts) for your program, you need to submit them along with a set of detailed observing instructions to the queue manager for evaluation, scheduling, and implementation. This is done using a separate "Phase II Submission Form". See the Phase II Observing Program Electronic Submission Instructions for details [559].
Obs files are created in three steps using a multi-part web form. This form is accessed by logging into the Observing Preparation Tools pages (via the Phase II Front Page [560]) and using the Project ID assigned to your project when it was approved for implementation and scheduling.
The first step in creating a set of obs files for a target is to specify the information for the target proper. You have two basic options:
Single Target:
In which the obs file is to be used for a single, specific target. In this case you would enter the following information:
1. The name of the target.
2. The RA and Dec of the target, and the equinox of the coordinates.
3. Indicate whether the target is a solar system object (i.e., a moving target requiring ephemerides or other time-dependent sources of coordinates).
Multiple Targets:
In which the obs file is to be used as a generic observing template for many different targets that will share the same detectors, filters, and exposure times. In this case, no target information need be entered.
In addition, you need to also specify the imaging mode you wish to use, which is one of:
1. CCD-only (no IR imaging).
2. IR-only (no CCD imaging).
3. Dual CCD+IR Imaging (simultaneous imaging in both channels)
Once you have entered this information, hitting the "Next>" button on the form will pass you into the exposure parameter entry form.
After entering the target info, you will be given a blank form for entering the exposure parameters for the observations. As described above, obs files are used to perform unit observations with a given instrument configuration. These units can be combined into multi-part imaging "sequences" using Prospero scripts that execute each of the separate obs files in turn.
For example, to take BVI images of an object, you would create three separate obs files, one for each of the B, V, and I filters. You would then have the on-site observers execute the obs files one at a time by hand, or create a multi-observation script to execute them in a sequence (thus reducing three execution steps into one: executing the script).
Once you have entered the exposure parameters for a given configuration, hitting the "Next>" button will then validate and analyze the entries.
You will next be shown a summary of the observation parameters you entered on the previous form along with an execution time analysis. At this point you need to review the parameters for errors. The project PI's are responsible for making sure that everything is correct before submission. You can use the browser's "Back" button to return to the exposure parameter entry form, make changes, and iterate until everything is ready before submitting the final obs file.
The exposure parameters you entered on the previous form are analyzed to make an estimate of the total amount of time that will be required to execute the requested exposures sequence. This estimate includes the unit integration times in each channel, number of images to be acquired, detector reset and readout times, IR mirror dithering motion overheads, etc., as appropriate. In general, the estimates are good to about 5% or so. The estimates do not, however, include instrument configuration overheads (e.g., changing filters or entering user parameters like the object name and coordinates), telescope configuration, etc. These latter will add to the total time it takes to execute your observation program. In general, instrument-related overheads add only ~10 seconds for each target/instrument change.
The estimates provided by the execution time analysis are meant to serve two purposes:
1. To aid the proposer in optimizing 2-channel observation to minimize dead-time.
2. To provide guidance to the queue manager in scheduling the observations.
From the proposer's perspective, the first provides a way to make sure that time that could be spent collecting more photons is not wasted because the CCD and IR operations are mismatched. For example, you might find that your first choices of integration times leave 64s of "dead time" on the IR channel while the CCD is still integrating and reading out. The web tools provided allow you to assess the impact is of adding an extra 60-second IR image to the obs files to close the gap. The web tools have been designed to make this kind of optimization exercise straightforward.
If you need to adjust any of the exposure parameters, use the "Back" button on your browser to return to the exposure parameter entry form in Step 2, make the changes, and then repeat the validation step. You can iterate as often as you like until you get things the way you want them. This way you avoid making lots of intermediate files that pile up on the disk (you can always clean up later with the Obs File Manager, but why make extra work?
It bears repeating that the estimates of execution times do not include such factors as the time required to setup the observation (e.g., setting the filters, exposure times, object names, etc.), nor do they include the computer-to-disk data-transfer times. They only provide estimates of the time it takes to perform those operations that occur from the moment the first exposure in the sequence begins until the last image is readout. All of the other configuration and data-transfer overheads cannot be predicted with any precision, the former because it depends critically on the previous configurtion of the instrument, and the latter because the inter-machine data-transfer system has a roughly factor of 4 range of transfer speeds (roughly 1Mb/sec to 4Mb/sec) governed by such ineffibles as the disk caching, how busy the up/downstream machines are, etc. As such, the queue manager has to empirically estimate any additional overheads based on past experience, and the adjust the queue schedule accordingly on subsequent nights based on how long it takes the observers to execute the program in practice (e.g., using the times reported by the nightly data logs).
Telescope pointing, target acquisition, and guide-star acquisition/lock times are not known a priori, but in general, the official estimate is to allow 3 minutes per acquisition. This is a slight overestimate, but it works out in the final accounting, since it allows for greater or lesser degrees of difficulty that the observer will have pointing, focussing, setting guide stars, etc. This is the value the queue-scheduling team uses when working out the observing program for each night.
If your program requires a lot of additional operations, e.g., many offsets around the target position between observations, it will cost you in terms of total execution time. If your program proves to be excessively costly in additional overhead, the queue manager will contact you regarding how to modify your program to make it more efficient. Not surprisingly, difficult programs are also difficult to schedule and execute, and have higher overheads. Keeping it simple is a virtue.
If everything is satisfactory, you are then asked to give the obs file a name. Each project is assigned a unique working directory for its obs files, so there is little chance your files with collide with others, though care in choosing filenames is essential. Above all else, make filenames that are simple and descriptive.
By simple, we mean you must restrict yourself to letters and numbers; no ".", "_" or other special characters. Special characters (even those technically allowed by Unix) can cause problems with the data-taking system, and if your observation fails because it has an illegal filename syntax, the fault is yours not the systems!
Similarly, a filename should reflect as much as possible the contents of the file (without being so complicated as to be unusable). For example, if the obs file is to acquire simultaneous V and H band images of a star cluster named NGC007, you might name the obs file ngc007vh. Naming it "fred001" is not just perverse, it could potentially waste a lot of time, as who knows that "fred001" means "make V+H images of NGC007".
Remember that choosing simple, unique, descriptive names will help the on-site observers execute your program. If you make complicated names that are hard to type, it will slow down the process; please keep it simple (the filenames are ultimately for them, not you). The observing managers will ask observers to resubmit observation files with more meaningful names, or change names as required if they cause execution problems.
After selecting a name, save the final obs file to your project's working directory by hitting the "Save Obs File" button at the bottom of the form. The obs file is stored on disk where you can view it later with the Obs File Manager (which also provides tools for renaming and deleting files). You will also be shown a copy of the final, saved obs file on your browser screen. We recommend that you print out your browser screen with the final version for your records.
Safe Saving
To protect existing obs files for your project from accidental deletion, you are prevented from overwriting existing obs files with the form. If you try, the form will warn you and ask you to either (a) provide another, unique name and resubmit the form for processing, or (b) to go to the Obs File Manager and either delete or rename the existing file, and then resubmit the form again. Careful use of the "back" button on the browser lets you do this simply.
Making more than one obs file for a target
The multi-step process is designed to allow multiple iterations between any sets of forms, provided you take care to use the browser Back button and the various form buttons carefully. The target information (name and coordinates) are If you reload the form by following a link, bookmark, or other means, you will be given a blank form. By now simple web forms are familiar to most users, so this needs little detailed explanation.
Trouble? How to Get Help
No system is perfect. If you have problems using these forms please contact the SMARTS2 support personnel at Yale and describe your problem, the time it occurred, and any other info you think might help him debug things. The more feedback the better at this stage.
The following are descriptions of the entries in the obs file creation forms. These entries are accessible from within the forms themselves by clicking on the highlighted item. If you have come to this page from the web form, remember use the "Back" button on your browser to continue filling out the form in progress.
On logging into the Observing Preparation Tools pages, you need to provide your name and Project ID.
Your Name
To keep track of who created the obs files for a project, we ask you to enter your name in the box provided.
Project ID codes are assigned by the SMARTS scheduling committee when time is awarded on the SMARTS telescopes. Select your SMARTS Project ID from among the entries in the pull-down menu. If you don't know your ID number, or don't find it in the menu, contact the current queue manager or NOAO program coordinator (as appropriate) immediately.
The first form will ask you to enter the target name and coordinates, and the imaging mode to be used. Project PIs (or their CoIs) are responsible for entering the target name and coordinates correctly. Neither the queue manager nor the on-site observers will enter, validate or correct target names or coordinates. Although if there are problems with your coordinates, the queue manager will be in touch.
There are two types of observing template that can be created: single-target and multi-target.
If your obs file is to be used for one, specific target, you will be creating a "single-target obs file". In this case, check the "Single Target" box, and enter the Target Name and coordinates in the boxes provided, as follows:
Target Name
Enter the target name of the object you wish to observe. This is how the target name will appear in all observing logs and FITS image headers (the OBJECT keyword). The target name you enter in step 1 is carried forward through all subsequent obs file creation steps.
You can enter up target names up to 60 characters long (including spaces), but only the first 16 characters will appear in the observing logs (all 60 will appear in the image FITS headers).
Solar System Objects
If your target is a solar system object (i.e., a moving target), be sure to check the "Solar System Object" box. You will also need to provide both approximate coordinates for the object, as well as arranging to send the queue manager ephemerides for minor bodies (asteroids and moons) separately from this form.
Target RA, Dec, & Equinox
Enter the Right Ascension, Declination, and Equinox of the target. RA should be in hh:mm:ss.s format, and Declination in dd:mm:ss format. The sign of the declination goes in the first place, thus:
-00:00:32
+12:12:34
etc. are valid declinations. Please do not enter decimal coordinates.
The default equinox is J2000.0 coordinates, and we would prefer that you precess coordinates to J2000.0 before entering them here. If you cannot precess the coordinates, enter the Equinox in the box provided (e.g., 1950.0 for B1950.0 coordinates; omit the "J" or "B"). Use of non-2000 coordinates is greatly discouraged, as it could be overlooked by observers working through a long target list with 99% J2000 coordinates. Give them a break and precess them, please.
If your target is a solar system object, enter approximate coordinates for the observing season to assist in queue scheduling, and remember to check the "Solar System Object" box next to the Target Name. All of the planets are already in the 1.3m telescope's control system, but for minor planets or planetary moons you will have to provide the queue manager with an accurate ephemeris. Contact the queue manager [550] for instructions on how to submit ephemerides for solar system targets.
Note: There is apparently some confusion about the precise role of these coordinates in the data-taking process. They are not actually used by the data-taking system per-se (i.e., the data-taking system does not read the coordinates from the obs file and slew the telescope). Rather, they are there for two purposes: (1) to be used by the queue-management team as the "definitive" coordinates for your target, and (2) in cases of uncertainty at the telescope the observer will consult the obs file for a particular target to verify the coordinates against what is given on their nightly observing list. This sounds non-functional, but in fact it serves to "bind" the definitive coordinates to the observation template in an unambiguous fashion.
If your observing program requires multiple pointings within or around an object because it is larger than the ANDICAM field-of-view, the situation is more complicated. Such offset pointings must be treated as separate observations because the on-site observers must enter the new field coordinates by hand into the TCS, execute the telescope offset, and setup the autoguider separately for each subfield. None of these operations may be automated by way of obs files at the present time (and may not in fact be easy or possible in the future). There are a number of ways to go about doing this, so you will need to consult with ANDICAM core team members for recommendations as this is not a normal ANDICAM observing mode.
If you are creating a generic obs file to be used as a template for multiple targets that will share the same exposure times and filters, check this box to create a "multi-target obs file". No target name or coordinate info needs to be entered if this box is checked (and any entries you put into those boxes will be ignored by subsequent forms).
Multi-object observing template are most often used to take observations of many different targets in a "survey" style mode (see the Phase II Instructions [559] for a discussion). This is what you would use if you had a large list of objects that only need to be observed once (or only infrequently), but with different filter settings. A multi-observation script is then used to set the Target name separately, and you will be required to submit a separate coordinate list with your Phase II instructions.
Once you have selected single- or multiple-target mode, you must select the imaging mode for the observations. This is one of:
You may change the imaging mode used for a given template later by returning to Step 1 with the Back button on your browser. All of the stages in the form are designed to be as "re-entrant" as possible to make building sets of templates for the same object easier (no guarantees, it depends on which web browser you are using).
Having set the target parameters (single or multiple) and the base observing mode (CCD, IR, or Dual), the second form asks you to enter the CCD and/or IR imaging exposure parameters for your target for the imaging mode selected. This includes filter selection, and setting up the dithering parameters for IR imaging.
CCD Filter
Select a filter from the list provided. Only one CCD filter can be specified in a given obs file. To make a series of observations through more than one CCD filter, you need to create a separate obs file for each filter.
CCD Base Integration Time
Enter the integration time, in seconds, of a single CCD image. Integration times up to 1800s are allowed. You can integrate for longer than 1800s, but cosmic ray contamination becomes severe. There is no default integration time, and this field may not be left blank.
An integration time of 0 seconds will result in a "bias" or "zero" frame being acquired. If you do not wish to take CCD images with this obs file, back up to the target info form and select "IR-only Mode" as the Imaging Mode.
Number of CCD Images
Select the total number of CCD images to be acquired during this observation. Each CCD image will have the base integration time entered above. The total integration time will be the base CCD integration time multiplied by the number of CCD images. Default is 1 image. The total CCD integration time will be the number of CCD images times the base integration time.
NOTE: you cannot select 0 CCD images. If you do not wish to take CCD images with this obs file, back up to the target info form and select "IR-only Mode" as the Imaging Mode.
New to the 1.3m ANDICAM. The unbinned pixel scale at the CTIO 1.3m telescope is ~0.18 arcsec/pixel, necessitating that we bin the detector 2x2 pixels on-chip to get a more reasonable scale of ~0.37 arcsec/pixel.
As a consequence, CCD binning is no longer a user-selectable parameter at the 1.3m (this is a change from how we worked at the Yale 1-meter, and is not negotiable).
IR Filter
Select a filter from the list provided. Only one IR filter can be specified in a given obs file. To make a set of observations through more than one IR filter, you need to create a separate obs file for each filter.
IR Base Integration Time
Enter the integration time, in seconds, of a single IR array image. Times up to 1800s are allowed, but the background will typically saturate in a few minutes, especially at K. There is no default integration time, and this field may not be left blank.
The minimum IR detector integration time is 4 seconds. If you enter a base integration time between 0 and 4 seconds, you will get at 4 seconds of integration anyway. Above 4 seconds, the requested integration time will be achieved. See the ANDICAM manual for an explanation.
Number of IR Images
Select the total number of IR images to be acquired by this observation. Each IR image will have the base integration time entered above. Default is 1 image. The total effective IR integration time will be the number of IR images times the base integration time.
NOTE: You cannot select 0 IR images. If you do not wish to take IR images with this obs file, back up to the target info form and select "CCD-only Mode" as the Imaging Mode.
Number of CoAdds per IR image
Each IR image can be composed of a number of separate images averaged together ("co-added") in the detector control computer before being stored as a single image file on disk. Each IR CoAdd will have the base integration time entered above. For example, if you specify 5 IR images of 3 co-adds each, the instrument will acquire 15 images of the base integration time, averaging them in groups of 3, and storing them as 5 separate FITS files. Default is 1 Co-add/image.
In general, co-adding is most useful when a target is sufficiently bright that you are restricted to very short integration times to avoid saturation, and so would need a very large number of single images to build up sufficient signal. Co-adding helps build up signal while producing a reasonable number of final image files, and with the additional benefit of a slightly reduced overhead penalty compared to taking a large number of single images. The cumulative readout noise penalty, however, is the same regardless.
An internal tip-tilt mirror in the IR channel beam can be used to make small "dithering" offsets between IR images. Dithering is the standard way to reduce the effects of bad pixels and flat-field artifacts on the IR array by shifting and combining multiple images taken at slightly offset positions on the array. No dithering is done between IR Co-Adds.
To dither between images, check the "Dither between images" box, and select scale the dithering pattern ("dither scale") from the pull-down menu. The default dither scale is 40, which corresponds to a dither throw of approximately 20 arcseconds on the CTIO 1.3m telescope. This is the dither scale used for generation of IR dome flats, so this makes the most sense to use this for most observations. Dither scales range from 10 to 100 in steps of 10 (5-50 arcsec in steps of 5 arcsec). If you want to use another dither scale, you may need to arrange for additional flat-field calibration (at a cost to your time allocation).
The IR tip/tilt mirror dithers the image around the IR detector in a fixed hexagonal offset pattern. There are 7 dither positions: the first (1) centered on the array, and the following 6 (2-7) arranged in a lop-sided hexagon, stepped in (roughly) 120-degrees segments. The hexagon is lopsided due to the 45-degree difference between the tip/tilt actuator plane and the surface of the diagonal pickoff mirror. This pattern is repeated (modulo 7) until the total number of IR Images requested have been acquired. At the end of a dithering sequence, the mirror is returned to the home (centered) position. Tests at the telescope show that the dithering is repeatable to ~0.5 pixel (0.07 arcsec on this IR array).
If you do not wish to dither between images, check the "No Dithering between images" box. This will keep the IR tip/tilt mirror centered during the entire obs file's IR imaging sequence.
Once the exposure parameters have been entered in step 2, the obs file creation form generates the obs file and estimates the execution times for the CCD and/or IR images requested. You are asked to first validate your entries, using the estimated execution times to help adjust your exposure parameters to optimize your observations, and then select a filename for the obs file and save it to your project's working disk.
IMPORTANT NOTE:
Filenames must be kept "simple": only letters (a-z & A-Z) and numbers (0-9) are allowed. All other characters are forbidden (i.e., it cannot contain any of the following:
"'()[]{}-+_=.,:;|\/?><~!@#$%^&*
even though a few of these are are technically allowed by Unix!). Please remember that the observer has to type the name, sometimes many times, so think of them when you make up filenames. Difficult filenames can lead to errors and slow down observing, and will be changed by the queue management team without asking you.
The estimated execution times give the approximate amount of real time required to execute the requested exposures, from the first detector array reset until the end of the last detector readout (not including any instrument or telescope configuration overheads). The various data-acquisition overheads were measured during engineering runs in January/February 2003 with the new ANDICAM setup, and yield estimates based on our CCD and IR Array readout models that are accurate to within 5%. Be warned, your mileage *will* vary, so don't expend too much effort time optimizing out the last second of dead time in dual-channel observations - reality *will* have the last word. For those interested in factoring in instrument configuration overheads, at most this amounts to 10-seconds per observing template (assming change of name, filter, exposure time, etc.). Telescope pointing, target acquition, and guide-star acquisition/lock times are totally up for grabs. If your program requires a lot of hand offsets around the field, it will cost total observation execution time. If your program proves excessively costly in overhead, the queue manager will contact you regarding modification of your program.
This estimate takes into account:
1. The base integration time per CCD image.
2. The number of CCD images requested.
3. The time required to readout the CCD (vertical and horizontal clocking times and the readout amp integration time per pixel).
4. The number of readout amplifiers being used (2 at present, not user-selectable).
5. The pre-exposure "setup" overhead, including array erase cycles (~6-sec independent of binning).
For example, a single, full-frame, 2x2 binned 1024x1024 CCD image requires approximately 47 seconds over and above the base integration time to erase and readout the array. Future operation with 2-amplifier readout should reduce this to 20-odd seconds.
Taking many short exposures incurs a greater readout "penalty" compared to taking fewer longer exposures to achieve the same total integration time. For example, a single 300 second full-frame, unbinned image will require approximately 347 seconds to execute, while dividing the 300 seconds of integration time into two (2) exposures of 150 seconds each requires 394 seconds (~14% more time). Doing three exposures of 100 seconds each would require ~441 seconds to execute (27% more time).
This estimate takes into account the following:
1. The base integration time per IR image (the minimum integration time is 4 seconds).
2. The number of IR images requested.
3. The number frames co-added per IR image requested.
4. IR setup, readout, and post-processing (pre-read minus post-read math) overheads amounting to about 20 seconds.
5. The tip/tilt mirror overhead if dithering between images (approx. 2 seconds/position).
The algorithm for computing the execution time of IR images is complicated by execution latencies encountered during readout and storage due to the finite clock interval allowed in the hardware. In general, the times computed are good to 5%, although if a large number of images (>10) has been requested with a comparable number of co-adds per image, the calculator will systematically underestimate the total execution time by as much as 10% due to cumulative small latencies in the system.
Each ANDICAM project is assigned a private directory on the queue server for storing their observation template files.
This field asks you to provide a filename for your new obs file. The filenames of obs files should be kept simple (i.e., only letters and number: NO SPECIAL CHARACTERS), and should reflect as much as possible the contents of the file. For example, if the obs file is to acquire simultaneous V and H band images of a star cluster named NGC007, you might name the obs file ngc007vh. Including the object name in the filename like this helps to ensure relatively unique names, and makes it easy to know what file is doing what by just looking at the name. You only have to look at a few of these files, the operations staff has to handle hundreds! Give us a break, please!
Filenames are case sensitive, and may contain only letters and numbers, NO SPECIAL CHARACTERS (e.g., +, -, _, etc.) ARE ALLOWED (even though technically Unix might allow quite complex filenames). Please remember that the observers have to type them, sometimes many times a night, so complex or confusing filenames can cause problems, and will be changed to simpler names if they are crazy.
If the filename you provide will overwrite an existing obs file in your directory, you will be given a warning and asked to confirm that you really want to overwrite the existing file. Detailed instructions are provided if this occurs.
Note that the obs files will be given the .obs files extension automatically by the web forms, so do not include a file extension with the filename you type in the box provided.
Once you have a set of Obs files created, you can later go back and edit them with the Obs File Editor. This form will read in the contents of a existing Obs file and let you modify the entries, either to replace an old Obs file or to create a new Obs file using an old one as a template. In cases where readout or overhead times change substantially (e.g., in September 2000), the editor can be used to re-evaluate old Obs files and modify them to reduce deadtime in DUAL mode.
The basic entries are the same as on the Obs file creation form described above. The one potential point of confusion is if you are editing an Obs file that was originally either CCD-only or IR-only imaging mode. In these cases, the editor form provides boxes for the unused channel (after entries for the active channel). These entries will be ignored unless you decide to change the imaging mode as part of your editing session. It's easier to try than read about, trust me, you'll figure it out.
After a while, you can get quite a collection of Obs files. To provide a way to manage these semi-sensibly, we have provided the Obs File Manager Form [555]. The file manager is a table-based web form that shows you all of the obs files that have been created for your project, and lets you view, delete, or rename individual files. This lets you clean up after making your obs files, fix ugly filenames, etc., without having to go back through the creation or editor forms.
Obs files "deleted" from the active list are moved to the wastebasket for your project, where they are held until you decide to either delete them once and for all, or to "undelete" them and return them to the active list. If there are any files in your project's wastebasket when you open up the file manager, they will appear in a separate "wastebasket table" beneath the table of active files. This is a safety feature to prevent you from accidentally deleting obs files (you can delete them, we just make you think about it first).
Editing existing obs files is not an option during the early parts of the testing phases (the file parser is not working yet), but we hope to have something working eventually.
The instructions for using the File Manager are described in a separate document [555].
This is an obs file to take one 300-second CCD image of MB99018 with the I-band filter. The IR channel is kept idle during the observation (CCD-only mode).
# Prospero Observation Template File
# Created: 2003 Feb 9 [13:35:50] by saveobs.pl Version 1.5
# For: R. Pogge
#
PROJECT=OS03001
IMGTYPE=OBJECT
OBJECT=MB99018
RA=18:01:07.7
DEC=-28:31:41
EQUINOX=2000.0
MODE=CCD
#
# CCD Imaging Parameters
#
# Estimated Execution Time: 347 sec
#
CCD:
FILTER=0 # I
EXPTIME=300.0
NIMGS=1
END
This obs file takes a sequence of five (5) 60-second images at K of a Seyfert 1 galaxy, dithering between images with a dither scale of 20 units (about 10 arcsec). The CCD channel is kept idle during this observation (IR-only mode).
# Prospero Observation Template File
# Created: 2003 Feb 7 [13:27:45] by saveobs.pl Version 1.5
# For: Rick Pogge (OSU)
#
PROJECT=OS03011
IMGTYPE=OBJECT
OBJECT=Mrk 1347 K
RA=12:39:47.3
DEC=-23:27:16.0
EQUINOX=2000.0
MODE=IR
#
# IR Imaging Parameters
#
# Estimated Execution Time: 410 sec
#
IR:
FILTER=3 # K
EXPTIME=60.0
NCOADDS=1
NIMGS=5
DITHER=T
DSCALE=20
END
This obs file takes simultaneous V and K-band images of 47 Tucanae, one 180-sec integration at V and three 60-sec integrations at K, dithering by a factor of 40 between IR images.
# Prospero Observation Template File
# Created: 2003 Feb 7 [13:41:59] by saveobs.pl Version 1.5
# For: bailyn
#
PROJECT=YA03001
IMGTYPE=OBJECT
OBJECT=47 tuc
RA=00:26:00
DEC=07:02:22
EQUINOX=2000.0
MODE=DUAL
#
# CCD Imaging Parameters
#
# Estimated Execution Time: 227 sec
#
CCD:
FILTER=6 # V
EXPTIME=180.0
NIMGS=1
#
# IR Imaging Parameters
#
# Estimated Execution Time: 246 sec
#
IR:
FILTER=3 # K
EXPTIME=60.0
NCOADDS=1
NIMGS=3
DITHER=T
DSCALE=40
END
Note that there is approximately 19 seconds of "deadtime" between the IR and CCD images. Attempting to optimize the difference by more than 10-20 seconds, however, is usually a waste as this time can easily be consumed by various system latencies that are unpredictable (some dual-channel operations must execute serially instead of in parallel).
This is a multi-target obs file used to take simultaneous V and H-band images. No target name or coordinates are given because it is to be used on a number of different targets generically. Here, we take one 180-sec integration at V and three 60-sec integrations at H, dithering by 50 units between the successive IR images.
# Prospero Observation Template File
# Created: 2003 Mar 2 [14:21:34] by saveobs.pl Version 2.0
# For: pogge
#
PROJECT=OSU-TOO
IMGTYPE=OBJECT
MODE=DUAL
#
# CCD Imaging Parameters
#
# Estimated Execution Time: 227 sec
#
CCD:
FILTER=6 # V
EXPTIME=180.0
NIMGS=1
#
# IR Imaging Parameters
#
# Estimated Execution Time: 246 sec
#
IR:
FILTER=2 # H
EXPTIME=60.0
NCOADDS=1
NIMGS=3
DITHER=T
DSCALE=50
END
Note that unlike all of the other example obs files shown thus far, there are no OBJECT=, RA=, DEC=, or EQUINOX= entries. This makes the obs file "generic" in the sense that it can be used for any target. Such a generic obs file can only be executed by an accompanying multi-observation script that will prompt for the target name, and run any other multi-target obs files that are part of a sequence to be executed for each target in the program. Executing it without such a script will result in either a blank object name (bad), or with the object name of the last target observed (worse). See the Phase II Instructions for details.
If you came here from one of the entry forms, use the "BACK" button on your browser to return to the obs file generation form in progress.
Updated: 2006 May 11 [rwp/osu]
Contents: | |
1. | Overview |
2. | The Entry Page |
3. | File Manager Table Entries |
4. | Wastebasket Table Entries |
SMARTS Consortium
CTIO 1.3m Telescope ANDICAM Observation Template File Manager Instructions
Once you have created a set of Observation Template files ("obs files" for your program, you can delete or rename them using the Observation Template File Manager Form. This form shows you a table with all of the obs files that have been created for your project, and lets you view, delete, or rename individual files. This lets you clean up after making your obs files, fix ugly filenames, etc., without having to go back through the creation step.
Obs files "deleted" from the active list are moved to the wastebasket for your project, where they are held until you decide to either delete them once and for all or to "undelete" them and return them to the active list. If there are any files in our project's wastebasket, they will appear in a separate "wastebasket table" beneath the table of active files in the file manager form. This is a safety feature to prevent you from accidentally deleting obs files.
Each time the "Delete/Rename Marked Files" button is pressed, the file manager tables are regenerated, and a synopsis of any actions taken is printed. If there were errors, they appear in red below the buttons.
This page describes the Obs File Manager form and its contents.
Entrance into the File Manager is via a page with simple pull-down menu with the current list of approved ANDICAM projects. Select your project ID from among the entries in the pull-down menu, and click on the "Next>" button to see the obs files for that project. If you don't know your ID number, or don't find it, contact the current queue manager.
Project ID codes are assigned by the SMARTS scheduling committee when time is awarded with ANDICAM on the CTIO 1.3m telescope. Obs files are sorted by SMARTS Project ID Numbers. If there are no obs files in your project's working directory, you will be told this, otherwise, you will be shown a table of the obs files for your project.
At this time, it has not yet been decided whether or not the PI directories will be protected by passords assigned by the queue management team. This will mean that only Project PIs (and the queue management team) can use the web forms to view or manipulate a project's files. For now, the vagueries of web "security" being as they are, no protection works better than any protection at all. (Failure to grant access to PIs is not an option).
The following are brief descriptions of the entries in the Obs File Manager Table. These descriptions are also accessible by from within the form by clicking on the highlighted item.
If you have come to this page from the manager form, remember use the "Back" button on your browser to return to the form from whence you came.
Obs File (Column 1)
The names of all active obs files found in your project's working directory are shown in this column. Only the files for your project are shown.
To view the contents of an obs file, click on the highlighted filename. You can also save it to your local disk using "Shift+Click".
If you click on this radio button, you will mark the obs file for deletion. Once you have marked all of the files you wish to delete, you can press the "Delete/Rename Marked Files" button to delete them.
The "deleted" file is moved to the wastebasket, where it is held until it is either (a) expunged (deleted forever) either individually or by emptying the wastebasket, or (b) it is undeleted and restored to the active obs file list.
If you click on this radio button, you will mark the obs file for renaming. You will need to enter new name for the file in the New Name box in Column 4.
Note that deletion and renaming are mutually exclusive (they are both "radio buttons").
New Name Box (Column 4)
If you are Renaming an obs file, enter the new filename in this box. New files names follow the same rules for old files names, and names up to 16 characters long are allowed. There is no need to type the ".obs" extension, that will be added by the file manager automatically.
Once you have marked all of the files you wish to rename, you can press the "Delete/Rename Marked Files" button to rename them.
Warning! The file manager form will not let you rename a file so as to overwrite an existing file. However, if the new name is that of a file that you are also Deleting with the manager in this session, file deletion operation is done before renaming, so there should be no problem.
Files that are "deleted" from the active obs file list are moved to a "Wastebasket". This allows you to undelete a file later if you decide it shouldn't have been marked for deletion, or to delete it forever by "expunging" it from the wastebasket, at which point it will be physically deleted from the disk. These descriptions are also accessible by from within the Wastebasket table form by clicking on the highlighted items.
If you have come to this page from the manager form, remember use the "Back" button on your browser to return to the form from whence you came.
Trash File (Column 1)
The names of defunct obs files found in your project wastebasket are listed in this column. Only the files for your project are shown.
To view the contents of an obs file in the wastebasket, click on the highlighted filename. You can also save it to your local disk using "Shift+Click".
If you click on this radio button, you will mark the file for expunging from the wastebasket. "Expunging" a file from the wastebasket means it is deleted from the system and gone forever.
If you click on this radio button, you will mark the defunct obs file in the wastebasket for un-deletion. This means it will be restored to the list of "active" obs files, and available for implementation.
Note that expunging and un-deletion are mutually exclusive (they are both "radio buttons").
Undelete To box(Column 4)
If you are Undeleting a file in the wastebasket, you can give it a new name at the same time. By default, if this box is left empty, the file will recover its original name when undeleted. If this might overwrite an existing file with the same name, you can give it a new name.
Warning! The file manager form will not let you undelete a file so as to overwrite an existing file. However, if the new name is that of a file that you are also Deleting from the active list in this session, file deletion operation is done before undeletion, so there should be no problem.
By checking the Empty Wastebasket check box at the top of the Wastebasket table, you will mark all files in the wastebasket for final, irretrievable deletion. Any files marked with to undelete below will be ignored.
Note: Emptying the wastebasket is final, there are no recovery options once it is empty!
If you came here from one of the entry forms, use the "BACK" button on your browser to return to the obs file manager form in progress.
Updated: 2003 January 29 [rwp/osu]
ANDICAM Phase II Observing Preparation Tools [557]
ANDICAM Instrument & Detector Characteristics [495] [OSU]
ANDICAM Filters [561]
ANDICAM Data Products [494]
SMARTS2 and ANDICAM Contact Information [558]
ANDICAM Email Lists [512]
SMARTS2 Consortium [90]
1.3m Telescope [532]
ANDICAM [548] home
Yale University's 1.0 meter telescope was automated by the Astronomical Research Institute (ARI https://www.astro-research.org/ [562]). It is operated with NASA funding to recover and follow-up NEOs.
The CTIO/Yale 1-meter telescope is an f/10 reflecting telescope with a closed tube Cassegrain design. It is controlled using a custom Comsoft PC-TCS/DCS system which includes full automation of the dome. A CTIO-built autoguider (with a fixed-position CCD guide camera) was installed in early 2004. From June 1998 until September 2002, the 1.0-m was used by the YALO consortium with the OSU-built ANDICAM [548] dual optical/IR imager. When the ANDICAM [548] was moved to the CTIO 1.3-m [563] as part of the SMARTS collaboration startup in 2003, the 1.0-m sat idle until a new 12-position filter wheel and CCD was installed by OSU in March 2003.
From July 2005 until the present, the 1.0-m has been equipped with the dedicated STA 4064x4064 CCD known as Y4KCam [564]. Prior to July 2005, the 1.0-m was equipped with a 512x512 Apogee AP7 CCD [565] . The 1.0-m is equipped with a 12 position filter wheel using 4"x4" filters. Available filters include BVRcIc (standard CTIO/KPNO Kron-Cousins set), SDSS ugriz, and U+CuSO4. The complete suite of filters available is listed here [103].
For more information, please see the 1.0m website [566].
SMARTS Y4KCam website [567]
Y4KCam is a 4Kx4K optical CCD optimized for wide-field broad-band imaging. It has a 12-position filter wheel and uses a corrector lens (doubling as the dewar window) that provides a nearly undistorted 20x20-arcminute field of view for UBVRI imaging. The CCD has excellent blue sensitivity, especially at U-band.
Detector Parameters | |
Pixels | 4064x4064 |
Pixel Scale | 0.289"/pixel |
Field Size | 20'x20' |
The CCD is operated using multiple amplifier readout (quad). There is no region-of-interest capability.
Conversion Gain | : 1.38 electrons/DN | |
Readout Noise | : 6.6 electrons (rms) per quadrant | |
Linearity | : <1% linear to 42,000 ADU above bias | |
Full Well | : ~66,000 electrons | |
Acquisition Overheads: | ||
1x1 binning | : 51 sec | |
2x2 binning | : 16 sec | |
4x4 binning | : <5 sec |
Additional CCD characteristics can be found at the Ohio State Y4KCam Detector page [568].
Gain and Readout noise measurements by quadrant (2010 April 28) are
(1,1) +------+------+ | | | | Q1 | Q2 | | | | +------+------+ | | | | Q3 | Q4 | | | | +------+------+ Q1: g=1.33 e-/ADU ron=7.12 e- Q2: g=1.33 e-/ADU ron=6.91 e- Q3: g=1.43 e-/ADU ron=6.01 e- Q4: g=1.45 e-/ADU ron=6.53 e-
These gain numbers are consistent with the last measurement in August 2007, but the measurement of the readout noise is improved (better method not a better CCD!). This number is inline with expectations for the STA0500 detector.
The CCD conversion gain and readout noise are measured using Janesick's Photon Transfer method, using pairs of biases and a sequence of pairs of flat-field images taken with 1 to 300 second exposures running from low level to at or near saturation.
The gain and readout noise vary from quadrant-to-quadrant, as expected for 4 independent readout amplifiers, ranging from 1.33 to 1.45 e-/ADU. The nominal 1.4 e-/ADU quoted above represents a round average of the 4 quadrants that should be useful for exposure time estimates based on predicted photon fluxes at the detector.
Prior to 2007 February, readout noise was dominated by a 60Hz pickup noise which resulted in an effective readout noise of ~15 electrons per quadrant. This noise source was eliminated by identifying and electrically isolating the offending component, in this case the camera power supply leaking dirty power from the telescope. Now bias images are much cleaner and yield a high-quality 2D bias frame from a median of 5-10 zero images. Recent measurements put the readout noise at about 6.6 electrons.
Examination of overexposed star images (saturated but not pushed past full-well and "bleeding") on raw images shows that the nominal full-well saturation occurs at about 50000ADU, or about 44000ADU above bias, corresponding to about 66,000 electrons full-well depth for a nominal gain of 1.4 e-/ADU.
Tests during February 2007 show that the shading correction function has been stable on a few-year timescale. We recommend that a set of shading correction data be taken only once per semester and stored on the data-taking computer at the 1-meter as well as in the Yale respository.
Data were taken during February 2011 to calculate correction coefficients. Those coefficients and brief instructions on the correction methodology can be found here [578].
Please refer to the Prospero Observer's Guide for the Y4KCam [579] for a complete discussion of data acquisition procedures. For previous users of Y4KCam, this Quick Guide [580] may be helpful as a refresher.
There is a nice package of IRAF-based scripts written by Phil Massey for the Y4KCam that can be found at his website [581]. In addition, IRAF's QUADPROC can also be used if a keyword file is added to the header. This file (binning 1x1 [582] or 2x2 [583]) can be added to the fits headers using IRAF script noao.artdata.mkheader. Please note that, to do standardized photometry with Y4KCam, it is necessary to take sky flats to get the full FOV sufficiently flat (see Phil Massey's note [584] on the subject).
SMARTS Nightly Observing Logs
1.5-m | 1.3-m | 1.0-m | 0.9-m | |
2011 | 1.3-m Logs 2011 [585] | 1.0-m Logs 2011 | ||
2010 | --- | 1.3-m Logs 2010 [586] | 1.0-m Logs 2010 | |
--- | ||||
2009 | --- | 1.3-m Logs 2009 [587] | 1.0-m Logs 2009 | |
--- | ||||
2008 | --- | 1.3-m Logs 2008 [588] | 1.0-m Logs 2008 | |
--- | ||||
2007 | --- | 1.3-m Logs 2007 [589] | 1.0-m Logs 2007 | |
--- | ||||
2006 | --- | 1.3-m Logs 2006 [590] | 1.0-m Logs 2006 | |
1.5-m Logs 2006A [591] | ||||
2005 | 1.5-m Logs 2005B [592] | 1.3-m Logs 2005 [593] | 1.0-m Logs 2005 | |
1.5-m Logs 2005A [594] | ||||
2004 | 1.5-m Logs 2004B [595] | 1.3-m Logs 2004 [596] | 1.0-m Logs 2004 [597] | |
1.5-m Logs 2004A [598] | ||||
2003 | 1.5-m Logs 2003B [599] | 1.3-m Logs 2003 [600] | ||
--- |
The creation of official nightly logs on the 1.5m did not begin until mid-November, 2003. Logs prior to this point can be found here [601]. Also, logs for dates after May 9, 2006 can be found in the same place.
ANDICAM began SMARTS operations on the CTIO 1.3m telescope on 2003 Feb 3.
ANDICAM nightly observing logs contain a list of all images acquired during a given night. Observing logs are filed by the local date at the start of the observing night. For example, to find the observing logs for the night that began the evening of 2003 June 12 and ended at sunrise on June 13, you would consult the observing log dated 2003 June 12 (20030612.log).
SMARTS2 operations began in January 2006. ANDICAM operations at the CTIO 1.3m telescope began as part of the original SMARTS consortium on 2003 February 3 and ran through 2005 December.
Observing logs are generated automatically by the AutoLog program running as part of the data-taking system and are updated automatically at 10am Eastern Time.
Observing logs are organized by month. Within each month the logs are filed by "Observing Date", which is defined as the local date at the start of the observing night. For example, to see what was observed during the night that began at sunset on 2010 June 12 and ended at sunrise on June 13, you would look at the log for 2010 June 12.
Logs are updated automatically at 10am Eastern Time.
CTIO 1.0m operations did not begin until 2004 May 12.
This is the book page to refer to old pages containing plate logs per month.
1969 Plate logs for 1.5-m Telescope
January 1969 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time |
Emulsion | Filtro | Seeing | Observer | Date | Object | Re- marks |
CTIO |
17 | 05 09 42 | - 68 49 | 15 m | lla - O | GG 385 | 2" | B . Bok | 31 01 69 | NGC 1854 | |||
18 | 05 09 42 | - 68 49 | 30 m | lla - O | UG 2 | 2" | B . Bok | 31 01 69 | NGC 1854 | |||
19 | 05 09 42 | - 68 49 | 30 m | 103a - D | GG 495 | 2" | B . Bok | 31 01 69 | NGC 1854 | |||
20 | 05 40 00 | - 69 04 | 45 m | 103a - E | R G 610 | 2" | B . Bok | 31 01 69 | 30 Dor. | |||
21 | 11 39 05 | - 61 54 | 15 m | lla - O | GG 385 | 2" | B . Bok | 31 01 69 | HD 101545 | |||
22 | 11 39 05 | - 61 54 | 45 m | lla - O | UG 2 | 2" | B . Bok | 31 01 69 | HD 101545 | |||
23 | 11 39 05 | - 61 54 | 45 m | 103a - D | GG 495 | 4.5" | B . Bok | 31 01 69 | HD 101545 |
Last Updated on 8/27/99
By Guerra & Marin
February 1969 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp.Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
24 | 05 07 44 | - 69 05.7 | 10 m | 103a - D | GG 495 | 2" | B . Bok | 01 02 69 | Sec Tifft | |||
25a | 05 07 44 | - 69 05.7 | 07 m | lla - O | GG 385 | 2" | B . Bok | 01 02 69 | Sec Tifft | |||
25b | 05 07 44 | - 69 05.7 | 45 m | lla - O | UG 2 | 2.5" | B . Bok | 01 02 69 | Sec Tifft | |||
26 | 05 22 28 | - 68 00.3 | 10 m | 103a - D | GG 495 | 2.5" | B . Bok | 01 02 69 | NGC 1927 | Broken Ok" ? | CTIO | |
27a | 05 22 28 | - 68 00.3 | ? | lla - O | UG 2 | 2.5" | B . Bok | 01 02 69 | NGC 1927 | |||
27b | 05 22 28 | - 68 00.3 | 07 m | lla - O | GG 385 | 1.5 | B . Bok | 01 02 69 | NGC 1927 | Broken Ok" | CTIO | |
28 | 10 18 54 | - 56 03.4 | 10 m | 103a - D | GG 495 | 3" | B . Bok | 01 02 69 | ? | |||
29a | 10 18 54 | - 56 03.4 | 07 m | lla - O | GG 385 | 3" | B . Bok | 01 02 69 | ? | |||
29b | 10 18 54 | - 56 03.4 | 45 m | lla - O | UG 2 | 3" | B . Bok | 01 02 69 | ? | |||
30 | 11 36 33 | - 63 12.4 | 10 m | 103a - D | GG 495 | 3" | B . Bok | 01 02 69 | IC 2944 | |||
31a | 11 36 33 | - 63 12.4 | 07 m | lla - O | GG 385 | 2.5" | B . Bok | 01 02 69 | IC 2944 | |||
31b | 11 36 33 | - 63 12.4 | 40 m | lla - O | UG 2 | 2" | B . Bok | 01 02 69 | IC 2944 |
Last Updated on 8/27/99
By Guerra & Marin
April 1969 Plate logs for 1.5-m telescope
Plate | N.N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
32 | 16 52 15 | -42 52 | 01 m | lla - O | - | Every Body | 29 04 69 | NGC 6231 | focus plate |
Last Updated on 8/27/99
By Jorge Marin
June 1969 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
89 | 17 23 06 | - 48 27 | 01 m | 103a - O | GG 385 | Hartwick | 09 06 69 | NGC 6352 | focus plate | |||
90 | 12 22 30 | - 72 31 | 15 m | 103a - O | GG 385 | Hartwick | 09 06 69 | NGC 4372 | ||||
91 | 12 20 31 | - 72 31 | 01 m | 103a - D | GG 495 | Hartwick | 09 06 69 | NGC 4372 | focus plate | |||
92 | 12 20 31 | - 72 31 | 45 m | 103a - D | GG 495 | Hartwick | 09 06 69 | NGC 4372 | ||||
93 | 12 20 30 | - 72 31 | 30 m | 103a - D | GG 495 | Hartwick | 09 06 69 | NGC 4372 | ||||
94 | 12 20 30 | - 72 31 | 30 m | 103a - O | GG 385 | Hartwick | 09 06 69 | NGC 4372 | ||||
95 | 17 21 48 | - 17 49 | 60 m | 103a - O | GG 385 | Hartwick | 09 06 69 | NGC 6356 | Broken Ok" | |||
96 | 17 21 48 | - 17 49 | 60 m | 103a - D | GG 495 | Hartwick | 09 06 69 | NGC 6356 | ||||
97 | 17 21 30 | - 48 25 | 15 m | 103a - D | GG 495 | Hartwick | 09 06 69 | NGC 6352 | ||||
98 | 17 21 30 | - 48 25 | 15 m | 103a - D | GG 495 | Hartwick | 09 06 69 | NGC 6352 | ||||
99 | 17 21 30 | - 48 25 | 15 m | 103a - O | GG 385 | Hartwick | 09 06 69 | NGC 6352 | ||||
100 | 17 21 30 | - 48 25 | 15 m | 103a - O | GG 385 | Hartwick | 09 06 69 | NGC 6352 | ||||
101 | 12 23 00 | - 72 24 | 103a - O | GG 385 | Hartwick | 15 06 69 | NGC 4372 | focus plate | CTIO | |||
102 | 12 23 00 | - 72 24 | 103a - O | GG 385 | Hartwick | 15 06 69 | NGC 4372 | focus plate | ||||
103 | 12 23 00 | - 72 24 | 15 m | 103a - O | GG 385 | Hartwick | 15 06 69 | NGC 4372 | ||||
104 | 12 23 00 | - 72 24 | 15 m | 103a - D | GG 495 | Hartwick | 15 06 69 | NGC 4372 | ||||
105 | 17 20 00 | - 17 46 | 30 m | 103a - D | GG 495 | Hartwick | 15 06 69 | NGC 6356 | ||||
106 | 17 20 00 | - 17 46 | 30 m | 103a - O | GG 385 | Hartwick | 15 06 69 | NGC 6356 | ||||
107 | 17 21 36 | - 48 26 | 30 m | 103a - O | GG 385 | Hartwick | 15 06 69 | NGC 6352 | ||||
108 | 17 21 36 | - 48 26 | 30 m | 103a - D | GG 495 | Hartwick | 15 06 69 | NGC 6352 | ||||
109 | 17 21 36 | - 48 26 | 15 m | 103a - D | GG 495 | Hartwick | 15 06 69 | NGC 6352 | ||||
110 | 17 21 36 | - 48 26 | 30 m | 103a - D | GG 495 | Hartwick | 15 06 69 | NGC 6352 | focus plate | CTIO | ||
111 | 17 21 36 | - 48 26 | 30 m | 103a - D | GG 495 | Hartwick | 15 06 69 | NGC 6352 | ||||
112 | 17 21 36 | - 48 26 | 15 m | 103a - D | GG 495 | Hartwick | 15 06 69 | NGC 6352 | ||||
113 | 17 21 36 | - 48 26 | 15 m | 103a - O | GG 385 | Hartwick | 15 06 69 | NGC 6352 | ||||
114 | 17 21 36 | - 48 26 | 15 m | 103a - O | GG 385 | Hartwick | 15 06 69 | NGC 6352 | ||||
115 | 17 21 36 | - 48 26 | 15 m | 103a - D | GG 495 | Hartwick | 15 06 69 | NGC 6352 | ||||
116 | 12 23 00 | - 72 24 | 60 seg | 103a - D | GG 495 | Hartwick | 16 06 69 | NGC 4372 | focus plate | CTIO | ||
117 | 12 23 00 | - 72 24 | 60 seg | 103a - D | GG 495 | Hartwick | 16 06 69 | NGC 4372 | focus plate | CTIO | ||
118 | 12 23 00 | - 72 24 | 30 seg | 103a - D | GG 495 | Hartwick | 16 06 69 | NGC 4372 | focus plate | CTIO | ||
119 | 12 23 00 | - 72 24 | 30 m | 103a - D | GG 495 | Hartwick | 16 06 69 | NGC 4372 | ||||
120 | 18 00 00 | - 30 02 | 30 m | 103a - O | GG 385 | Hartwick | 16 06 69 | NGC 6522 | Broken Ok" | CTIO | ||
121 | 18 00 00 | - 30 02 | 30 m | 103a - O | GG 385 | Hartwick | 16 06 69 | NGC 6522 | CTIO | |||
122 | 17 20 00 | - 17 46 | 30 m | 103a - D | GG 495 | Hartwick | 16 06 69 | NGC 6356 | ||||
123 | 17 21 00 | - 48 26 | 01 m | 103a - D | GG 495 | Hartwick | 16 06 69 | NGC 6352 | focus plate | |||
124 | 17 21 00 | - 48 26 | 30 m | 103a - D | GG 495 | Hartwick | 16 06 69 | NGC 6352 | ||||
125 | 18 00 00 | - 30 02 | 30 m | 103a - O | GG 385 | Hartwick | 16 06 69 | NGC 6522 | CTIO | |||
126 | 18 00 00 | - 30 02 | 30 m | 103a - O | GG 385 | Hartwick | 16 06 69 | NGC 6522 | CTIO | |||
127 | 17 21 00 | - 48 26 | 103a - O | GG 385 | Hartwick | 16 06 69 | NGC 6352 | focus plate | CTIO | |||
128 | 17 21 00 | - 48 26 | 30 m | 103a - O | GG 385 | Hartwick | 16 06 69 | NGC 6352 | ||||
129 | 17 46 48 | - 37 02 | 15 m | 103a - O | GG 385 | Hartwick | 16 06 69 | NGC 6441 | ||||
130 | 17 46 48 | - 37 02 | 15 m | 103a - D | GG 495 | Hartwick | 16 06 69 | NGC 6441 | ||||
131 | 17 46 48 | - 37 02 | 05 m | 103a - D | GG 495 | Hartwick | 16 06 69 | NGC 6441 | ||||
132 | 17 46 48 | - 37 02 | 05 m | 103a - O | GG 385 | Hartwick | 16 06 69 | NGC 6441 | ||||
133 | 18 00 00 | - 30 02 | 30 m | 103a - O | GG 385 | Hartwick | 16 06 69 | NGC 6522 | Broken Ok" | CTIO | ||
134 | 18 00 00 | - 30 02 | 30 m | 103a - D | GG 495 | Hartwick | 16 06 69 | NGC 6522 | CTIO | |||
135 | 18 00 00 | - 30 02 | 25 m | 103a - O | GG 385 | Hartwick | 16 06 69 | NGC 6522 | Broken Ok" | CTIO | ||
136 | 18 00 00 | - 30 02 | 30 m | 103a - O | GG 385 | Hartwick | 16 06 69 | NGC 6522 | Destroyed | CTIO |
Last Updated on 8/27/99
By Guerra & Marin
August 1969 Plate logs for 1.5-m telescope
Plate | N.N. | R.A. | Dec | Exp Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
137 | 11 38 00 | -45 36 | 15 m | 103a - O | none | Mintz/Blanco | 16 08 69 | 1620 Geographos | ||||
138 | 11 38 00 | -45 37 | 15 m | 103a - O | none | Mintz/Blanco | 17 08 69 | 1620 Geographos | ||||
139 | 11 53 00 | -47 24 | 15 m | 103a - O | none | Mintz/Blanco | 18 08 69 | 1620 Geographos | ||||
140 | 11 53 00 | -47 24 | 15 m | 103a - O | none | Mintz/Blanco | 18 08 69 | 1620 Geographos | ||||
141 | 12 10 43 | -49 12.7 | 15 m | 103a - O | none | Mintz/Blanco | 19 08 69 | 1620 Geographos | ||||
142 | 12 10 43 | -49 12.7 | 15 m | 103a - O | none | Mintz/Blanco | 19 08 69 | 1620 Geographos | ||||
143 | 12 32 04 | -51 02.5 | 15 m | 103a - O | none | Mintz/Blanco | 20 08 69 | 1620 Geographos | ||||
144 | 12 32 04 | -51 02.5 | 15 m | 103a - O | none | Mintz/Blanco | 20 08 69 | 1620 Geographos | ||||
145 | 12 58 03 | -56 42.4 | 15 m | 103a - O | none | Mintz/Blanco | 21 08 69 | 1620 Geographos | ||||
146 | 12 58 03 | -56 42.4 | 15 m | 103a - O | none | Mintz/Blanco | 21 08 69 | 1620 Geographos | ||||
147 | 12 58 03 | -56 42.4 | 05 m | 103a - O | none | Mintz/Blanco | 21 08 69 | 1620 Geographos |
Last Updated on 8/27/99
Jorge Marin
September 1969 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp.Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
148 | 17 58 36 | - 25 00 | 35 m | 103a - O | UG 2 | Hiltner / Blanco | 04 09 69 | GX 5 - 1 | ||||
149 | 17 58 36 | - 25 00 | 117 m | 103a - O | UG 2 | Hiltner / Blanco | 06 09 69 | GX 5 - 1 | ||||
150 | 17 58 36 | - 25 00 | 20 m | 103a - E | GG 385 | Hiltner / Blanco | 06 09 69 | GX 5 - 1 | ||||
151 | 00 51 15 | - 26 56.3 | 20 m | lla - O | UG 2 | Hiltner / Blanco | 06 09 69 | NGC 288 | ||||
152 | 00 51 15 | - 26 56.3 | 10 m | 103a - D | GG 495 | Hiltner / Blanco | 06 09 69 | NGC 288 | ||||
153 | 00 51 15 | - 26 56.3 | 20 m | lla - O | UG 2 | Figueroa | 06 09 69 | NGC 288 | ||||
154 | 00 51 15 | - 26 56.3 | 10 m | 103a - D | GG 495 | 3" | Figueroa | 06 09 69 | NGC 288 | |||
155 | 00 13 30 | - 39 23 | 45 m | lla - O | none | Figueroa | 06 09 69 | NGC 55 | ||||
156 | 05 39 06 | - 69 09 | 45 m | lla - O | UG 2 | Figueroa | 06 09 69 | 30 Dor. |
Last Updated on 8/27/99
By Guerra & Marin
October 1969 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
157 | 01 01 23 | - 73 54 | 30 m | 103a - O | GG 385 | Landi | 07 10 69 | S M C RF | Broken Ok" | |||
158 | 01 01 23 | - 73 54 | 30 m | 103a - O | GG 385 | Landi | 07 10 69 | S M C RF | ||||
159 | 23 16 00 | - 72 00 | 30 m | 103a - O | GG 385 | Landi | 07 10 69 | Center Zona F1 | ||||
160 | 01 01 23 | - 73 54 | 30 m | 103a - O | GG 385 | Landi | 07 10 69 | S M C RF | ||||
161 | 01 01 23 | - 73 54 | 30 m | 103a - D | GG 495 | Landi | 07 10 69 | S M C RF | ||||
162 | 01 07 00 | - 73 02 | 30 m | 103a - D | GG 495 | Landi | 07 10 69 | SMC cum 419 | ||||
163 | 01 01 23 | - 73 54 | 30 m | 103a - D | GG 495 | Landi | 07 10 69 | S M C RF | ||||
164 | 01 01 23 | - 73 54 | 30 m | 103a - O | GG 385 | Landi | 07 10 69 | S M C RF | ||||
165 | 02 17 00 | - 70 40 | 30 m | 103a - O | GG 385 | Landi | 07 10 69 | Zona A II | ||||
166 | 01 01 23 | - 73 54 | 30 m | 103a - O | GG 385 | Landi | 07 10 69 | S M C RF | ||||
167 | 23 16 00 | - 72 00 | 30 m | 103a - O | GG 385 | Landi | 08 10 69 | Zona CF l | Broken Ok" | |||
168 | 01 01 23 | - 73 54 | 40 m | 103a - O | GG 385 | Landi | 08 10 69 | S M C RF | ||||
169 | 01 01 23 | - 73 54 | 40 m | 103a - D | GG 495 | Landi | 08 10 69 | S M C RF | ||||
170 | 23 16 00 | - 72 00 | 30 m | 103a - O | GG 385 | Landi | 08 10 69 | Zona CF l | ||||
171 | 01 01 23 | - 73 54 | 35 m | 103a - D | GG 495 | Landi | 08 10 69 | S M C RF | ||||
172 | 01 07 00 | - 73 02 | 35 m | 103a - O | GG 385 | Landi | 08 10 69 | SMC cum 419 | ||||
173 | 01 07 00 | - 73 02 | 25 m | 103a - O | GG 385 | Landi | 08 10 69 | SMC cum 419 | ||||
174 | 01 01 23 | - 73 54 | 25 m | 103a - O | GG 385 | Landi | 08 10 69 | S M C RF | ||||
175 | 01 01 23 | - 73 54 | 30 m | 103a - D | GG 495 | Landi | 08 10 69 | S M C RF | ||||
176 | 01 07 00 | - 73 02 | 30 m | 103a - D | GG 495 | Landi | 08 10 69 | SMC cum 419 | ||||
177 | 01 01 23 | - 73 54 | 25 m | 103a - O | GG 385 | Landi | 08 10 69 | S M C RF | ||||
178 | 17 59 42 | - 20 32 | 106 m | 103a - O | UG 2 | Landi | 10 10 69 | GX 9 + 1 | ||||
179 | 17 59 42 | - 20 32 | 10 m | 103a - D | GG 495 | Landi | 10 10 69 | GX 9 + 1 | ||||
180 | 17 59 48 | - 25 20 | 96 m | 103a - O | UG 2 | Landi | 11 10 69 | GX 5 - l | ||||
181 | 17 59 48 | - 25 20 | 10 m | 103a - D | GG 495 | Landi | 11 10 69 | GX 5 - l | ||||
182 | 01 01 23 | - 73 54 | 35 m | 103a - O | GG 385 | 3" | Landi | 11 10 69 | S M C RF | |||
183 | 01 07 00 | - 73 02 | 35 m | 103a - O | GG 385 | Landi | 11 10 69 | SMC cum 419 | ||||
184 | 01 07 00 | - 73 02 | 25 m | 103a - O | GG 385 | Landi | 11 10 69 | SMC cum 419 | ||||
185 | 01 01 23 | - 73 54 | 25 m | 103a - O | GG 385 | Landi | 11 10 69 | S M C RF | ||||
186 | 23 16 00 | - 72 00 | 30 m | 103a - O | GG 385 | Landi | 11 10 69 | Zona CF l | ||||
187 | 02 17 00 | - 70 40 | 30 m | 103a - O | GG 385 | Landi | 11 10 69 | Zona A II | ||||
188 | 01 01 23 | - 73 54 | 30 m | 103a - O | GG 385 | Landi | 11 10 69 | S M C RF | ||||
189 | 01 01 23 | - 73 54 | 35 m | 103a - O | GG 385 | 4" | Landi | 11 10 69 | S M C RF | |||
190 | 01 01 23 | - 73 54 | 35 m | 103a - O | GG 385 | Landi | 13 10 69 | S M C RF | ||||
191 | 23 16 00 | - 72 00 | 30 m | 103a - O | GG 385 | Landi | 13 10 69 | Zona CF l | ||||
192 | 01 01 23 | - 73 54 | 35 m | 103a - D | GG 495 | Landi | 13 10 69 | S M C RF | ||||
193 | 01 07 21 | - 73 02 | 35 m | 103a - D | GG 495 | Landi | 13 10 69 | SMC cum 419 | ||||
194 | 01 07 21 | - 73 02 | 40 m | 103a - O | UG 2 | Landi | 13 10 69 | SMC cum 419 | ||||
195 | 01 01 23 | - 73 54 | 40 m | 103a - O | UG 2 | Landi | 13 10 69 | S M C RF | ||||
196 | 01 01 23 | - 73 54 | 35 m | 103a - O | GG 385 | Landi | 13 10 69 | S M C RF | ||||
197 | 01 07 21 | - 73 02 | 35 m | 103a - O | GG 385 | Landi | 13 10 69 | SMC cum 419 | ||||
198 | 01 01 23 | - 73 54 | 35 m | 103a - O | GG 385 | Landi | 13 10 69 | S M C RF |
Last Updated on 8/27/99
By Guerra & Marin
November 1969 Plate logs for 1.5-m telescope.
Plate | N. N. | R. A. | Dec | Exp.Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
199 | 00 25 42 | - 71 41 | 60 m | 103a - O | GG 385 | J. Graham | 02 11 69 | NGC 121 | ||||
200 | 01 49 06 | - 73 51 | 60 m | 103a - O | GG 385 | J. Graham | 02 11 69 | Lindsay 133 | ||||
201 | 03 44 36 | - 71 45 | 60 m | 103a - O | GG 385 | J. Graham | 02 11 69 | NGC 1466 | ||||
202 | 02 25 42 | - 71 41 | 60 m | 103a - O | GG 385 | J. Graham | 02 11 69 | NGC 121 | ||||
203 | 02 25 42 | - 71 41 | 60 m | 103a - O | GG 385 | J. Graham | 03 11 69 | NGC 121 | ||||
204 | 01 49 06 | - 73 51 | 60 m | 103a - O | GG 385 | J. Graham | 03 11 69 | Lindsay 133 | ||||
205 | 03 44 36 | - 71 45 | 60 m | 103a - O | GG 385 | J. Graham | 03 11 69 | NGC 1466 | ||||
206 | 02 25 42 | - 71 41 | 70 m | 103a - O | GG 385 | J. Graham | 03 11 69 | NGC 121 | ||||
207 | 01 49 06 | - 73 51 | 60 m | 103a - O | GG 385 | J. Graham | 03 11 69 | Lindsay 133 | ||||
208 | 03 44 36 | - 71 45 | 60 m | 103a - O | GG 385 | J. Graham | 03 11 69 | NGC 1466 | ||||
209 | 18 00 24 | - 30 02 | 30 m | lla - O | GG 385 | J. Hesser | 04 11 63 | NGC 6522 | CTIO | |||
210 | 20 52 30 | - 12 34.5 | 30 m | lla - O | GG 385 | J. Hesser | 04 11 63 | NGC 6994 | ||||
211 | 20 52 30 | - 12 34.5 | 30 m | 103a - D | GG 495 | J. Hesser | 04 11 63 | NGC 6994 | ||||
212 | 03 27 00 | - 53 00 | 100 m | 103a - D | GG 495 | J. Hesser | 04 11 63 | Klemola 8 | ||||
213 | 07 48 42 | - 38 17 | 30 m | 103a - D | GG 495 | J. Hesser | 04 11 63 | NGC 2447 | ||||
214 | 07 48 42 | - 38 17 | 30 m | lla - O | GG 385 | J. Hesser | 04 11 63 | NGC 2447 | ||||
215 | 07 48 42 | - 38 17 | 30 m | lla - O | GG 385 | J. Hesser | 04 11 63 | NGC 2447 | ||||
216 | 07 48 42 | - 38 17 | 30 m | 103a - D | GG 495 | J. Hesser | 04 11 63 | NGC 2447 | ||||
217 | 18 00 24 | - 30 02 | 45 m | 103a - O | GG 385 | J. Hesser | 05 11 63 | NGC 6522 | Broken Ok" | CTIO | ||
218 | 20 52 30 | - 12 34.5 | 30 m | 103a - O | GG 385 | J. Hesser | 05 11 63 | NGC 6994 | ||||
219 | 20 52 30 | - 12 34.5 | 16 m | 103a - D | GG 495 | J. Hesser | 05 11 63 | NGC 6994 | ||||
220 | 00 23 00 | - 72 00 | 15 m | 103a - D | GG 495 | J. Hesser | 05 11 63 | 47 Tuc | ||||
221 | 00 23 00 | - 72 00 | 15 m | lla - O | GG 385 | J. Hesser | 05 11 63 | 47 Tuc | ||||
222 | 00 23 00 | - 72 00 | 15 m | 103a - D | GG 495 | J. Hesser | 05 11 63 | 47 Tuc | ||||
223 | 00 23 00 | - 72 00 | 15 m | 103a - O | GG 385 | J. Hesser | 05 11 63 | 47 Tuc | Destroyed | |||
224 | 07 48 42 | - 38 17 | 30 m | 103a - O | GG 385 | J. Hesser | 05 11 63 | NGC 2447 | ||||
225 | 07 48 42 | - 38 17 | 30 m | 103a - O | GG 385 | J. Hesser | 05 11 63 | NGC 2447 | ||||
226 | 07 48 42 | - 38 17 | 30 m | 103a - D | GG 495 | J. Hesser | 05 11 63 | NGC 2447 | ||||
227 | 00 25 42 | - 71 41 | 60 m | 103a - O | GG 385 | J. Graham | 07 11 69 | NGC 121 | ||||
228 | 01 49 06 | - 73 51 | 15 m | 103a - O | GG 385 | J. Graham | 07 11 69 | Lindsay 133 | ||||
229 | 00 25 42 | - 71 41 | 60 m | 103a - O | GG 385 | J. Graham | 07 11 69 | NGC 121 | ||||
230 | 18 00 24 | - 30 02 | 30 m | 103a - O | GG 385 | J. Hesser | 09 11 69 | NGC 6522 | Destroyed | CTIO | ||
231 | 20 52 30 | - 12 34.5 | 30 m | 103a - O | GG 385 | J. Hesser | 09 11 69 | NGC 6994 | ||||
232 | 20 52 30 | - 12 34.5 | 30 m | 103a - D | GG 495 | J. Hesser | 09 11 69 | NGC 6994 | ||||
233 | 03 27 00 | - 53 00 | 90 m | 103a - O | GG 385 | J. Hesser | 09 11 69 | Klemola 8 | ||||
234 | 07 48 42 | - 38 17 | 60 m | 103a - O | GG 385 | J. Hesser | 09 11 69 | NGC 2447 | ||||
235 | 07 48 42 | - 38 17 | 60 m | 103a - D | GG 495 | J. Hesser | 09 11 69 | NGC 2447 | ||||
236 | 07 48 42 | - 38 17 | 10 m | 103a - O | GG 385 | J. Hesser | 09 11 69 | NGC 2447 | ||||
237 | 01 09 06 | - 32 19 | 45 m | 103a - O | GG 385 | M. Smith | 10 11 69 | Klemola 1 | ||||
238 | 01 09 06 | - 32 19 | 90 m | 103a - D | GG 495 | M. Smith | 10 11 69 | Klemola 1 | ||||
239 | 03 15 42 | - 54 18 | 120 m | 103a - D | GG 495 | M. Smith | 10 11 69 | Klemola 7 | ||||
240 | 02 45 30 | - 35 19 | 90 m | 103a - D | GG 495 | M. Smith | 10 11 69 | Klemola 3 | ||||
241 | 02 45 30 | - 35 19 | 90 m | 103a - O | GG 385 | M. Smith | 11 11 69 | Klemola 3 | ||||
242 | 03 15 42 | - 54 18 | 48 m | 103a - O | GG 385 | M. Smith | 11 11 69 | Klemola 7 | ||||
243 | 00 25 42 | - 71 41 | 60 m | 103a - O | GG 385 | J. Graham | 12 11 69 | NGC 121 | ||||
244 | 01 49 06 | - 73 51 | 60 m | 103a - O | GG 385 | J. Graham | 12 11 69 | Lindsay 133 | ||||
245 | 04 59 00 | - 66 01 | 60 m | 103a - O | GG 385 | J. Graham | 12 11 69 | NGC 1783 | ||||
246 | 00 25 42 | - 71 41 | 60 m | 103a - O | GG 385 | J. Graham | 12 11 69 | NGC 121 | bad plate | |||
247 | 03 44 36 | - 71 45 | 55 m | 103a - O | GG 385 | J. Graham | 12 11 69 | NGC 1466 | ||||
248 | 04 59 00 | - 66 01 | 55 m | 103a - O | GG 385 | J. Graham | 12 11 69 | NGC 1783 | ||||
249 | 00 47 56 | - 25 25 | 45 m | 103a - O | none | V. Blanco | 14 11 69 | NGC 2453 | Plate 11 X 14 | |||
250 | 02 38 18 | - 34 39 | 45 m | 103a - O | none | V. Blanco | 14 11 69 | Fornax | Plate 11 X 14 | |||
251 | 05 39 00 | - 69 06.8 | 20 m | 103a - O | none | V. Blanco | 14 11 69 | Tarantula | Plate 11 X 14 | |||
252 | 05 39 00 | - 69 06.8 | 20 m | 103a - O | none | V. Blanco | 14 11 69 | Tarantula | Plate 11 X 14 | |||
253 | 05 22 28 | - 68 00.3 | 20 m | 103a - O | none | V. Blanco | 14 11 69 | NGC 1927 | Plate 11 X 14 | |||
219 |
Last Updated on 8/27/99
By Guerra & Marin
December 1969 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp.Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
254 | 05 39 00 | - 69 11.9 | 15 m | lla - O | UG 2 | 2" - 3" | Mendoza | 02 12 69 | R 136 | |||
255 | 05 39 00 | - 69 11.9 | 85 m | I N hip. | RG 695 | 2" - 3" | Mendoza | 02 12 69 | R 136 | |||
256 | 05 39 00 | - 69 11.9 | 45 m | I N hip. | RG 695 | 3" | Mendoza | 02 12 69 | R 136 | |||
257 | 04 59 00 | - 66 01 | 30 m | 103a - O | none | 2" | Graham | 03 12 69 | NGC 1783 | |||
258 | 05 09 00 | - 69 00 | 30 m | 103a - O | none | 2" | Graham | 03 12 69 | Boktifft | |||
259 | 04 59 00 | - 66 01 | 30 m | 103a - O | none | 1.5" | Graham | 03 12 69 | NGC 1783 | |||
260 | 05 09 00 | - 69 00 | 30 m | 103a - O | none | 1.5" | Graham | 03 12 69 | Boktifft | |||
261 | 04 59 00 | - 66 01 | 30 m | 103a - O | none | 1.5" | Graham | 03 12 69 | NGC 1783 | |||
262 | 05 09 00 | - 69 00 | 30 m | 103a - O | none | 1" | Graham | 03 12 69 | Boktifft | |||
263 | 04 59 00 | - 66 01 | 30 m | 103a - O | none | 1" | Graham | 03 12 69 | NGC 1783 | |||
264 | 05 09 00 | - 69 00 | 30 m | 103a - O | none | 2.5" | Graham | 03 12 69 | Boktifft | |||
265 | 04 59 00 | - 66 01 | 30 m | 103a - O | none | 2.5" | Graham | 04 12 69 | NGC 1783 | |||
266 | 05 09 00 | - 69 00 | 30 m | 103a - O | none | 2" | Graham | 04 12 69 | Boktifft | |||
267 | 04 59 00 | - 66 01 | 30 m | 103a - O | none | 2" | Graham | 04 12 69 | NGC 1783 | |||
268 | 05 09 00 | - 69 00 | 30 m | 103a - O | none | 2" | Graham | 04 12 69 | Boktifft | |||
269 | 04 59 00 | - 66 01 | 30 m | 103a - O | none | 2" | Graham | 04 12 69 | NGC 1783 | |||
270 | 05 09 00 | - 69 00 | 30 m | 103a - O | none | 2" | Graham | 04 12 69 | Boktifft | |||
271 | 04 59 00 | - 66 01 | 30 m | 103a - O | none | 1" | Graham | 04 12 69 | NGC 1783 | |||
272 | 05 09 00 | - 69 00 | 31 m | 103a - O | none | 1" | Graham | 04 12 69 | Boktifft | |||
273 | 04 59 00 | - 66 01 | 30 m | 103a - O | none | 1" | Graham | 04 12 69 | NGC 1783 | |||
274 | 00 22 36 | - 72 14 | 40 m | 103a - O | none | 2" | Graham | 05 12 69 | 47 Tucan | |||
275 | 04 59 00 | - 66 01 | 30 m | 103a - O | none | 2" | Graham | 05 12 69 | NGC 1783 | |||
276 | 05 09 00 | - 69 00 | 30 m | 103a - O | none | 2" | Graham | 05 12 69 | Boktifft | |||
277 | 04 59 00 | - 66 01 | 30 m | 103a - O | none | 2" - 3" | Graham | 05 12 69 | NGC 1783 | |||
278 | 05 09 00 | - 69 00 | 30 m | 103a - O | none | 2" - 3" | Graham | 05 12 69 | Boktifft | |||
279 | 04 59 00 | - 66 01 | 30 m | 103a - O | none | 2" - 3" | Graham | 05 12 69 | NGC 1783 | |||
280 | 05 09 00 | - 69 00 | 30 m | 103a - O | none | 1.5" | Graham | 05 12 69 | Boktifft | |||
281 | 04 59 00 | - 66 01 | 30 m | 103a - O | none | 1.5" | Graham | 05 12 69 | NGC 1783 | |||
282 | 05 09 00 | - 69 00 | 30 m | 103a - O | none | 1.5" | Graham | 05 12 69 | Boktifft | |||
283 | 04 59 00 | - 66 01 | 30 m | 103a - O | none | 1.5" | Graham | 05 12 69 | NGC 1783 | |||
284 | 03 10 54 | - 55 25 | 10 m | 103a - D | GG 495 | Contreras | 14 12 69 | NGC 1261 | ||||
285 | 03 10 54 | - 55 25 | 30 m | 103a - O | GG 385 | Contreras | 14 12 69 | NGC 1261 | ||||
286 | 03 13 23 | - 55 21 | 20 m | 103a - O | GG 385 | Contreras | 14 12 69 | NGC 1261 | ||||
287 | 03 13 23 | - 55 21 | 20 m | 103a - D | GG 495 | Contreras | 14 12 69 | NGC 1261 | ||||
288 | 07 17 00 | - 24 50 | 05 m | 103a - O | GG 385 | Contreras | 14 12 69 | NGC 2362 | ||||
289 | 07 17 00 | - 24 50 | 20 m | 103a - O | GG 385 | Contreras | 15 12 69 | NGC 2362 | ||||
290 | 07 17 00 | - 24 50 | 20 m | 103a - D | GG 495 | Contreras | 15 12 69 | NGC 2362 | ||||
291 | 07 17 00 | - 24 50 | 20 m | 103a - D | GG 495 | Contreras | 15 12 69 | NGC 2362 | ||||
292 | 07 17 00 | - 24 50 | 20 m | 103a - O | GG 385 | Contreras | 15 12 69 | NGC 2362 | ||||
293 | 07 17 00 | - 24 50 | 20 m | 103a - D | GG 495 | Contreras | 15 12 69 | NGC 2362 | ||||
294 | 05 12 24 | - 40 05 | 20 m | 103a - O | GG 385 | Contreras | 15 12 69 | NGC 1851 | ||||
295 | 05 12 24 | - 40 05 | 20 m | 103a - D | GG 495 | Contreras | 15 12 69 | NGC 1851 | ||||
296 | 13 25 00 | - 47 09 | 20 m | 103a - O | GG 385 | Contreras | 15 12 69 | Omega Cen | ||||
297 | 03 10 54 | - 55 25 | 10 m | 103a - O | GG 385 | Contreras | 15 12 69 | NGC 1261 | ||||
298 | 03 10 54 | - 55 25 | 20 m | 103a - D | GG 495 | Contreras | 16 12 69 | NGC 1261 | ||||
299 | 03 10 54 | - 55 25 | 10 m | 103a - O | GG 385 | Contreras | 16 12 69 | NGC 1261 | ||||
300 | 03 10 54 | - 55 25 | 20 m | 103a - D | GG 495 | Contreras | 16 12 69 | NGC 1261 | ||||
301 | 05 12 00 | - 44 05 | 10 m | 103a - O | GG 385 | Contreras | 16 12 69 | NGC 1851 | ||||
302 | 05 12 00 | - 44 05 | 20 m | 103a - D | GG 495 | Contreras | 16 12 69 | NGC 1851 | ||||
303 | 05 12 00 | - 44 05 | 10 m | 103a - O | GG 385 | Contreras | 16 12 69 | NGC 1851 | ||||
304 | 07 17 00 | - 24 50 | 05 m | 103a - O | GG 385 | Contreras | 16 12 69 | NGC 2362 | ||||
305 | 07 17 00 | - 24 50 | 15 m | 103a - O | UG 2 | Contreras | 16 12 69 | NGC 2362 | ||||
306 | 07 17 00 | - 24 50 | 10 m | 103a - D | GG 495 | Contreras | 16 12 69 | NGC 2362 | ||||
307 | 09 10 54 | - 64 39 | 20 m | 103a - D | GG 495 | Contreras | 16 12 69 | NGC 2808 | ||||
308 | 09 10 54 | - 64 39 | 10 m | 103a - O | GG 385 | Contreras | 16 12 69 | NGC 2808 |
Last Updated on 8/27/99
By Jorge Marin
1970 Plate logs for 1.5-m
February 1970 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
311 | 04 59 00 | - 66 01 | 30 m | 103a - O | none | Graham | 04 02 70 | NGC 1783 | ||||
312 | 05 09 00 | - 69 00 | 30 m | 103a - O | none | Graham | 04 02 70 | Bok tifft | ||||
313 | 04 59 00 | - 66 01 | 30 m | 103a - O | none | Graham | 04 02 70 | NGC 1783 | ||||
314 | 05 09 00 | - 69 00 | 30 m | 103a - O | none | Graham | 04 02 70 | Bok tifft | ||||
315 | 04 59 00 | - 66 01 | 30 m | 103a - O | none | Graham | 04 02 70 | NGC 1783 | ||||
316 | 08 56 30 | - 28 41 | 15 m | 103a - O | GG 385 | Graham | 04 02 70 | K 1 - 2 | ||||
317 | 09 40 00 | - 54 00 | 04 m | lla - O | GG 385 | Graham | 04 02 70 | Field | ||||
318 | 09 40 00 | - 54 00 | 05 m | 103a - D | GG 495 | Graham | 04 02 70 | Field | ||||
319 | 11 12 00 | - 61 05 | 60 m | 103a - E | RG 610 | Graham | 04 02 70 | NGC 3603 | ||||
320 | 10 44 00 | -59 26 | 20 m | 103a - E | RG 610 | Graham | 04 02 70 | Eta Carina | ||||
321 | 04 59 00 | - 66 01 | 30 m | 103a - O | none | Graham | 05 02 70 | NGC 1783 | ||||
322 | 05 05 30 | - 69 26 | 30 m | 103a - O | none | Graham | 05 02 70 | NGC 1835 | ||||
323 | 04 59 00 | - 66 01 | 30 m | 103a - O | none | Graham | 05 02 70 | NGC 1783 | ||||
324 | 05 09 00 | - 69 00 | 30 m | 103a - O | none | Graham | 05 02 70 | Bok tifft | ||||
325 | 04 59 00 | - 66 01 | 30 m | 103a - O | none | Graham | 05 02 70 | NGC 1783 | ||||
326 | 08 56 30 | - 28 41 | 20 m | lla - D | GG 495 | J Graham | 05 02 70 | K 1 - 2 | Numeracion correcta | |||
327 | 09 40 00 | - 54 00 | 05 m | lla - O | GG 385 | J Graham | 05 03 70 | Vela Field | Numeracion correcta | |||
328 | 09 40 00 | - 54 00 | 05 m | 103a - D | GG 495 | J Graham | 05 02 70 | Vela Field | Numeracion correcta | |||
329 | 11 00 00 | - 62 00 | 60 m | lla - O | none | J Graham | 05 02 70 | Carina | Numeracion correcta | |||
330 | 13 23 27 | - 42 45.7 | 20 m | 103a - O | none | Smith | 09 02 70 | NGC 5128 | Numeracion correcta | |||
331 | 13 23 27 | - 42 45.7 | 10 m | 103a - O | none | Smith | 09 02 70 | NGC 5128 | Numeracion correcta | |||
332 | 13 23 27 | - 42 45.7 | 160 m | 103a - O | none | Smith | 09 02 70 | NGC 5128 | Numeracion correcta | |||
326 | 09 25 18 | - 52 50.8 | 04 m | 103a - D | GG 495 | Miller | 08 02 70 | HD 81848 | Numeracion ??? | |||
327 | 09 25 18 | - 52 50.8 | 04 m | 103a - D | GG 495 | Miller | 08 02 70 | HD 81848 | ||||
328 | 09 25 18 | - 52 50.8 | 20 m | 103a - D | GG 495 | Miller | 08 02 70 | HD 81848 | ||||
329 | 09 25 18 | - 52 50.8 | 15 m | 103a - O | GG 385 | Miller | 08 02 70 | HD 81848 | ||||
330 | 09 25 18 | - 52 50.8 | 45 m | 103a - O | UG 2 | Miller | 08 02 70 | HD 81848 | ||||
331 | 10 58 54 | - 60 17 | 45 m | 103a - O | UG 2 | Miller | 08 02 70 | HD 95414 | ||||
332 | 10 58 54 | - 60 17 | 15 m | 103a - O | GG 385 | Miller | 08 02 70 | HD 95414 | ||||
333 | 10 58 54 | - 60 17 | 20 m | 103a - D | GG 495 | Miller | 08 02 70 | HD 95414 | ||||
334 | 12 10 42 | - 62 47 | 20 m | 103a - D | GG 495 | Miller | 08 02 70 | HD 106068 | ||||
335 | 12 10 42 | - 62 47 | 15 m | 103a - O | GG 385 | Miller | 08 02 70 | HD 106068 | ||||
336 | 12 10 42 | - 62 47 | 45 m | 103a - O | UG 2 | Miller | 08 02 70 | HD 106068 | ||||
337 | 15 50 48 | - 53 04 | 45 m | 103a - O | UG 2 | Miller | 08 02 70 | Norma lll | ||||
338 | 15 50 48 | - 53 04 | 15 m | 103a - O | GG 385 | Miller | 08 02 70 | Norma lll | ||||
339 | 15 50 48 | - 53 04 | 20 m | 103a - D | GG 495 | Miller | 08 02 70 | Norma lll | ||||
340 | 15 50 48 | - 53 04 | 10 m | 103a - D | GG 495 | Miller | 08 02 70 | Norma lll | ||||
341 | 15 50 48 | - 53 04 | 15 m | 103a - O | UG 2 | Miller | 08 02 70 | Norma lll | ||||
342 | 09 25 00 | - 52 51 | 05 m | 103a - O | GG 385 | Miller | 09 02 70 | HD 81848 | ||||
343 | 09 25 00 | - 52 51 | 10 m | 103a - D | GG 495 | Miller | 09 02 70 | HD 81848 | ||||
344 | 09 25 00 | - 52 51 | 15 m | 103a - O | UG 2 | Miller | 09 02 70 | HD 81848 | ||||
345 | 09 40 12 | - 53 58 | 45 m | 103a - O | UG 2 | Miller | 09 02 70 | HD 84092 | ||||
346 | 09 40 12 | - 53 58 | 15 m | 103a - O | GG 385 | Miller | 09 02 70 | HD 84092 | ||||
347 | 09 40 12 | - 53 58 | 20 m | 103a - D | GG 495 | Miller | 09 02 70 | HD 84092 | ||||
348 | 09 40 12 | - 53 58 | 15 m | 103a - O | UG 2 | Miller | 09 02 70 | HD 84092 | ||||
349 | 11 30 12 | - 60 31 | 60 m | lla - O | UG 2 | Miller | 09 02 70 | SA 193 | Broken Ok" | CTIO | ||
350 | 11 30 12 | - 60 31 | 20 m | lla - O | GG 385 | Miller | 09 02 70 | SA 193 | CTIO | |||
351 | 11 30 12 | - 60 31 | 15 m | 103a - D | GG 495 | Miller | 09 02 70 | SA 193 | CTIO | |||
352 | 11 30 12 | - 60 31 | 04 m | 103a - D | GG 495 | Miller | 09 02 70 | SA 193 | ||||
353 | 12 11 00 | - 62 47 | 30 m | lla - O | UG 2 | Miller | 09 02 70 | HD 106068 | ||||
354 | 12 11 00 | - 62 47 | 10 m | lla - O | GG 385 | Miller | 09 02 70 | HD 106068 | ||||
355 | 12 11 00 | - 62 47 | 04 m | 103a - D | GG 495 | Miller | 09 02 70 | HD 106068 | ||||
356 | 15 50 48 | - 53 04 | 10 m | 103a - D | GG 495 | Miller | 09 02 70 | Norma lll | ||||
357 | 15 50 48 | - 53 04 | 04 m | lla - O | GG 385 | Miller | 09 02 70 | Norma lll | ||||
358 | 15 50 48 | - 53 04 | 20 m | lla - O | UG 2 | Miller | 09 02 70 | Norma lll | ||||
359 | 15 50 06 | - 56 14.4 | 30 m | lla - O | UG 2 | Miller | 09 02 70 | Norma ll | ||||
360 | 09 39 18 | - 54 04.7 | 60 m | lla - O | UG 2 | Miller | 10 02 70 | HD 84092 | ||||
361 | 10 19 54 | - 55 55.6 | 30 m | lla - O | UG 2 | Miller | 10 02 70 | HD 89890 | ||||
362 | 10 19 54 | - 55 55.6 | 10 m | lla - O | GG 385 | Miller | 10 02 70 | HD 89890 | ||||
363 | 10 19 54 | - 55 55.6 | 04 m | 103a - D | GG 495 | Miller | 10 02 70 | HD 89890 | CTIO | |||
364 | 10 58 48 | - 60 16.6 | 04 m | 103a - D | GG 495 | Miller | 10 02 70 | HD 95414 | ||||
365 | 10 58 48 | - 60 16.6 | 10 m | lla - O | GG 385 | Miller | 10 02 70 | HD 95414 | ||||
366 | 10 58 48 | - 60 16.6 | 30 m | lla - O | UG 2 | Miller | 10 02 70 | HD 95414 | ||||
367 | 11 30 12 | - 60 32 | 30 m | lla - O | UG 2 | Miller | 10 02 70 | SA 193 | ||||
368 | 11 30 12 | - 60 32 | 10 m | lla - O | GG 385 | Miller | 10 02 70 | SA 193 | ||||
369 | 12 10 42 | - 62 32 | 10 m | 103a - D | GG 495 | Miller | 10 02 70 | HD 106068 | ||||
370 | 14 19 00 | - 60 48 | 05 m | 103a - D | GG 495 | Miller | 10 02 70 | HD 125206 | ||||
371 | 14 19 00 | - 60 48 | 10 m | lla - O | GG 385 | Miller | 10 02 70 | HD 125206 | ||||
372 | 14 19 00 | - 60 48 | 30 m | lla - O | UG 2 | Miller | 10 02 70 | HD 125206 | ||||
373 | 15 55 30 | - 54 15.7 | 30 m | lla - O | UG 2 | Miller | 10 02 70 | Norma l | ||||
374 | 15 55 30 | - 54 15.7 | 10 m | lla - O | GG 385 | Miller | 10 02 70 | Norma l | ||||
375 | 15 55 30 | - 54 15.7 | 05 m | 103a - D | GG 495 | Miller | 10 02 70 | Norma l | ||||
376 | 15 50 06 | - 56 14.4 | 20 m | 103a - D | GG 495 | Miller | 10 02 70 | Norma ll | ||||
377 | 15 50 06 | - 56 14.4 | 30 m | lla - O | GG 385 | Miller | 10 02 70 | Norma ll | ||||
378 | 15 50 06 | - 56 14.4 | 53 m | lla - O | UG 2 | Miller | 10 02 70 | Norma ll | ||||
379 | 12 23 54 | - 72 24.5 | 30 m | 103a - O | GG 385 | J. Hesser | 14 02 70 | NGC 4372 | ||||
380 | 17 23 35 | - 48 23.5 | 45 m | 103a - O | GG 385 | J. Hesser | 14 02 70 | NGC 6352 | ||||
381 | 17 23 35 | - 48 23.5 | 45 m | 103a - D | GG 495 | J. Hesser | 14 02 70 | NGC 6352 | ||||
382 | 17 23 35 | - 48 23.5 | 45 m | 103a - O | GG 385 | J. Hesser | 14 02 70 | NGC 6352 | ||||
383 | 17 23 35 | - 48 23.5 | 22 m | 103a - D | GG 495 | J. Hesser | 14 02 70 | NGC 6352 | ||||
384 | 07 50 32 | - 38 26 | 30 m | lla - O | GG 385 | J. Hesser | 16 02 70 | NGC 2477 | ||||
385 | 12 22 42 | - 72 29.5 | 30 m | lla - O | GG 385 | J. Hesser | 16 02 70 | NGC 4372 | ||||
386 | 12 22 42 | - 72 29.5 | 30 m | 103a - D | GG 495 | J. Hesser | 16 02 70 | NGC 4372 | ||||
387 | 12 22 42 | - 72 29.5 | 30 m | lla - O | GG 385 | J. Hesser | 16 02 70 | NGC 4372 | ||||
388 | 17 12 00 | - 29 26.7 | 30 m | lla - O | GG 385 | J. Hesser | 16 02 70 | NGC 6304 | ||||
389 | 17 12 00 | - 29 26.7 | 30 m | 103a - D | GG 495 | J. Hesser | 16 02 70 | NGC 6304 | ||||
390 | 17 22 30 | - 48 24.2 | 45 m | lla - O | GG 385 | J. Hesser | 16 02 70 | NGC 6352 | ||||
391 | 17 22 30 | - 48 24.2 | 45 m | 103a - D | GG 495 | J. Hesser | 16 02 70 | NGC 6352 | ||||
392 | 17 22 30 | - 48 24.2 | 60 m | lla - O | GG 385 | J. Hesser | 16 02 70 | NGC 6352 | ||||
393 | 07 50 24 | - 38 25.8 | 15 m | lla - O | GG 385 | J. Hesser | 17 02 70 | NGC 2477 | ||||
394 | 07 50 24 | - 38 25.8 | 15 m | 103a - D | GG 495 | J. Hesser | 17 02 70 | NGC 2477 | ||||
395 | 07 50 24 | - 38 25.8 | 15 m | lla - O | GG 385 | J. Hesser | 17 02 70 | NGC 2477 | ||||
396 | 07 50 24 | - 38 25.8 | 15 m | 103a - D | GG 495 | J. Hesser | 17 02 70 | NGC 2477 | ||||
397 | 07 50 24 | - 38 25.8 | 15 m | 103a - D | GG 495 | J. Hesser | 17 02 70 | NGC 2477 | ||||
398 | 30 m | lla - O | GG 385 | J. Hesser | 17 02 70 | NGC 2260 | ||||||
399 | 30 m | 103a - D | GG 495 | J. Hesser | 17 02 70 | NGC 2260 | ||||||
400 | 12 22 15 | - 72 28.8 | 30 m | 103a - D | GG 495 | J. Hesser | 17 02 70 | NGC 4372 | ||||
401 | 12 22 15 | - 72 28.8 | 30 m | lla - O | GG 385 | J. Hesser | 17 02 70 | NGC 4372 | ||||
402 | 17 12 00 | - 29 26.7 | 30 m | lla - O | GG 385 | J. Hesser | 17 02 70 | NGC 6304 | ||||
403 | 17 12 00 | - 29 26.7 | 30 m | 103a - D | GG 495 | J. Hesser | 17 02 70 | NGC 6304 | ||||
404 | 17 12 00 | - 29 26.7 | 15 m | 103a - D | GG 495 | J. Hesser | 17 02 70 | NGC 6304 | ||||
405 | 17 12 00 | - 29 26.7 | 15 m | lla - O | GG 385 | J. Hesser | 17 02 70 | NGC 6304 | ||||
406 | 17 12 00 | - 29 26.7 | 30 m | lla - O | GG 385 | J. Hesser | 17 02 70 | NGC 6304 | ||||
407 | 17 12 00 | - 29 26.7 | 30 m | 103a - D | GG 495 | J. Hesser | 17 02 70 | NGC 6304 | ||||
408 | 17 23 35 | - 48 23.5 | 45 m | 103a - D | GG 495 | J. Hesser | 17 02 70 | NGC 6352 | ||||
409 | 18 00 24 | - 30 02 | 40 m | lla - O | GG 385 | J. Hesser | 17 02 70 | NGC 6522 | CTIO | |||
410 | 09 10 54 | - 64 39 | 18 m | lla - O | GG 385 | G. Alcaino | 23 02 70 | NGC 2808 | ||||
411 | 09 10 54 | - 64 39 | 18 m | lla - O | GG 385 | G. Alcaino | 23 02 70 | NGC 2808 | ||||
412 | 09 10 54 | - 64 39 | 18 m | lla - O | GG 385 | G. Alcaino | 23 02 70 | NGC 2808 | ||||
413 | 09 10 54 | - 64 39 | 18 m | lla - O | GG 385 | G. Alcaino | 23 02 70 | NGC 2808 | ||||
414 | 09 10 54 | - 64 39 | 18 m | lla - O | GG 385 | G. Alcaino | 23 02 70 | NGC 2808 | ||||
415 | 09 10 54 | - 64 39 | 18 m | 103a - D | GG 495 | G. Alcaino | 23 02 70 | NGC 2808 | ||||
416 | 09 10 54 | - 64 39 | 18 m | 103a - D | GG 495 | G. Alcaino | 23 02 70 | NGC 2808 | ||||
417 | 09 10 54 | - 64 39 | 18 m | 103a - D | GG 495 | G. Alcaino | 23 02 70 | NGC 2808 | ||||
418 | 12 56 00 | - 70 36 | 18 m | lla - O | GG 385 | G. Alcaino | 23 02 70 | NGC 4833 | ||||
419 | 12 56 00 | - 70 36 | 18 m | lla - O | GG 385 | G. Alcaino | 23 02 70 | NGC 4833 | ||||
420 | 12 56 00 | - 70 36 | 18 m | lla - O | GG 385 | G. Alcaino | 23 02 70 | NGC 4833 | ||||
421 | 12 56 00 | - 70 36 | 18 m | 103a - D | GG 495 | G. Alcaino | 23 02 70 | NGC 4833 | ||||
422 | 12 56 00 | - 70 36 | 18 m | 103a - D | GG 495 | G. Alcaino | 23 02 70 | NGC 4833 | ||||
423 | 12 56 00 | - 70 36 | 18 m | 103a - D | GG 495 | G. Alcaino | 23 02 70 | NGC 4833 | ||||
424 | 17 21 36 | - 48 26 | 18 m | 103a - D | GG 495 | G. Alcaino | 23 02 70 | NGC 6352 | ||||
425 | 17 21 36 | - 48 26 | 18 m | 103a - D | GG 495 | G. Alcaino | 23 02 70 | NGC 6352 | ||||
426 | 17 21 36 | - 48 26 | 18 m | 103a - D | GG 495 | G. Alcaino | 23 02 70 | NGC 6352 | ||||
427 | 17 21 36 | - 48 26 | 18 m | lla - O | GG 385 | G. Alcaino | 23 02 70 | NGC 6352 | ||||
428 | 17 21 36 | - 48 26 | 18 m | lla - O | GG 385 | G. Alcaino | 23 02 70 | NGC 6352 | ||||
429 | 17 21 36 | - 48 26 | 18 m | lla - O | GG 385 | G. Alcaino | 23 02 70 | NGC 6352 | ||||
430 | 19 06 24 | - 60 04 | 18 m | lla - O | GG 385 | G. Alcaino | 23 02 70 | NGC 6752 | ||||
431 | 19 06 24 | - 60 04 | 18 m | lla - O | GG 385 | G. Alcaino | 23 02 70 | NGC 6752 | ||||
432 | 05 12 24 | - 40 05 | 18 m | 103a - D | GG 495 | G. Alcaino | 24 02 70 | NGC 1851 | ||||
433 | 05 12 24 | - 40 05 | 18 m | 103a - D | GG 495 | G. Alcaino | 24 02 70 | NGC 1851 | ||||
434 | 12 23 00 | - 72 24 | 25 m | lla - O | GG 385 | G. Alcaino | 24 02 70 | NGC 4372 | ||||
435 | 12 23 00 | - 72 24 | 25 m | lla - O | GG 385 | G. Alcaino | 24 02 70 | NGC 4372 | ||||
436 | 12 23 00 | - 72 24 | 25 m | 103a - D | GG 495 | G. Alcaino | 24 02 70 | NGC 4372 | ||||
437 | 12 23 00 | - 72 24 | 25 m | 103a - D | GG 495 | G. Alcaino | 24 02 70 | NGC 4372 | ||||
438 | 13 43 00 | - 51 07 | 25 m | lla - O | GG 385 | G. Alcaino | 24 02 70 | NGC 5286 | ||||
439 | 13 43 00 | - 51 07 | 25 m | 103a - D | GG 495 | G. Alcaino | 24 02 70 | NGC 5286 | ||||
440 | 13 43 00 | - 51 07 | 35 m | lla - O | GG 385 | G. Alcaino | 24 02 70 | NGC 5286 | ||||
441 | 13 43 00 | - 51 07 | 35 m | 103a - D | GG 495 | G. Alcaino | 24 02 70 | NGC 5286 | ||||
442 | 13 25 00 | - 47 09 | 25 m | lla - O | GG 385 | G. Alcaino | 24 02 70 | NGC 5139 | ||||
443 | 13 25 00 | - 47 09 | 25 m | 103a - D | GG 495 | G. Alcaino | 24 02 70 | NGC 5139 | ||||
444 | 05 12 24 | - 40 05 | 25 m | lla - O | GG 385 | G. Alcaino | 25 02 70 | NGC 1851 | ||||
445 | 05 12 24 | - 40 05 | 30 m | lla - O | GG 385 | G. Alcaino | 25 02 70 | NGC 1851 | ||||
446 | 05 12 24 | - 40 05 | 23 m | 103a - D | GG 495 | G. Alcaino | 25 02 70 | NGC 1851 | ||||
447 | 10 44 00 | - 59 33 | 05 m | 103a - D | GG 495 | G. Alcaino | 25 02 70 | Eta Carina | ||||
448 | 12 23 00 | - 72 24 | 25 m | 103a - D | GG 495 | G. Alcaino | 25 02 70 | NGC 4372 | ||||
449 | 12 23 00 | - 72 24 | 20 m | 103a - D | GG 495 | G. Alcaino | 25 02 70 | NGC 4372 | ||||
450 | 12 23 00 | - 72 24 | 25 m | lla - O | GG 385 | G. Alcaino | 25 02 70 | NGC 4372 | ||||
451 | 12 23 00 | - 72 24 | 35 m | lla - O | GG 385 | G. Alcaino | 25 02 70 | NGC 4372 | ||||
452 | 13 43 00 | - 51 07 | 30 m | lla - O | GG 385 | G. Alcaino | 25 02 70 | NGC 5286 | ||||
453 | 13 43 00 | - 51 07 | 30 m | 103a - D | GG 495 | G. Alcaino | 25 02 70 | NGC 5286 | ||||
454 | 13 43 00 | - 51 07 | 40 m | 103a - D | GG 495 | G. Alcaino | 25 02 70 | NGC 5286 | ||||
455 | 13 43 00 | - 51 07 | 40 m | 103a - D | GG 495 | G. Alcaino | 25 02 70 | NGC 5286 | ||||
456 | 05 12 24 | - 40 05 | 30 m | lla - O | GG 385 | G. Alcaino | 26 02 70 | NGC 1851 | ||||
457 | 05 12 24 | - 40 05 | 22 m | 103a - D | GG 495 | G. Alcaino | 26 02 70 | NGC 1851 | ||||
458 | 10 44 00 | - 59 33 | 04 m | 103a - D | GG 495 | G. Alcaino | 26 02 70 | Eta Carina | ||||
459 | 10 44 00 | - 59 33 | 06 m | 103a - D | GG 495 | G. Alcaino | 26 02 70 | Eta Carina | ||||
460 | 10 44 00 | - 59 33 | 09 m | 103a - D | GG 495 | G. Alcaino | 26 02 70 | Eta Carina | ||||
461 | 10 44 00 | - 59 33 | 06 m | lla - O | GG 385 | G. Alcaino | 26 02 70 | Eta Carina | ||||
462 | 10 44 00 | - 59 33 | 08 m | lla - O | GG 385 | G. Alcaino | 26 02 70 | Eta Carina | ||||
463 | 10 44 00 | - 59 33 | 12 m | lla - O | GG 385 | G. Alcaino | 26 02 70 | Eta Carina | ||||
464 | 10 44 00 | - 59 33 | 15 m | lla - O | U G 2 | G. Alcaino | 26 02 70 | Eta Carina | ||||
465 | 10 44 00 | - 59 33 | 30 m | lla - O | GG 385 | G. Alcaino | 26 02 70 | Eta Carina | ||||
466 | 13 43 00 | - 51 07 | 25 m | 103a - D | GG 495 | G. Alcaino | 26 02 70 | NGC 5286 | ||||
467 | 13 43 00 | - 51 07 | 30 m | lla - O | GG 385 | G. Alcaino | 26 02 70 | NGC 5286 | ||||
468 | 13 43 00 | - 51 07 | 35 m | lla - O | GG 385 | G. Alcaino | 26 02 70 | NGC 5286 | ||||
469 | 17 21 36 | - 48 26 | 30 m | lla - O | GG 385 | G. Alcaino | 26 02 70 | NGC 6352 | ||||
470 | 17 26 36 | - 67 01 | 20 m | lla - O | GG 385 | G. Alcaino | 26 02 70 | NGC 6362 | ||||
471 | 17 26 36 | - 67 01 | 30 m | lla - O | GG 385 | G. Alcaino | 26 02 70 | NGC 6362 | ||||
472 | 17 26 36 | - 67 01 | 18 m | 103a - D | GG 495 | G. Alcaino | 26 02 70 | NGC 6362 | ||||
473 | 17 26 36 | - 67 01 | 25 m | 103a - D | GG 495 | G. Alcaino | 26 02 70 | NGC 6362 | ||||
474 | 18 04 24 | - 43 44 | 18 m | 103a - D | GG 495 | G. Alcaino | 26 02 70 | NGC 6541 | ||||
475 | 18 04 24 | - 43 44 | 20 m | 103a - D | GG 495 | G. Alcaino | 26 02 70 | NGC 6541 | ||||
476 | 18 04 24 | - 43 44 | 20 m | lla - O | GG 385 | G. Alcaino | 26 02 70 | NGC 6541 | ||||
477 | 18 04 24 | - 43 44 | 30 m | lla - O | GG 385 | G. Alcaino | 26 02 70 | NGC 6541 | ||||
478 | 18 04 24 | - 43 44 | 16 m | 103a - D | GG 495 | G. Alcaino | 26 02 70 | NGC 6541 | ||||
479 | 19 06 24 | - 60 04 | 18 m | 103a - D | GG 495 | G. Alcaino | 26 02 70 | NGC 6752 | ||||
480 | 19 06 24 | - 60 04 | 15 m | 103a - D | GG 495 | G. Alcaino | 26 02 70 | NGC 6752 | ||||
481 | 01 al 40 | 481 al 520 | (*) | |||||||||
521 | ¿ | |||||||||||
522 | ¿ | |||||||||||
523 | ¿ | |||||||||||
524 | ¿ |
(*) Numeración correspondiente a tubo imagen
Last updated on 8/27/99
By Guerra & Marin
March 1970 Plate log for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
525 | 08 56 30 | - 28 41 | 20 m | lla - D | GG 495 | J Graham | 05 03 70 | K 1 - 2 | ||||
526 | 09 40 00 | - 54 00 | 05 m | lla - O | GG 385 | J Graham | 05 03 70 | Vela Field | ||||
527 | 09 40 00 | - 54 00 | 05 m | 103a - D | GG 495 | J Graham | 05 03 70 | Vela Field | ||||
528 | 11 00 00 | - 62 00 | 60 m | lla - O | none | J Graham | 05 03 70 | Carina | ||||
529 | 13 23 27 | - 42 45.7 | 20 m | 103a - O | none | Smith | 05 03 70 | NGC 5128 | ||||
530 | 13 23 27 | - 42 45.7 | 10 m | 103a - O | none | Smith | 05 03 70 | NGC 5128 | ||||
531 | 13 23 27 | - 42 45.7 | 160 m | 103a - O | none | Smith | 05 03 70 | NGC 5128 | ||||
41-42 | 532 - 533 | (*) |
(*) Numeración correspondiente a tubo imagen
Last Updated on 8/27/99
By Guerra & Marin
April 1970 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
534 | 05 35 29 | - 49 45.3 | 15 m | 103a - O | none | Kunkel /Smith | 02 04 70 | PKS 0534-49 | ||||
´43 | 535 | (*) | ||||||||||
536 | 07 19 37 | - 55 21.8 | 15 m | 103a - O | none | Kunkel /Smith | 02 04 70 | PKS 0719-55 | ||||
´44 | 537 | (*) | ||||||||||
538 | 07 43 26 | - 67 22 | 15 m | 103a - O | none | Kunkel /Smith | 02 04 70 | PKS 0743-67 | ||||
539 | (*) | |||||||||||
540 | 10 11 25 | - 64 49 | 15 m | 103a - O | none | Kunkel /Smith | 02 04 70 | PKS 1010-64 | ||||
541 | (*) | |||||||||||
542 | 10 37 33 | -69 53.7 | 15 m | 103a - O | none | Kunkel /Smith | 02 04 70 | PKS 1036-69 | ||||
543 - 544 | (*) | |||||||||||
545 | 17 20 06 | - 80 03.4 | 15 m | 103a - O | none | Kunkel /Smith | 02 04 70 | PKC 1716-80 | ||||
546 - 547 | (*) | |||||||||||
548 | 17 56 25 | - 59 46.8 | 15 m | 103a - O | none | Kunkel /Smith | 02 04 70 | PKS 1754-59 | ||||
549 | 17 55 30 | - 26 33 | 30 m | 103a - O | none | Kunkel /Smith | 02 04 70 | GX 3 + 1 | ||||
550 | 17 59 30 | - 25 05 | 30 m | 103a - O | none | Kunkel /Smith | 02 04 70 | GX 5 - 1 | ||||
551 | 17 59 48 | - 20 31 | 25 m | 103a - O | none | Kunkel /Smith | 02 04 70 | GX 9 - 1 |
(*) Numeración correspondiente a tubo imagen
Last Updated on 8/27/99
By Jorge Marin
May 1970 Plate log for 1.5-m telescope
September 1970 Plate log for 1.5-m telescope
October 1970 Plate log for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
1017 | 01 30 00 | - 71 30 | 40 m | 103a - O | nones | Graham | 28 09 70 | Gascoigne | ||||
1018 | 22 05 50 | - 53 56.5 | 10 m | 103a - O | nones | Smith | 01 10 70 | PKS 2204-52 | CTIO | |||
1019 | 22 08 27 | - 45 52 | 10 m | 103a - O | nones | Smith | 01 10 70 | PKS 2207-45 | CTIO | |||
1020 | 22 15 02 | - 45 15.1 | 10 m | 103a - O | nones | Smith | 01 10 70 | PKS 2213-45 | CTIO | |||
1021 | 22 25 06 | - 52 42.9 | 10 m | 103a - O | nones | Smith | 01 10 70 | PKS 2223-52 | CTIO | |||
1022 | 22 55 00 | - 52 55.5 | 10 m | 103a - O | nones | Smith | 01 10 70 | PKS 2252-53 | CTIO | |||
1023 | 00 14 36 | - 63 19.9 | 10 m | 103a - O | nones | Smith | 01 10 70 | PKS 0013-63 | CTIO | |||
1024 | 1024 | to 1033 | (*) | |||||||||
1034 | 00 25 42 | - 71 41 | 30 m | 103a - O | nones | Graham / M.T.Ruiz | 30 10 70 | NGC 121 | ||||
1035 | 00 23 48 | - 72 56 | 30 m | 103a - O | nones | Graham / M.T.Ruiz | 30 10 70 | Kron 3 | ||||
1036 | 05 05 18 | 30 m | 103a - O | nones | Graham / M.T.Ruiz | 30 10 70 | NGC 1835 | |||||
1037 | 04 59 00 | - 66 01 | 30 m | 103a - O | nones | Graham / M.T.Ruiz | 30 10 70 | NGC 1783 | ||||
1038 | 05 05 18 | - 69 26 | 30 m | 103a - O | nones | Graham / M.T.Ruiz | 30 10 70 | NGC 1835 | ||||
1039 | 04 59 00 | - 66 01 | 30 m | 103a - O | nones | Graham / M.T.Ruiz | 30 10 70 | NGC 1783 | ||||
1040 | 05 05 18 | - 69 26 | 30 m | 103a - O | nones | Graham / M.T.Ruiz | 30 10 70 | NGC 1835 | ||||
1041 | 04 59 00 | - 66 01 | 30 m | 103a - O | nones | Graham / M.T.Ruiz | 30 10 70 | NGC 1783 | ||||
1042 | 05 05 18 | - 69 26 | 30 m | 103a - O | nones | Graham / M.T.Ruiz | 30 10 70 | NGC 1835 | ||||
1043 | 04 59 00 | - 66 01 | 30 m | 103a - O | nones | Graham / M.T.Ruiz | 30 10 70 | NGC 1783 | ||||
1044 | 05 05 18 | - 69 26 | 30 m | 103a - O | nones | Graham / M.T.Ruiz | 31 10 70 | NGC 1835 | ||||
1045 | 04 59 00 | - 66 01 | 30 m | 103a - O | nones | Graham / M.T.Ruiz | 31 10 70 | NGC 1783 | ||||
1046 | 05 05 18 | - 69 26 | 30 m | 103a - O | nones | Graham / M.T.Ruiz | 31 10 70 | NGC 1835 | ||||
1047 | 04 59 00 | - 66 01 | 30 m | 103a - O | nones | Graham / M.T.Ruiz | 31 10 70 | NGC 1783 | ||||
1048 | 05 05 18 | - 69 26 | 30 m | 103a - O | nones | Graham / M.T.Ruiz | 31 10 70 | NGC 1835 |
(*) Corresponde al Tubo Imagen
Last Updated on 8/27/99
By Guerra & Marin
November 1970 Plate log for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
1049 | 00 25 42 | - 71 41 | 30 m | 103a - O | nones | Graham / M.T.Ruiz | 01 11 70 | NGC 121 | ||||
1050 | 00 23 48 | - 72 56 | 30 m | 103a - O | nones | Graham / M.T.Ruiz | 01 11 70 | Kron 3 | ||||
1051 | 00 25 42 | - 71 41 | 30 m | 103a - O | nones | Graham / M.T.Ruiz | 01 11 70 | NGC 121 | ||||
1052 | 05 05 18 | - 69 26 | 30 m | 103a - O | nones | Graham / M.T.Ruiz | 01 11 70 | NGC 1835 | ||||
1053 | 04 59 00 | - 66 01 | 30 m | 103a - O | nones | Graham / M.T.Ruiz | 01 11 70 | NGC 1783 | ||||
1054 | 05 05 18 | - 69 26 | 30 m | 103a - O | nones | Graham / M.T.Ruiz | 01 11 70 | NGC 1835 | ||||
1055 | 04 59 00 | - 66 01 | 30 m | 103a - O | nones | Graham / M.T.Ruiz | 01 11 70 | NGC 1783 | ||||
1056 | 05 05 18 | - 69 26 | 30 m | 103a - O | nones | Graham / M.T.Ruiz | 01 11 70 | NGC 1835 | ||||
1057 | 04 59 00 | - 66 01 | 30 m | 103a - O | nones | Graham / M.T.Ruiz | 01 11 70 | NGC 1783 | ||||
1058 | 05 05 18 | - 69 26 | 30 m | 103a - O | nones | Graham / M.T.Ruiz | 01 11 70 | NGC 1835 | ||||
1059 | 04 59 00 | - 66 01 | 30 m | 103a - O | nones | Graham / M.T.Ruiz | 01 11 70 | NGC 1783 | ||||
1060 | 05 05 18 | - 69 26 | 30 m | 103a - O | nones | Graham / M.T.Ruiz | 01 11 70 | NGC 1835 | ||||
1061 | 04 59 00 | - 66 01 | 30 m | 103a - O | nones | Graham / M.T.Ruiz | 01 11 70 | NGC 1783 | ||||
1062 | 00 25 42 | - 71 41 | 30 m | 103a - O | nones | Graham / M.T.Ruiz | 02 11 70 | NGC 121 | ||||
1063 | 00 23 48 | - 72 56 | 30 m | 103a - O | nones | Graham / M.T.Ruiz | 02 11 70 | Kron 3 | ||||
1064 | 00 25 42 | - 71 41 | 30 m | 103a - O | nones | Graham / M.T.Ruiz | 02 11 70 | NGC 121 | ||||
1065 | 05 05 18 | - 69 26 | 30 m | 103a - O | nones | Graham / M.T.Ruiz | 02 11 70 | NGC 1835 | ||||
1066 | 04 59 00 | - 66 01 | 30 m | 103a - O | nones | Graham / M.T.Ruiz | 02 11 70 | NGC 1783 | ||||
1067 | 05 05 18 | - 69 26 | 30 m | 103a - O | nones | Graham / M.T.Ruiz | 02 11 70 | NGC 1835 | ||||
1068 | 04 59 00 | - 66 01 | 30 m | 103a - O | nones | Graham / M.T.Ruiz | 02 11 70 | NGC 1783 | ||||
1069 | 05 05 18 | - 69 26 | 30 m | 103a - O | nones | Graham / M.T.Ruiz | 02 11 70 | NGC 1835 | ||||
1070 | 04 59 00 | - 66 01 | 30 m | 103a - O | nones | Graham / M.T.Ruiz | 02 11 70 | NGC 1783 | ||||
1071 | 05 05 18 | - 69 26 | 30 m | 103a - O | nones | Graham / M.T.Ruiz | 02 11 70 | NGC 1835 | ||||
1072 | 04 59 00 | - 66 01 | 30 m | 103a - O | nones | Graham / M.T.Ruiz | 02 11 70 | NGC 1783 | ||||
1073 | 05 05 18 | - 69 26 | 30 m | 103a - O | nones | Graham / M.T.Ruiz | 02 11 70 | NGC 1835 | ||||
1074 | 04 59 00 | - 66 01 | 25 m | 103a - O | nones | Graham / M.T.Ruiz | 02 11 70 | NGC 1783 | ||||
1075 | 05 05 18 | - 69 26 | 30 m | 103a - O | nones | Graham / M.T.Ruiz | 02 11 70 | NGC 1835 | ||||
1076 | 22 28 00 | - 21 00 | 30 m | 103a - O | nones | Smith | 03 11 70 | NGC 7293 | ||||
1077 | 22 28 00 | - 21 00 | 180 m | 098 - 02 | nones | Smith | 03 11 70 | NGC 7293 | ||||
1078+A10 | (1) | (2) | ||||||||||
1088 | al 1097 | (*) | ||||||||||
1098 | 00 14 36 | - 63 19.9 | 105 seg | lla - D | nones | Smith | 03 11 70 | PKS 0013-63 | ||||
1099 | 01 10 42 | - 69 09.5 | 105 seg | lla - D | nones | Smith | 03 11 70 | Pks 0110-69 | CTIO | |||
1100 | 01 20 36 | - 63 18.4 | 105 seg | lla - D | nones | Smith | 03 11 70 | PKS 0119-63 | ||||
1101 | 01 30 00 | - 51 10.8 | 105 seg | lla - D | nones | Smith | 03 11 70 | PKS 0129-51 | ||||
1102 | 02 23 36 | - 71 07.8 | 105 seg | lla - D | nones | Smith | 03 11 70 | PKS 0223-71 | ||||
1103 | 02 31 18 | - 66 34.6 | 105 seg | lla - D | nones | Smith | 03 11 70 | PKS 0230-66 | ||||
1104 | 03 54 36 | - 48 28.2 | 105 seg | lla - D | nones | Smith | 03 11 70 | PKS 0354-48 | ||||
1105 | 04 20 33 | - 62 21.8 | 105 seg | lla - D | nones | Smith | 03 11 70 | PKS 0420-62 | ||||
1106 | 04 43 46 | - 59 28.1 | 105 seg | lla - D | nones | Smith | 03 11 70 | PKS 0443-59 | ||||
1107 | 05 35 29 | - 49 45.2 | 105 seg | lla - D | nones | Smith | 03 11 70 | PKS 0534-49 | ||||
1108 | 05 06 44 | - 37 33 | 30 m | lla - D | nones | Smith | 03 11 70 | NGC 1808 | ||||
1109 | 05 39 42 | - 69 09 | 2 m | lla - D | nones | Smith | 03 11 70 | 30 Doradus | ||||
1110 | 05 39 42 | - 69 09 | 5 m | lla - D | nones | Smith | 03 11 70 | 30 Doradus | ||||
1111 | 22 28 00 | - 21 00 | 180 m | lla - D | nones | Smith | 04 11 70 | NGC 7293 | ||||
1102 | al 1107 | (*) | ||||||||||
1108 | 05 06 44 | - 37 33 | 30 m | lla - D | nones | Smith | 04 11 70 | NGC 1808 | ||||
1109 | 05 06 44 | - 37 33 | 30 m | llla - j | GG 385 | Smith | 04 11 70 | NGC 1808 | ||||
1110 | 05 06 44 | - 37 33 | 30 m | 098 - 02 | RG 610 | Smith | 04 11 70 | NGC 1808 | ||||
1111 | 05 06 44 | - 37 33 | 5 m | 098 - 02 | RG 610 | Smith | 04 11 70 | NGC 1808 | ||||
1112 | 21 03 00 | - 51 27.5 | 30 m | 103a -O | GG 385 | Hesser | 05 11 70 | IC 5152 | ||||
1113 | 23 08 39 | - 35 36 | 30 m | 103a -O | GG 385 | Hesser | 05 11 70 | Field | ||||
1114 | 23 08 39 | - 35 36 | 30 m | 103a - D | GG 495 | Hesser | 05 11 70 | Field | ||||
1115 | 21 03 00 | - 51 27.5 | 30 m | 103a -O | GG 385 | Hesser | 05 11 70 | IC 5152 | ||||
1116 | 23 08 39 | - 35 36 | 30 m | 103a -O | GG 385 | Hesser | 05 11 70 | Field | ||||
1117 | 23 08 39 | - 35 36 | 30 m | 103a - D | GG 495 | Hesser | 05 11 70 | Field | ||||
1118 | 03 11 00 | - 55 23 | 30 m | 103a - D | GG 495 | Hesser | 05 11 70 | NGC 1261 | ||||
1119 | 23 08 39 | - 35 36 | 30 m | 103a - D | GG 495 | Hesser | 05 11 70 | Field | ||||
1120 | 23 08 39 | - 35 36 | 30 m | 103a -O | GG 385 | Hesser | 05 11 70 | Field | ||||
1121 | 22 00 54 | - 51 26 | 30 m | 103a -O | GG 385 | Hesser | 06 11 70 | IC 5152 | ||||
1122 | 22 00 54 | - 51 26 | 45 m | 103a -O | GG 385 | Hesser | 06 11 70 | IC 5152 | ||||
1123 | 22 00 54 | - 51 26 | 60 m | 103a -O | GG 385 | Hesser | 06 11 70 | IC 5152 | ||||
1124 | 05 36 00 | - 70 52 | 05 m | 103a -O | GG 385 | Hesser | 06 11 70 | L M C | ||||
1125 | 03 11 00 | - 55 23 | 30 m | 103a -O | GG 385 | Hesser | 06 11 70 | NGC 1261 | ||||
1126 | 03 11 00 | - 55 23 | 30 m | 103a - D | GG 495 | Hesser | 06 11 70 | NGC 1261 | ||||
1127 | 04 49 30 | - 83 59.3 | 30 m | 103a - D | GG 495 | Hesser | 06 11 70 | NGC 1841 | ||||
1128 | 04 49 30 | - 83 59.3 | 30 m | 103a -O | GG 385 | Hesser | 06 11 70 | NGC 1841 | ||||
1129 | 07 51 09 | - 38 27 | 30 m | 103a -O | GG 385 | Hesser | 06 11 70 | NGC 2477 | ||||
1130 | 07 51 09 | - 38 27 | 30 m | 103a - D | GG 495 | Hesser | 06 11 70 | NGC 2477 | ||||
1131 | 08 41 33 | - 47 06 | 30 m | 103a - D | GG 495 | Hesser | 06 11 70 | NGC 2660 | ||||
1132 | 08 41 33 | - 47 06 | 30 m | 103a -O | GG 385 | Hesser | 06 11 70 | NGC 2660 | ||||
1133 | 02 57 00 | - 71 41 | 40 m | 103a -O | nones | Gonzalez | 25 11 70 | NGC 121 | ||||
1134 | 01 02 00 | - 71 30 | 40 m | 103a -O | nones | Gonzalez | 25 11 70 | Gascoigne Field |
(1) al 1087 error de anotación
(2) debiera ser 1078 y no 1088
(*) corresponde a tubo imagen
Last Updated on 8/27/99
By Guerra & Marin
December 1970 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
1135 | 05 58 24 | - 68 32.6 | 1 m | 103a - D | GG 495 | P. Lucke | 02 12 70 | NGC 2164 | ||||
1136 | 05 58 24 | - 68 32.6 | 10 m | 103a - D | GG 495 | P. Lucke | 02 12 70 | NGC 2164 | ||||
1137 | 05 58 24 | - 68 32.6 | 60 m | 103a - D | GG 495 | P. Lucke | 02 12 70 | NGC 2164 | ||||
1138 | 05 58 24 | - 68 32.6 | 10 m | 103a - D | GG 495 | P. Lucke | 02 12 70 | NGC 2164 | ||||
1139 | 05 58 24 | - 68 32.6 | 60 m | 103a - D | GG 495 | P. Lucke | 02 12 70 | NGC 2164 | ||||
1140 | 05 58 24 | - 68 32.6 | 2 m | 103a - D | GG 495 | P. Lucke | 02 12 70 | NGC 2164 | ||||
1141 | 05 58 24 | - 68 32.6 | 2 m | 103a - D | GG 495 | P. Lucke | 02 12 70 | NGC 2164 | ||||
1142 | 02 38 48 | - 34 41 | 60 m | 103a - O | GG 385 | P. Lucke | 03 12 70 | Fornax | ||||
1143 | 05 58 24 | -68 32.6 | 1 m | 103a - O | GG 385 | P. Lucke | 03 12 70 | NGC 2164 | ||||
1144 | 05 58 24 | -68 32.6 | 10 m | 103a - O | GG 385 | P. Lucke | 03 12 70 | NGC 2164 | ||||
1145 | 05 58 24 | -68 32.6 | 60 m | 103a - O | GG 385 | P. Lucke | 03 12 70 | NGC 2164 | ||||
1146 | 05 58 24 | -68 32.6 | 10 m | 103a - O | GG 385 | P. Lucke | 03 12 70 | NGC 2164 | ||||
1147 | 05 58 24 | -68 32.6 | 1 m | 103a - O | GG 385 | P. Lucke | 03 12 70 | NGC 2164 | ||||
1148 | 05 58 24 | -68 32.6 | 60 m | 103a - O | GG 385 | P. Lucke | 03 12 70 | NGC 2164 | ||||
1149 | 05 58 24 | -68 32.6 | 1 m | 103a - O | GG 385 | P. Lucke | 03 12 70 | NGC 2164 | ||||
1150 | 05 39 00 | - 69 06 | 15 m | 103a - O | GG 385 | P. Lucke | 03 12 70 | 30 Doradus | ||||
1151 | 05 58 24 | - 68 32.6 | 60 m | 103a - D | GG 495 | P. Lucke | 03 12 70 | NGC 2164 | ||||
1152 | al 1160 | (*) | ||||||||||
1161 | 05 26 06 | - 68 37.5 | 25 m | 103a - D | GG 495 | Demers | 26 12 70 | L M C | ||||
1162 | 05 26 06 | - 68 37.5 | 15 m | 103a - O | GG 385 | Demers | 26 12 70 | L M C | ||||
1163 | 00 15 48 | - 68 37.5 | 30 m | 103a - D | GG 495 | Demers | 26 12 70 | L M C | ||||
1164 | 00 15 48 | - 68 37.5 | 20 m | 103a - O | GG 385 | Demers | 26 12 70 | L M C | ||||
1165 | 05 06 42 | - 69 05 | 30 m | 103a - D | GG 495 | Demers | 26 12 70 | L M C | ||||
1166 | 05 06 42 | - 69 05 | 15 m | 103a - O | GG 385 | Demers | 26 12 70 | L M C | ||||
1167 | 04 57 00 | - 69 38 | 30 m | 103a - D | GG 495 | Demers | 26 12 70 | L M C | ||||
1168 | 04 57 00 | - 69 38 | 15 m | 103a - O | GG 385 | Demers | 26 12 70 | L M C | ||||
1169 | 05 08 12 | - 67 55 | 30 m | 103a - D | GG 495 | Demers | 26 12 70 | L M C | ||||
1170 | 05 08 12 | - 67 55 | 15 m | 103a - O | GG 385 | Demers | 26 12 70 | L M C | ||||
1171 | 05 10 00 | - 68 42 | 30 m | 103a - D | GG 495 | Demers | 26 12 70 | L M C | ||||
1172 | 05 26 06 | - 68 37.5 | 30 m | 103a - D | GG 495 | Demers | 27 12 70 | L M C | ||||
1173 | 05 26 06 | - 68 37.5 | 15 m | 103a - O | GG 385 | Demers | 27 12 70 | L M C | ||||
1174 | 05 15 42 | - 68 37.5 | 30 m | 103a - D | GG 495 | Demers | 27 12 70 | L M C | ||||
1175 | 05 15 42 | - 68 37.5 | 30 m | 103a - D | GG 495 | Demers | 27 12 70 | L M C | ||||
1176 | 05 15 42 | - 68 37.5 | 15 m | 103a - O | GG 385 | Demers | 27 12 70 | L M C | ||||
1177 | 05 08 12 | - 67 55 | 30 m | 103a - D | GG 495 | Demers | 27 12 70 | L M C | ||||
1178 | 05 08 12 | - 67 55 | 15 m | 103a - O | GG 385 | Demers | 27 12 70 | L M C | ||||
1179 | 05 10 00 | - 68 42 | 30 m | 103a - D | GG 495 | Demers | 27 12 70 | L M C | ||||
1180 | 05 10 00 | - 68 42 | 15 m | 103a - O | GG 385 | Demers | 27 12 70 | L M C | ||||
1181 | 05 10 00 | - 68 42 | 15 m | 103a - O | GG 385 | Demers | 27 12 70 | L M C | ||||
1182 | 05 32 12 | - 68 12 | 30 m | 103a - D | GG 495 | Demers | 27 12 70 | L M C | ||||
1183 | 05 32 12 | - 68 12 | 15 m | 103a - O | GG 385 | Demers | 27 12 70 | L M C | ||||
1184 | 05 06 42 | - 69 05 | 30 m | 103a - D | GG 495 | Demers | 27 12 70 | L M C | ||||
1185 | 05 06 42 | - 69 05 | 15 m | 103a - O | GG 385 | Demers | 27 12 70 | L M C | ||||
1186 | 04 57 00 | - 69 38 | 10 m | 103a - D | GG 495 | Demers | 27 12 70 | L M C |
(*) corresponde a tubo imagen
Last Updated on 8/27/99
By Jorge Marin
1971 Plate logs for 1.5-m telescope
January 1971 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
1187 | 05 39 30 | - 69 20 | 30 m | 098 - 02 | RG 610 | Weedman / Smith | 02 01 71 | L M C | ||||
1188 | 04 51 00 | - 66 20 | 15 m | 098 - 02 | RG 610 | Weedman / Smith | 02 01 71 | L M C | ||||
1189 | 05 32 00 | - 67 20 | 30 m | 098 - 02 | RG 610 | Weedman / Smith | 02 01 71 | L M C | BROKEN OK" | CTIO | ||
1190 | 05 25 00 | - 67 40 | 30 m | 098 - 02 | RG 610 | Weedman / Smith | 02 01 71 | L M C | BROKEN OK" | CTIO | ||
1191 | 05 27 00 | - 68 50 | 30 m | 098 - 02 | RG 610 | Weedman / Smith | 02 01 71 | L M C | CTIO | |||
1192 | 05 10 00 | - 68 50 | 30 m | 098 - 02 | RG 610 | Weedman / Smith | 02 01 71 | L M C | CTIO | |||
1193 | 05 19 00 | - 69 30 | 30 m | 098 - 02 | RG 610 | Weedman / Smith | 02 01 71 | L M C | CTIO | |||
1194 | 02 38 18 | - 34 39 | 120 m | 103a - O | GG 385 | Kunkel / Bradt | 18 01 71 | Fornax | ||||
1195 | 11 20 00 | - 61 03 | 20 m | 103a - O | GG 385 | Kunkel / Bradt | 18 01 71 | Centaurus 3 | CTIO | |||
1196 | 11 20 00 | - 61 03 | 120 m | 103a - O | U G 2 | Kunkel / Bradt | 18 01 71 | Centaurus 3 | CTIO | |||
1197 | 15 19 18 | - 56 47 | 30 m | 103a - O | GG 385 | Kunkel / Bradt | 18 01 71 | Norman 2 | CTIO | |||
1198 | 02 38 18 | - 34 39 | 166 m | 103a - D | GG 495 | Kunkel / Bradt | 19 01 71 | Fornax | ||||
1199 | 07 52 25 | - 26 21.3 | 94 m | 098 - 02 | RG 610 | Kunkel / Bradt | 19 01 71 | Nebula | CTIO | |||
1200 | 04 59 00 | - 66 01 | 30 m | 103a - O | nones | J. Graham | 23 01 71 | NGC 1783 | ||||
1201 | 05 05 18 | - 69 26 | 20 m | 103a - O | nones | J. Graham | 23 01 71 | NGC 1835 | ||||
1202 | 04 59 00 | - 66 01 | 30 m | 103a - O | nones | J. Graham | 23 01 71 | NGC 1783 | ||||
1203 | 05 05 18 | - 69 26 | 30 m | 103a - O | nones | J. Graham | 23 01 71 | NGC 1835 | ||||
1204 | 00 25 42 | - 71 41 | 45 m | 103a - O | nones | J. Graham | 24 01 71 | NGC 121 | ||||
1205 | 06 30 12 | - 64 18 | 30 m | 103a - O | nones | J. Graham | 24 01 71 | NGC 2257 | ||||
1206 | 04 59 00 | - 66 01 | 30 m | 103a - O | nones | J. Graham | 24 01 71 | NGC 1783 | ||||
1207 | 05 36 00 | - 70 48 | 30 m | 103a - O | nones | J. Graham | 24 01 71 | Nova LMC | ||||
1208 | 05 05 18 | - 69 26 | 30 m | 103a - O | nones | J. Graham | 24 01 71 | NGC 1835 | ||||
1209 | 04 59 00 | - 66 01 | 30 m | 103a - O | nones | J. Graham | 24 01 71 | NGC 1783 | ||||
1210 | 05 05 18 | - 69 26 | 30 m | 103a - O | nones | J. Graham | 24 01 71 | NGC 1835 | ||||
1211 | 06 30 12 | - 64 18 | 30 m | 103a - O | nones | J. Graham | 24 01 71 | NGC 2257 | ||||
1212 | 06 20 54 | - 67 31 | 30 m | 103a - O | nones | J. Graham | 24 01 71 | NGC 2231 | ||||
1213 | 08 34 18 | - 45 04 | 10 m | 103a - O | GG 385 | J. Graham | 24 01 71 | Pulsar Field | ||||
1214 | 08 56 30 | - 28 41 | 10 m | 103a - O | GG 385 | J. Graham | 24 01 71 | K 1 - 2 | ||||
1215 | 00 25 42 | - 71 41 | 45 m | 103a - O | nones | J. Graham | 25 01 71 | NGC 121 | ||||
1216 | 04 59 00 | - 66 01 | 30 m | 103a - O | nones | J. Graham | 25 01 71 | NGC 1783 | ||||
1217 | 04 49 00 | - 68 50 | 2 m | 103a - O | nones | J. Graham | 25 01 71 | Schm plate defect | ||||
1218 | 05 05 18 | - 69 26 | 30 m | 103a - O | nones | J. Graham | 25 01 71 | NGC 1835 | ||||
1219 | 06 30 12 | - 64 18 | 30 m | 103a - O | nones | J. Graham | 25 01 71 | NGC 2257 | ||||
1220 | 06 20 54 | - 67 31 | 30 m | 103a - O | nones | J. Graham | 25 01 71 | NGC 2231 | ||||
1221 | 04 59 00 | - 66 01 | 40 m | 103a - O | nones | J. Graham | 25 01 71 | NGC 1783 | ||||
1222 | 05 05 18 | - 69 26 | 40 m | 103a - O | nones | J. Graham | 25 01 71 | NGC 1835 | ||||
1223 | 06 30 12 | - 64 18 | 40 m | 103a - O | nones | J. Graham | 25 01 71 | NGC 2257 | ||||
1224 | 08 56 30 | - 28 41 | 10 m | 103a - O | GG 385 | J. Graham | 25 01 71 | K 1 - 2 |
Last Updated on 8/27/99
By Guerra & Marin
March 1971 Plate logs for 1.5-m telescope
Plate | N. N | R . A | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
1312 | al 1339 | (*) | ||||||||||
1340 | 10 26 33 | - 43 44 | 57 m | lla - O | nones | Burbigel | 25 03 71 | NGC 3256 | ||||
1341 | 12 41 39 | - 40 37 | 45 m | 103a - O | nones | Burbigel | 25 03 71 | Assoc. cent. | ||||
1342 | 12 47 13 | - 41 08.2 | 60 m | 103a - O | nones | Burbigel | 25 03 71 | NGC 4696 | ||||
1343 | 14 01 37 | - 41 16 | 60 m | 103a - O | nones | Burbigel | 25 03 71 | NGC 5408 | ||||
1344 | 18 10 42 | - 85 24 | 60 m | 103a - O | nones | Burbigel | 25 03 71 | NGC 6438 | ||||
1345 | 18 10 42 | - 85 24 | 20 m | 103a - O | nones | Burbigel | 25 03 71 | NGC 6438 | ||||
1346 | al 1350 | (*) | ||||||||||
1351 | 09 01 01 | - 40 26.4 | 72 m | 103a - O | UG 2 | Burbigel | 26 03 71 | SAO 220767 | CTIO | |||
1352 | 13 35 13 | - 33 49 | 60 m | 103a - O | nones | Burbigel | 26 03 71 | IC 4296 | ||||
1353 | 10 35 13 | - 42 45 | 60 m | 103a - D | nones | Burbigel | 26 03 71 | Klemola | ||||
1354 | 13 35 29 | - 29 43 | 5 m | 103a - O | nones | Burbigel | 26 03 71 | NGC 5236 | ||||
1355 | 13 38 17 | - 31 30 | 5 m | 103a - O | nones | Burbigel | 26 03 71 | NGC 5253 | ||||
1356 | 12 48 17 | - 41 07.3 | 60 m | 103a - D | nones | Burbigel | 26 03 71 | NGC 4696 | ||||
1357 | 14 01 56 | - 33 50 | 60 m | 103a - O | nones | Burbigel | 26 03 71 | NGC 5419 | ||||
1358 | al 1368 | (*) |
(*) corresponde a tubo imagen
Last Updated on 8/27/99
By Guerra & Marin
April 1971 Plate logs for 1.5-m telescope
Plate | N. N | R . A | Dec | Exp.Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
1369 | 09 01 26 | - 40 25 | 180 m | 103a - O | U G 2 | Kunkel | 02 04 71 | Vela XR - 1 | ||||
1369 | 09 01 26 | - 40 25 | 36 m | 103a - O | GG 385 | Kunkel | 02 04 71 | Vela XR - 1 | CTIO | |||
1370a | 15 18 25 | - 57 03 | 36 m | 103a - O | GG 385 | Kunkel | 02 04 71 | Circinus X - 1 | BROKEN OK" | CTIO | ||
1370b | 15 18 25 | - 57 03 | 180 m | 103a - O | U G 2 | Kunkel | 02 04 71 | Circinus X - 1 | BROKEN OK" | CTIO | ||
1371 | 15 18 25 | - 57 03 | 36 m | 103a - O | GG 385 | Kunkel | 02 04 71 | Circinus X - 1 | CTIO | |||
1372 | 15 18 25 | - 57 03 | 36 m | 103a - O | GG 385 | Kunkel | 02 04 71 | Circinus X - 1 | CTIO | |||
1373 | 09 25 14 | - 52 42 | 45 m | lla - O | U G 2 | Bok | 03 04 71 | Vela 1 | ||||
1374 | 09 25 14 | - 52 42 | 45 m | 103a - O | U G 2 | Bok | 03 04 71 | Vela 1 | ||||
1374 | 09 25 14 | - 52 42 | 05 m | 103a - O | GG 385 | Bok | 03 04 71 | Vela 1 | ||||
1374 | 09 25 14 | - 52 42 | 08 m | 103a - O | GG 385 | Bok | 03 04 71 | Vela 1 | ||||
1374 | 09 25 14 | - 52 42 | 12 m | 103a - O | GG 385 | Bok | 03 04 71 | Vela 1 | ||||
1375 | 09 25 14 | - 52 42 | 07 m | lla - O | GG 385 | Bok | 03 04 71 | Vela 1 | ||||
1376 | 09 25 14 | - 52 42 | 10 m | 103a D | GG 495 | Bok | 03 04 71 | Vela 1 | ||||
1376 | 09 25 14 | - 52 42 | 01 m | 103a D | GG 495 | Bok | 03 04 71 | Vela 1 | ||||
1377 | 09 25 14 | - 52 42 | 45 m | 103a - O | U G 2 | Bok | 03 04 71 | Vela 1 | ||||
1377 | 09 25 14 | - 52 42 | 09 m | 103a - O | GG 385 | Bok | 03 04 71 | Vela 1 | ||||
1377 | 09 25 14 | - 52 42 | 03 m | 103a - O | GG 385 | Bok | 03 04 71 | Vela 1 | ||||
1378 | 13 26 06 | - 63 42 | 45 m | 103a - O | U G 2 | Bok | 03 04 71 | Centaurus ll | ||||
1378 | 13 26 06 | - 63 42 | 09 m | 103a - O | GG 385 | Bok | 03 04 71 | Centaurus ll | ||||
1378 | 13 26 06 | - 63 42 | 03 m | 103a - O | GG 385 | Bok | 03 04 71 | Centaurus ll | ||||
1379 | 13 26 06 | - 63 42 | 07 m | lla - O | GG 385 | Bok | 03 04 71 | Centaurus ll | ||||
1380 | 13 26 06 | - 63 42 | 10 m | 103a D | GG 495 | Bok | 03 04 71 | Centaurus ll | ||||
1381 | 15 23 48 | - 59 27 | 45 m | 103a - O | U G 2 | Bok | 03 04 71 | Circinus | ||||
1381 | 15 23 48 | - 59 27 | 06 m | 103a - O | GG 385 | Bok | 03 04 71 | Circinus | ||||
1381 | 15 23 48 | - 59 27 | 10 m | 103a - O | GG 385 | Bok | 03 04 71 | Circinus | ||||
1382 | 15 23 48 | - 59 27 | 07 m | lla - O | GG 385 | Bok | 03 04 71 | Circinus | ||||
1382 | 15 23 48 | - 59 27 | 45 seg | lla - O | GG 385 | Bok | 03 04 71 | Circinus | ||||
1383 | 15 23 48 | - 59 27 | 10 m | 103a D | GG 495 | Bok | 03 04 71 | Circinus | ||||
1384 | 09 25 39 | - 52 42 | 10 m | 103a D | GG 495 | Bok | 04 04 71 | Vela 1 | ||||
1384 | 09 25 39 | - 52 42 | 01 m | 103a D | GG 495 | 3 | Bok | 04 04 71 | Vela 1 | |||
1385 | 09 25 39 | - 52 42 | 10 m | lla - O | GG 385 | 3 | Bok | 04 04 71 | Vela 1 | |||
1385 | 09 25 39 | - 52 42 | 01 m | lla - O | GG 385 | 2.5 | Bok | 04 04 71 | Vela 1 | |||
1386 | 09 25 39 | - 52 42 | 20 m | lla - O | U G 2 | 3 | Bok | 04 04 71 | Vela 1 | |||
1386 | 09 25 39 | - 52 42 | 04 m | lla - O | GG 385 | 3 | Bok | 04 04 71 | Vela 1 | |||
1386 | 09 25 39 | - 52 42 | 02 m | lla - O | GG 385 | 4 | Bok | 04 04 71 | Vela 1 | |||
1387 | 09 25 39 | - 52 42 | 50 m | lla - O | U G 2 | 5 | Bok | 04 04 71 | Vela 1 | |||
1387 | 09 25 39 | - 52 42 | 05 m | lla - O | U G 2 | 4 | Bok | 04 04 71 | Vela 1 | |||
1388 | 09 25 39 | - 52 42 | 50 m | lla - O | U G 2 | 4 | Bok | 04 04 71 | Vela 1 | |||
1388 | 09 25 39 | - 52 42 | 15 m | lla - O | GG 385 | ´4 - 10 | Bok | 04 04 71 | Vela 1 | |||
1388 | 09 25 39 | - 52 42 | 07 m | lla - O | GG 385 | ´4 - 10 | Bok | 04 04 71 | Vela 1 | |||
1389 | 13 27 18 | - 63 42 | 10 m | lla - O | GG 385 | ´4 - 10 | Bok | 04 04 71 | Centaurus ll | |||
1389 | 13 27 18 | - 63 42 | 01 m | lla - O | GG 385 | ´4 - 10 | Bok | 04 04 71 | Centaurus ll | |||
1390 | 13 27 18 | - 63 42 | 10 m | 103a - D | GG 495 | ´4 - 10 | Bok | 04 04 71 | Centaurus ll | |||
1390 | 13 27 18 | - 63 42 | 01 m | 103a - D | GG 495 | 2 | Bok | 04 04 71 | Centaurus ll | |||
1391 | 13 27 18 | - 63 42 | 20 m | lla - O | U G 2 | 2 | Bok | 04 04 71 | Centaurus ll | |||
1391 | 13 27 18 | - 63 42 | 04 m | lla - O | GG 385 | 2 | Bok | 04 04 71 | Centaurus ll | |||
1391 | 13 27 18 | - 63 42 | 02 m | lla - O | GG 385 | 2.5 | Bok | 04 04 71 | Centaurus ll | |||
1392 | 13 27 18 | - 63 42 | 60 m | lla - O | U G 2 | 2.5 | Bok | 04 04 71 | Centaurus ll | |||
1392 | 13 27 18 | - 63 42 | 12 m | lla - O | GG 385 | 4 | Bok | 04 04 71 | Centaurus ll | |||
1392 | 13 27 18 | - 63 42 | 06 m | lla - O | GG 385 | 3 | Bok | 04 04 71 | Centaurus ll | |||
1393 | 15 18 25 | - 57 03 | 36 m | 103a - O | GG 385 | 3 | Bok | 04 04 71 | Circinus X - 1 | BROKEN OK" | CTIO | |
1394 | 15 23 43 | - 59 25 | 60 m | lla - O | U G 2 | 3 | Bok | 04 04 71 | Circinus | |||
1394 | 15 23 43 | - 59 25 | 10 m | lla - O | GG 385 | 3 | Bok | 04 04 71 | Circinus | |||
1395 | 10 58 48 | - 60 17 | 10 m | 103a - D | GG 495 | 3 | Bok | 05 04 71 | HD 95540 | |||
1395 | 10 58 48 | - 60 17 | 01 m | 103a - D | GG 495 | 4 | Bok | 05 04 71 | HD 95540 | |||
1396 | 10 58 48 | - 60 17 | 10 m | lla - O | GG 385 | 4 | Bok | 05 04 71 | HD 95540 | |||
1396 | 10 58 48 | - 60 17 | 01 m | lla - O | GG 385 | 4 | Bok | 05 04 71 | HD 95540 | |||
1397 | 10 58 48 | - 60 17 | 20 m | lla - O | U G 2 | 4 | Bok | 05 04 71 | HD 95540 | |||
1397 | 10 58 48 | - 60 17 | 05 m | lla - O | GG 385 | 4 | Bok | 05 04 71 | HD 95540 | |||
1397 | 10 58 48 | - 60 17 | 02 m | lla - O | GG 385 | 3 | Bok | 05 04 71 | HD 95540 | |||
1398 | 10 58 48 | - 60 17 | 10 m | lla - O | GG 385 | 3 | Bok | 05 04 71 | HD 95540 | |||
1398 | 10 58 48 | - 60 17 | 01 m | lla - O | GG 385 | 3 | Bok | 05 04 71 | HD 95540 | |||
1399 | 10 58 48 | - 60 17 | 10 m | 103a - D | GG 495 | 2 | Bok | 05 04 71 | HD 95540 | |||
1399 | 10 58 48 | - 60 17 | 01 m | 103a - D | GG 495 | 2 | Bok | 05 04 71 | HD 95540 | |||
1400 | 10 58 48 | - 60 17 | 60 m | lla - O | U G 2 | 2 | Bok | 05 04 71 | HD 95540 | |||
1400 | 10 58 48 | - 60 17 | 06 m | lla - O | U G 2 | 1.5 | Bok | 05 04 71 | HD 95540 | |||
1401 | 10 58 48 | - 60 17 | 60 m | lla - O | U G 2 | 1.5 | Bok | 05 04 71 | HD 95540 | |||
1401 | 10 58 48 | - 60 17 | 06 m | lla - O | U G 2 | 3 | Bok | 05 04 71 | HD 95540 | |||
1402 | 10 58 48 | - 60 17 | 60 m | lla - O | U G 2 | 1.5 | Bok | 05 04 71 | HD 95540 | |||
1402 | 10 58 48 | - 60 17 | 12 m | lla - O | GG 385 | 1.5 | Bok | 05 04 71 | HD 95540 | |||
1402 | 10 58 48 | - 60 17 | 01 m | lla - O | GG 385 | 1.5 | Bok | 05 04 71 | HD 95540 | |||
1403 | 10 58 48 | - 60 17 | 10 m | 103a - D | GG 495 | 1.5 | Bok | 05 04 71 | HD 95540 | |||
1403 | 10 58 48 | - 60 17 | 01 m | 103a - D | GG 495 | 1.5 | Bok | 05 04 71 | HD 95540 | |||
1404 | 15 18 25 | - 57 03 | 36 m | 103a - O | GG 385 | 3 | Bok | 05 04 71 | Circinus X - 1 | BROKEN OK" | CTIO | |
1405 | 15 23 43 | - 59 25 | 60 m | lla - O | U G 2 | 2.5 | Bok | 05 04 71 | Circinus | |||
1405 | 15 23 43 | - 59 25 | 12 m | lla - O | GG 385 | 2.5 | Bok | 05 04 71 | Circinus | |||
1405 | 15 23 43 | - 59 25 | 01 m | lla - O | GG 385 | 2.5 | Bok | 05 04 71 | Circinus | |||
1406 | 09 26 36 | - 52 50 | 60 m | lla - O | U G 2 | 4 | Bok | 06 04 71 | Vela 1 | |||
1406 | 09 26 36 | - 52 50 | 07 m | lla - O | GG 385 | 4 | Bok | 06 04 71 | Vela 1 | |||
1406 | 09 26 36 | - 52 50 | 02 m | lla - O | GG 385 | 4 | Bok | 06 04 71 | Vela 1 | |||
1407 | 09 26 36 | - 52 50 | 10 m | 103a - D | GG 495 | 4 | Bok | 06 04 71 | Vela 1 | |||
1407 | 09 26 36 | - 52 50 | 01 m | 103a - D | GG 495 | 4 | Bok | 06 04 71 | Vela 1 | |||
1408 | 10 58 48 | - 60 17 | 20 m | lla - O | U G 2 | 4 | Bok | 06 04 71 | HD 95540 | |||
1408 | 10 58 48 | - 60 17 | 20 m | lla - O | U G 2 | 4 | Bok | 06 04 71 | HD 95540 | |||
1408 | 10 58 48 | - 60 17 | 2.5 m | lla - O | GG 385 | 3 | Bok | 06 04 71 | HD 95540 | |||
1408 | 10 58 48 | - 60 17 | 2.5 m | lla - O | GG 385 | 1.5 | Bok | 06 04 71 | HD 95540 | |||
1408 | 10 58 48 | - 60 17 | 30 seg | lla - O | GG 385 | 1.5 | Bok | 06 04 71 | HD 95540 | |||
1409 | 10 58 48 | - 60 17 | 10 m | lla - O | GG 385 | 1.5 | Bok | 06 04 71 | HD 95540 | |||
1409 | 10 58 48 | - 60 17 | 01 m | lla - O | GG 385 | 2 | Bok | 06 04 71 | HD 95540 | |||
1410 | 10 58 48 | - 60 17 | 20 m | lla - O | U G 2 | 2 | Bok | 06 04 71 | HD 95540 | |||
1410 | 10 58 48 | - 60 17 | 2.5 m | lla - O | GG 385 | 1.5 | Bok | 06 04 71 | HD 95540 | |||
1410 | 10 58 48 | - 60 17 | 30 seg | lla - O | GG 385 | 1.5 | Bok | 06 04 71 | HD 95540 | |||
1411 | 10 58 48 | - 60 17 | 10 m | 103a - D | GG 495 | 1.5 | Bok | 06 04 71 | HD 95540 | |||
1411 | 10 58 48 | - 60 17 | 01 m | 103a - D | GG 495 | 1.5 | Bok | 06 04 71 | HD 95540 | |||
1412 | 10 58 48 | - 60 17 | 10 m | 103a - D | GG 495 | 3.5 | Bok | 06 04 71 | HD 95540 | |||
1412 | 10 58 48 | - 60 17 | 01 m | 103a - D | GG 495 | 2 | Bok | 06 04 71 | HD 95540 | |||
1413 | 13 26 06 | - 63 42 | 60 m | lla - O | U G 2 | 2 | Bok | 06 04 71 | Centaurus ll | |||
1413 | 13 26 06 | - 63 42 | 7.5 m | lla - O | GG 385 | 2 | Bok | 06 04 71 | Centaurus ll | |||
1413 | 13 26 06 | - 63 42 | 02 m | lla - O | GG 385 | 2 | Bok | 06 04 71 | Centaurus ll | |||
1414 | 13 26 06 | - 63 42 | 60 m | lla - O | U G 2 | 2 | Bok | 06 04 71 | Centaurus ll | |||
1414 | 13 26 06 | - 63 42 | 06 m | lla - O | U G 2 | 4 | Bok | 06 04 71 | Centaurus ll | |||
1415 | 13 26 06 | - 63 42 | 10 m | 103a - D | GG 495 | 4 | Bok | 06 04 71 | Centaurus ll | |||
1415 | 13 26 06 | - 63 42 | 01 m | 103a - D | GG 495 | 4 | Bok | 06 04 71 | Centaurus ll | |||
1416 | 15 18 25 | - 57 03 | 36 m | 103a - O | GG 385 | 4 | Bok | 06 04 71 | Centaurus ll | CTIO | ||
1417 | 15 55 30 | - 54 16 | 20 m | lla - O | U G 2 | 4 | Bok | 06 04 71 | Norma l | |||
1417 | 15 55 30 | - 54 16 | 03 m | lla - O | GG 385 | 4 | Bok | 06 04 71 | Norma l | |||
1417 | 15 55 30 | - 54 16 | 40 seg | lla - O | GG 385 | 4 | Bok | 06 04 71 | Norma l | |||
1418 | 10 58 48 | - 60 17 | 10 m | 103a - D | GG 495 | 3 | Bok | 07 04 71 | HD 95540 | |||
1418 | 10 58 48 | - 60 17 | 01 m | 103a - D | GG 495 | 3 | Bok | 07 04 71 | HD 95540 | |||
1419 | 10 58 48 | - 60 17 | 10 m | 103a - D | GG 495 | 2 | Bok | 07 04 71 | HD 95540 | |||
1419 | 10 58 48 | - 60 17 | 01 m | 103a - D | GG 495 | 2 | Bok | 07 04 71 | HD 95540 | |||
1420 | 10 58 48 | - 60 17 | 10 m | 103a - D | GG 495 | 1.5 | Bok | 07 04 71 | HD 95540 | |||
1420 | 10 58 48 | - 60 17 | 01 m | 103a - D | GG 495 | 1.5 | Bok | 07 04 71 | HD 95540 | |||
1421 | 15 18 25 | - 57 03 | 12 m | 103a - O | GG 385 | 2 | Bok | 07 04 71 | Cir. XR - 1 | |||
1421 | 15 18 25 | - 57 03 | 12 m | 103a - O | GG 385 | 2 | Bok | 07 04 71 | Cir. XR - 1 | |||
1421 | 15 18 25 | - 57 03 | 12 m | 103a - O | GG 385 | 2 | Bok | 07 04 71 | Cir. XR - 1 | CTIO | ||
1421 | 15 18 25 | - 57 03 | 12 m | 103a - O | GG 385 | 2 | Bok | 07 04 71 | Cir. XR - 1 | |||
1421 | 15 18 25 | - 57 03 | 12 m | 103a - O | GG 385 | 2 | Bok | 07 04 71 | Cir. XR - 1 | |||
1422 | 15 24 42 | - 59 33 | 20 m | lla - O | U G 2 | 2 | Bok | 07 04 71 | Circinus | |||
1422 | 15 24 42 | - 59 33 | 2.5 m | lla - O | GG 385 | 2 | Bok | 07 04 71 | Circinus | |||
1422 | 15 24 42 | - 59 33 | 30 seg | lla - O | GG 385 | 2 | Bok | 07 04 71 | Circinus | |||
1423 | 15 55 24 | - 54 15.8 | 50 m | lla - O | U G 2 | 3 | Bok | 07 04 71 | Norma l | |||
1423 | 15 55 24 | - 54 15.8 | 06 m | lla - O | GG 385 | 3 | Bok | 07 04 71 | Norma l | |||
1423 | 15 55 24 | - 54 15.8 | 01 m | lla - O | GG 385 | 3 | Bok | 07 04 71 | Norma l | |||
1424 | 10 58 48 | - 60 17 | 10 m | 103a - D | GG 495 | 2 | Bok | 08 04 71 | HD 95540 | |||
1424 | 10 58 48 | - 60 17 | 01 m | 103a - D | GG 495 | 2 | Bok | 08 04 71 | HD 95540 | |||
1425 | 11 30 12 | - 60 31 | 10 m | 103a - D | GG 495 | 1.5 | Bok | 08 04 71 | SA 193 | |||
1425 | 11 30 12 | - 60 31 | 01 m | 103a - D | GG 495 | 1.5 | Bok | 08 04 71 | SA 193 | |||
1426 | 11 30 12 | - 60 31 | 10 m | lla - O | GG 385 | 1.5 | Bok | 08 04 71 | SA 193 | |||
1426 | 11 30 12 | - 60 31 | 01 m | lla - O | GG 385 | 1.5 | Bok | 08 04 71 | SA 193 | |||
1427 | 11 30 12 | - 60 31 | 60 m | lla - O | U G 2 | 1.5 | Bok | 08 04 71 | SA 193 | |||
1427 | 11 30 12 | - 60 31 | 07.5 m | lla - O | GG 385 | 1.5 | Bok | 08 04 71 | SA 193 | |||
1427 | 11 30 12 | - 60 31 | 01.5 m | lla - O | GG 385 | 1.5 | Bok | 08 04 71 | SA 193 | |||
1428 | 11 30 12 | - 60 31 | 20 m | lla - O | U G 2 | 1.5 | Bok | 08 04 71 | SA 193 | |||
1428 | 11 30 12 | - 60 31 | 02.5 m | lla - O | GG 385 | 1.5 | Bok | 08 04 71 | SA 193 | |||
1428 | 11 30 12 | - 60 31 | 30 seg | lla - O | GG 385 | 3 | Bok | 08 04 71 | SA 193 | |||
1429 | 15 24 42 | - 59 33 | 10 m | 103a - D | GG 495 | 3 | Bok | 08 04 71 | Circinus | |||
1429 | 15 24 42 | - 59 33 | 01 m | 103a - D | GG 495 | 3 | Bok | 08 04 71 | Circinus | |||
1430 | 15 24 42 | - 59 33 | 20 m | lla - O | U G 2 | 3 | Bok | 08 04 71 | Circinus | |||
1430 | 15 24 42 | - 59 33 | 02.5 m | lla - O | GG 385 | 3 | Bok | 08 04 71 | Circinus | |||
1430 | 15 24 42 | - 59 33 | 30 m | lla - O | GG 385 | 3 | Bok | 08 04 71 | Circinus | |||
1431 | 15 55 24 | - 54 15.8 | 60 m | lla - O | U G 2 | 3 | Bok | 08 04 71 | Norma l | |||
1431 | 15 55 24 | - 54 15.8 | 60 m | lla - O | U G 2 | 3 | Bok | 08 04 71 | Norma l | |||
1432 | 15 55 24 | - 54 15.8 | 20 m | lla - O | U G 2 | 2 | Bok | 08 04 71 | Norma l | |||
1432 | 15 55 24 | - 54 15.8 | 02.5 m | lla - O | GG 385 | 2 | Bok | 08 04 71 | Norma l | |||
1432 | 15 55 24 | - 54 15.8 | 30 seg | lla - O | GG 385 | 2 | Bok | 08 04 71 | Norma l | |||
1433 | 15 55 24 | - 54 15.8 | 10 m | 103a - D | GG 495 | 3 | Bok | 08 04 71 | Norma l | |||
1433 | 15 55 24 | - 54 15.8 | 01 m | 103a - D | GG 495 | 3 | Bok | 08 04 71 | Norma l | |||
1434 | 15 55 24 | - 54 15.8 | 10 m | lla - O | GG 385 | 3 | Bok | 08 04 71 | Norma l | |||
1434 | 15 55 24 | - 54 15.8 | 01 m | lla - O | GG 385 | 3 | Bok | 08 04 71 | Norma l | |||
1435 | 15 55 24 | - 54 15.8 | 10 m | 103a - D | GG 495 | 3 | Bok | 08 04 71 | Norma l | |||
1435 | 15 55 24 | - 54 15.8 | 01 m | 103a - D | GG 495 | 2.5 | Bok | 08 04 71 | Norma l | |||
1436 | 09 40 00 | - 54 00 | 20 m | lla - O | U G 2 | 2.5 | Bok | 09 04 71 | Vela 2 | |||
1436 | 09 40 00 | - 54 00 | 02.5 m | lla - O | GG 385 | 1.5 | Bok | 09 04 71 | Vela 2 | |||
1436 | 09 40 00 | - 54 00 | 30 seg | lla - O | GG 385 | 1.5 | Bok | 09 04 71 | Vela 2 | |||
1437 | 09 40 00 | - 54 00 | 10 m | 103a - D | GG 495 | 1.5 | Bok | 09 04 71 | Vela 2 | |||
1437 | 09 40 00 | - 54 00 | 01 m | 103a - D | GG 495 | 2 | Bok | 09 04 71 | Vela 2 | |||
1438 | 09 40 00 | - 54 00 | 10 m | lla - O | GG 385 | 3.5 | Bok | 09 04 71 | Vela 2 | |||
1438 | 09 40 00 | - 54 00 | 01 m | lla - O | GG 385 | 1.5 - 3 | Bok | 09 04 71 | Vela 2 | |||
1439 | 09 40 00 | - 54 00 | 60 m | lla - O | U G 2 | 1.5 - 3 | Bok | 09 04 71 | Vela 2 | |||
1439 | 09 40 00 | - 54 00 | 07.5 m | lla - O | GG 385 | 2.5 | Bok | 09 04 71 | Vela 2 | |||
1439 | 09 40 00 | - 54 00 | 01.5 m | lla - O | GG 385 | 2 | Bok | 09 04 71 | Vela 2 | |||
1440 | 09 40 00 | - 54 00 | 10 m | 103a - D | GG 495 | 1.5 | Bok | 09 04 71 | Vela 2 | |||
1440 | 09 40 00 | - 54 00 | 01 m | 103a - D | GG 495 | 1.5 | Bok | 09 04 71 | Vela 2 | |||
1441 | 11 30 12 | - 60 31 | 10 m | 103a - D | GG 495 | 1.5 | Bok | 09 04 71 | SA 193 | |||
1441 | 11 30 12 | - 60 31 | 01 m | 103a - D | GG 495 | 1.5 | Bok | 09 04 71 | SA 193 | |||
1442 | 15 24 42 | - 59 33 | 10 m | 103a - D | GG 495 | 1 | Bok | 09 04 71 | Circinus | |||
1442 | 15 24 42 | - 59 33 | 01 m | 103a - D | GG 495 | 1 | Bok | 09 04 71 | Circinus | |||
1443 | 16 22 54 | - 52 06 | 10 m | 103a - D | GG 495 | 1.5 | Bok | 09 04 71 | Norma lV | |||
1443 | 16 22 54 | - 52 06 | 01 m | 103a - D | GG 495 | 1.5 | Bok | 09 04 71 | Norma lV | |||
1444 | 16 22 54 | - 52 06 | 10 m | lla - O | GG 385 | 1.5 | Bok | 09 04 71 | Norma lV | |||
1444 | 16 22 54 | - 52 06 | 01 m | lla - O | GG 385 | 1.5 | Bok | 09 04 71 | Norma lV | |||
1445 | 16 22 54 | - 52 06 | 20 m | lla - O | U G 2 | 1.5 | Bok | 09 04 71 | Norma lV | |||
1445 | 16 22 54 | - 52 06 | 02.5 m | lla - O | GG 385 | 1.5 | Bok | 09 04 71 | Norma lV | |||
1445 | 16 22 54 | - 52 06 | 30 seg | lla - O | GG 385 | 1.5 | Bok | 09 04 71 | Norma lV | |||
1446 | 16 22 54 | - 52 06 | 10 m | 103a - D | GG 495 | 1.5 | Bok | 09 04 71 | Norma lV | |||
1446 | 16 22 54 | - 52 06 | 1 m | 103a - D | GG 495 | 1.5 | Bok | 09 04 71 | Norma lV | |||
1447 | 16 22 54 | - 52 06 | 60 m | lla - O | U G 2 | 2 | Bok | 09 04 71 | Norma lV | |||
1447 | 16 22 54 | - 52 06 | 07.5 m | lla - O | GG 385 | 2 | Bok | 09 04 71 | Norma lV | |||
1447 | 16 22 54 | - 52 06 | 1.5 m | lla - O | GG 385 | 2 | Bok | 09 04 71 | Norma lV | |||
1448 | 14 18 18 | - 60 47 | 10 m | lla - O | GG 385 | 5 | Bok | 15 04 71 | Centaurus | |||
1448 | 14 18 18 | - 60 47 | 1 m | lla - O | GG 385 | 5 | Bok | 15 04 71 | Centaurus | |||
1449 | 14 18 18 | - 60 47 | 15 m | 103a - D | GG 495 | 6 | Bok | 15 04 71 | Centaurus | |||
1449 | 14 18 18 | - 60 47 | 1.5 m | 103a - D | GG 495 | 6 | Bok | 15 04 71 | Centaurus | |||
1450 | 14 18 18 | - 60 47 | 30 m | lla - O | U G 2 | 4 | Bok | 15 04 71 | Centaurus | |||
1450 | 14 18 18 | - 60 47 | 4 m | lla - O | GG 385 | 4 | Bok | 15 04 71 | Centaurus | |||
1450 | 14 18 18 | - 60 47 | 45 seg | lla - O | GG 385 | 6 | Bok | 15 04 71 | Centaurus | |||
1451 | 14 18 18 | - 60 47 | 75 m | lla - O | U G 2 | 4--6 | Bok | 15 04 71 | Centaurus | |||
1451 | 14 18 18 | - 60 47 | 2.5 m | lla - O | U G 2 | 4--6 | Bok | 15 04 71 | Centaurus | |||
1452 | 15 49 42 | - 56 16 | 15 m | 103a - D | GG 495 | 4--8 | Bok | 15 04 71 | Norma ll | |||
1452 | 15 49 42 | - 56 16 | 1.5 m | 103a - D | GG 495 | 4--8 | Bok | 15 04 71 | Norma ll | |||
1453 | 15 49 42 | - 56 16 | 12 m | lla - O | GG 385 | 3.5 | Bok | 15 04 71 | Norma ll | |||
1453 | 15 49 42 | - 56 16 | 1 m | lla - O | GG 385 | 3.5 | Bok | 15 04 71 | Norma ll | |||
1454 | 15 49 42 | - 56 16 | 60 m | lla - O | U G 2 | 3 | Bok | 15 04 71 | Norma ll | |||
1454 | 15 49 42 | - 56 16 | 6 m | lla - O | U G 2 | 6 | Bok | 15 04 71 | Norma ll | |||
1455 | 09 40 00 | - 53 57 | 75 m | lla - O | U G 2 | 8--10 | Bok | 15 04 71 | Vela ll | |||
1455 | 09 40 00 | - 53 57 | 7.5 m | lla - O | U G 2 | 12 | Bok | 15 04 71 | Vela ll | |||
1456 | 12 56 00 | - 61 30 | 75 m | lla - O | GG 385 | 3.5 | Bok | 16 04 71 | Saco de Carbon a | |||
1457 | 13 15 00 | - 61 30 | 75 m | lla - O | GG 385 | 4 | Bok | 16 04 71 | Saco de Carbon b | |||
1458 | 14 18 18 | - 60 47 | 60 m | lla - O | U G 2 | 3.5 | Bok | 16 04 71 | Centaurus l | |||
1458 | 14 18 18 | - 60 47 | 7.5 m | lla - O | GG 385 | 3.5 | Bok | 16 04 71 | Centaurus l | |||
1458 | 14 18 18 | - 60 47 | 1 5 m | lla - O | GG 385 | 3.5 | Bok | 16 04 71 | Centaurus l | |||
1459 | 16 23 24 | - 51 59.2 | 60 m | lla - O | U G 2 | 3 | Bok | 16 04 71 | Norma lV | |||
1459 | 16 23 24 | - 51 59.2 | 6 m | lla - O | U G 2 | 3 | Bok | 16 04 71 | Norma lV | |||
1460 | 11 30 12 | - 60 31 | 60 m | lla - O | U G 2 | 1 | Bok | 16 04 71 | SA 193 | |||
1460 | 11 30 12 | - 60 31 | 07.5 m | lla - O | GG 385 | 1.5 | Bok | 16 04 71 | SA 193 | |||
1460 | 11 30 12 | - 60 31 | 01.5 m | lla - O | GG 385 | 1.5 | Bok | 16 04 71 | SA 193 | |||
1460 | 11 30 12 | - 60 31 | 6 m | lla - O | U G 2 | 1.5 | Bok | 16 04 71 | SA 193 | |||
1461 | 12 56 00 | - 61 30 | 90 m | 098 - 0 2 | RG - 610 | 1.5 | Bok | 16 04 71 | Coal Sack a | |||
1462 | 13 15 00 | -61 29.7 | 90 m | 098 - 0 2 | RG - 610 | 1.5 | Bok | 17 04 71 | Coal Sack b | |||
1463 | 13 15 00 | -61 29.7 | 30 m | 103a - D | GG 495 | 1.5 | Bok | 17 04 71 | Coal Sack b | |||
1464 | 12 56 00 | - 61 30 | 30 m | 103a - D | GG 495 | 1 | Bok | 17 04 71 | Coal Sack a | |||
1465 | 14 18 18 | - 60 47 | 10 m | lla - O | GG 385 | 1.5 | Bok | 17 04 71 | Centaurus l | |||
1465 | 14 18 18 | - 60 47 | 01 m | lla - O | GG 385 | 1.5 | Bok | 17 04 71 | Centaurus l | |||
1466 | 15 49 42 | - 56 16 | 60 m | lla - O | U G 2 | 1.5 | Bok | 17 04 71 | Norma ll | |||
1466 | 15 49 42 | - 56 16 | 7.5 m | lla - O | GG 385 | 1.5 | Bok | 17 04 71 | Norma ll | |||
1466 | 15 49 42 | - 56 16 | 1.5 m | lla - O | GG 385 | 1.5 | Bok | 17 04 71 | Norma ll | |||
1466 | 15 49 42 | - 56 16 | 6 m | lla - O | U G 2 | 1.5 | Bok | 17 04 71 | Norma ll | |||
1467 | 15 49 42 | - 56 16 | 10 m | 103a - D | GG 495 | 1.5 | Bok | 17 04 71 | Norma ll | |||
1467 | 15 49 42 | - 56 16 | 01 m | 103a - D | GG 495 | 1.5 | Bok | 17 04 71 | Norma ll | |||
1468 | 15 49 42 | - 56 16 | 10 m | lla - O | GG 385 | 1.5 | Bok | 17 04 71 | Norma ll | |||
1468 | 15 49 42 | - 56 16 | 01 m | lla - O | GG 385 | 1.5 | Bok | 17 04 71 | Norma ll |
Last Updated on 8/27/99
By Jorge Marin
May 1971 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
1469 | 08 25 18 | - 68 01 | 5 m | 103a - O | NO | 4--5 | Rubin, Smith | 01 05 71 | NGC 2601 | |||
1470 | 08 25 18 | - 68 01 | 60 m | 103a - O | NO | 4--5 | Rubin, Smith | 01 05 71 | NGC 2601 | |||
1471 | 08 25 18 | - 68 01 | 5 m | 103a - O | NO | 4--5 | Rubin, Smith | 01 05 71 | NGC 2601 | |||
1472 | 09 58 48 | - 31 24 | 5 m | 103a - O | NO | 2--3 | Rubin, Smith | 01 05 71 | NGC 3095 | |||
1473 | Focus | plate | Rubin, Smith | 01 05 71 | Focus Plate | |||||||
1474 | 11 52 30 | - 23 01 | 20 m | 103a - O | NO | 1 | Rubin, Smith | 01 05 71 | NGC 3955 | |||
1475 | 17 16 18 | - 39 17.5 | 60 m | 103a - O | NO | 1--2 | Rubin, Smith | 01 05 71 | H 2 - 6 | |||
1476 | 17 16 18 | - 39 17.5 | 20 m | 103a - O | NO | 2--3 | Rubin, Smith | 01 05 71 | H 2 - 6 | |||
1477 | 17 16 18 | - 39 17.5 | 44 m | 098 - 0 2 | RG - 610 | 2--3 | Rubin, Smith | 01 05 71 | H 2 - 6 | |||
1478 | 17 16 18 | - 39 17.5 | 60 m | 098 - 0 2 | RG - 610 | 3 | Rubin, Smith | 01 05 71 | H 2 - 6 | |||
1479 | 17 07 24 | - 41 33.9 | 60 m | 098 - 0 2 | RG - 610 | 3--4 | Rubin, Smith | 01 05 71 | M 2 | |||
1480 | 10 44 00 | - 59 33 | 60 m | 098 - 02 | RG - 610 | 2 | Blanco | 23 05 71 | Eta Carina | BROKEN OK" | CTIO | |
1481 | 13 04 06 | - 49 21 | 120 m | 103a - O | NO | 2 | Blanco | 23 05 71 | NGC 4945 | CTIO | ||
1482 | 12 52 06 | - 60 13 | 30 m | 103a - O | GG 385 | 3--2 | Landolt | 25 05 71 | K Crusis/ NGC 4755 | |||
1483 | 12 52 06 | - 60 13 | 30 m | 103a - D | GG 495 | 3--2 | Landolt | 25 05 71 | K Crusis/ NGC 4755 | |||
1484 | 13 36 36 | - 00 31.2 | 5 m | 103a - D | GG 495 | 3--2 | Landolt | 25 05 71 | SA 105 | |||
1485 | 12 33 00 | - 72 24 | 30 m | 103a - D | GG 495 | 3--2 | Landolt | 25 05 71 | NGC 4372 | |||
1486 | 12 33 00 | - 72 24 | 30 m | 103a - O | GG 385 | 3--2 | Landolt | 25 05 71 | NGC 4372 | |||
1487 | 16 21 48 | - 26 27 | 30 m | 103a - O | GG 385 | 3--2 | Landolt | 25 05 71 | NGC 6121 | |||
1488 | 16 21 48 | - 26 27 | 30 m | 103a - D | GG 495 | 3--2 | Landolt | 25 05 71 | NGC 6121 | |||
1489 | 16 21 48 | - 26 27 | 60 m | 103a - O | U G 2 | 3--2 | Landolt | 25 05 71 | NGC 6121 | |||
1490 | 16 21 48 | - 26 27 | 83 m | 103a - O | U G 2 | 3--2 | Landolt | 25 05 71 | NGC 6121 | |||
1491 | 12 52 30 | - 60 13 | 10 m | 103a - O | GG 385 | 3--2 | Landolt | 26 05 71 | K Crusis/ NGC 4755 | |||
1492 | 12 52 30 | - 60 13 | 30 m | 103a - O | GG 385 | 3--2 | Landolt | 26 05 71 | K Crusis/ NGC 4755 | |||
1493 | 12 52 30 | - 60 13 | 60 m | 103a - O | U G 2 | 3--2 | Landolt | 26 05 71 | K Crusis/ NGC 4755 | |||
1494 | 16 21 48 | - 26 27 | 60 m | 103a - O | U G 2 | 2.5 | Landolt | 26 05 71 | NGC 6121 | |||
1495 | 16 21 48 | - 26 27 | 30 m | 103a - O | U G 2 | 2.5 | Landolt | 26 05 71 | NGC 6121 | |||
1496 | 16 21 48 | - 26 27 | 12 m | 103a - O | GG 385 | 3.5 | Landolt | 26 05 71 | NGC 6121 | |||
1497 | 16 21 48 | - 26 27 | 12 m | 103a - O | GG 385 | 3.5 | Landolt | 26 05 71 | NGC 6121 | |||
1498 | 16 21 48 | - 26 27 | 12 m | 103a - O | GG 385 | 3.5 | Landolt | 26 05 71 | NGC 6121 | |||
1499 | 16 21 48 | - 26 27 | 60 m | 103a - D | GG 495 | 3.5 | Landolt | 26 05 71 | NGC 6121 | |||
1500 | 16 21 48 | - 26 27 | 15 m | 103a - D | GG 495 | 3.5 | Landolt | 26 05 71 | NGC 6121 | |||
1501 | 16 21 48 | - 26 27 | 15 m | 103a - D | GG 495 | 3.5 | Landolt | 26 05 71 | NGC 6121 | |||
1502 | 16 21 48 | - 26 27 | 15 m | 103a - D | GG 495 | 3.5 | Landolt | 26 05 71 | NGC 6121 | |||
1503 | 16 21 48 | - 26 27 | 30 m | 103a - D | GG 495 | 3.5 | Landolt | 26 05 71 | NGC 6121 | |||
1504 | 16 21 48 | - 26 27 | 12 m | 103a - O | GG 385 | 3.5 | Landolt | 26 05 71 | NGC 6121 | |||
1505 | 16 21 48 | - 26 27 | 30 m | 103a - D | GG 495 | 3.5 | Landolt | 26 05 71 | NGC 6121 | |||
1506 | 17 48 30 | - 37 02 | 30 m | 103a - D | GG 495 | 3.5 | Landolt | 26 05 71 | NGC 6441 | |||
1507 | 17 48 30 | - 37 02 | 15 m | 103a - O | GG 385 | 3.5 | Landolt | 26 05 71 | NGC 6441 | |||
1508 | 13 36 36 | - 00 31.2 | 5 m | 103a - D | GG 495 | 3 | Landolt | 27 05 71 | SA 105 | |||
1509 | 12 52 30 | - 60 13 | 30 m | 103a - D | GG 495 | 3 | Landolt | 27 05 71 | K Crusis/ NGC 4755 | |||
1510 | 12 52 30 | - 60 13 | 30 m | 103a - O | U G 2 | 3 | Landolt | 27 05 71 | K Crusis/ NGC 4755 | |||
1511 | 12 52 30 | - 60 13 | 30 m | 103a - O | U G 2 | 1.5 | Landolt | 27 05 71 | K Crusis/ NGC 4755 | |||
1512 | 12 52 30 | - 60 13 | 50 m | 103a - D | GG 495 | 3 | Landolt | 27 05 71 | K Crusis/ NGC 4755 | |||
1513 | 16 21 48 | - 26 27 | 60 m | 103a - D | GG 495 | 3 | Landolt | 27 05 71 | NGC 6121 | |||
1514 | 16 21 48 | - 26 27 | 60 m | 103a - D | GG 495 | 3 | Landolt | 27 05 71 | NGC 6121 | |||
1515 | 16 21 48 | - 26 27 | 30 m | 103a - O | GG 385 | 3 | Landolt | 27 05 71 | NGC 6121 | |||
1516 | 16 21 48 | - 26 27 | 30 m | 103a - O | GG 385 | 2--4 | Landolt | 27 05 71 | NGC 6121 | |||
1517 | 16 21 48 | - 26 27 | 60 m | 103a - O | GG 385 | 2--4 | Landolt | 27 05 71 | NGC 6121 | |||
1518 | 16 21 48 | - 26 27 | 60 | 103a - O | GG 385 | 3 | Landolt | 27 05 71 | NGC 6121 | |||
1519 | 16 21 48 | - 26 27 | 30 m | 103a - O | U G 2 | 3 | Landolt | 27 05 71 | NGC 6121 | |||
1520 | 16 21 48 | - 26 27 | 30 m | 103a - O | U G 2 | 3 | Landolt | 27 05 71 | NGC 6121 | |||
1521 | 17 48 30 | - 37 02 | 15 m | 103a - O | GG 385 | 3 | Landolt | 27 05 71 | NGC 6441 | |||
1522 | 17 48 30 | - 37 02 | 30 m | 103a - D | GG 495 | 3 | Landolt | 27 05 71 | NGC 6441 | |||
1523 | 12 52 30 | - 60 13 | 60 m | 103a - O | U G 2 | 3 | Landolt | 31 05 71 | NGC 4755 | |||
1524 | 12 52 30 | - 60 13 | 15 m | 103a - O | U G 2 | 3 | Landolt | 31 05 71 | NGC 4755 | |||
1525 | 12 52 30 | - 60 13 | 15 m | 103a - O | U G 2 | 3 | Landolt | 31 05 71 | NGC 4755 | |||
1526 | 12 52 30 | - 60 13 | 6 m | 103a - O | U G 2 | 3 | Landolt | 31 05 71 | NGC 4755 | |||
1527 | 12 52 30 | - 60 13 | 6 m | 103a - O | U G 2 | 3 | Landolt | 31 05 71 | NGC 4755 | |||
1528 | 12 52 30 | - 60 13 | 10 m | 103a - O | GG 385 | 3 | Landolt | 31 05 71 | NGC 4755 | |||
1529 | 12 52 30 | - 60 13 | 4 m | 103a - O | GG 385 | 3 | Landolt | 31 05 71 | NGC 4755 | |||
1530 | 12 52 30 | - 60 13 | 4 m | 103a - O | GG 385 | 3 | Landolt | 31 05 71 | NGC 4755 | |||
1531 | 12 52 30 | - 60 13 | 10 m | 103a - D | GG 495 | 4 | Landolt | 31 05 71 | NGC 4755 | |||
1532 | 12 52 30 | - 60 13 | 10 m | 103a - D | GG 495 | 4 | Landolt | 31 05 71 | NGC 4755 | |||
1533 | 12 52 30 | - 60 13 | 50 m | 103a - D | GG 495 | 4 | Landolt | 31 05 71 | NGC 4755 | |||
1534 | 12 52 30 | - 60 13 | 4 m | 103a - D | GG 495 | 4 | Landolt | 31 05 71 | NGC 4755 | |||
1535 | 12 52 30 | - 60 13 | 4 m | 103a - D | GG 495 | 4 | Landolt | 31 05 71 | NGC 4755 | |||
1536 | 12 52 30 | - 60 13 | 50 m | 103a - O | GG 385 | 4 | Landolt | 31 05 71 | NGC 4755 | |||
1537 | 12 52 30 | - 60 13 | 50 m | 103a - O | GG 385 | 4--6 | Landolt | 31 05 71 | NGC 4755 | |||
1538 | 16 21 48 | - 26 27 | 60 m | 103a - O | GG 385 | 4 | Landolt | 31 05 71 | NGC 6121 | |||
1539 | 16 21 48 | - 26 27 | 6 m | 103a - O | U G 2 | 4 | Landolt | 31 05 71 | NGC 6121 | |||
1540 | 16 21 48 | - 26 27 | 6 m | 103a - O | U G 2 | 4 | Landolt | 31 05 71 | NGC 6121 | |||
1541 | 16 21 48 | - 26 27 | 6 m | 103a - O | U G 2 | 4 | Landolt | 31 05 71 | NGC 6121 |
Last Updated on 8/27/99
By Guerra & Marin
June 1971 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
1542 | 16 21 48 | - 26 27 | 4 m | 103a - O | GG 385 | 3 | Landolt | 01 06 71 | NGC 6121 | |||
1543 | 16 21 48 | - 26 27 | 4 m | 103a - O | GG 385 | 3 | Landolt | 01 06 71 | NGC 6121 | |||
1544 | 16 21 48 | - 26 27 | 5 m | 103a - D | GG 495 | 3 | Landolt | 01 06 71 | NGC 6121 | |||
1545 | 16 21 48 | - 26 27 | 5 m | 103a - D | GG 495 | 3 | Landolt | 01 06 71 | NGC 6121 | |||
1546 | 16 21 48 | - 26 27 | 60 m | 098 - 02 | RG 610 | 3 | Landolt | 01 06 71 | NGC 6121 | |||
1547 | 16 21 48 | - 26 27 | 2 m | 103a - O | GG 385 | 3 | Landolt | 01 06 71 | NGC 6121 | |||
1548 | 16 21 48 | - 26 27 | 2 m | 098 - 02 | GG 385 | 3 | Landolt | 01 06 71 | NGC 6121 | |||
1549 | 16 21 48 | - 26 27 | 2:30 m | 103a - D | GG 495 | 3 | Landolt | 01 06 71 | NGC 6121 | |||
1550 | 16 21 48 | - 26 27 | 2:30 m | 103a - D | GG 495 | 3 | Landolt | 01 06 71 | NGC 6121 | |||
1551 | 16 21 48 | - 26 27 | 18 m | 103a - O | U G 2 | 4 | Landolt | 01 06 71 | NGC 6121 | |||
1552 | 16 21 48 | - 26 27 | 18 m | 103a - O | U G 2 | 4 | Landolt | 01 06 71 | NGC 6121 | |||
1553 | 16 15 12 | - 22 55 | 30 m | 103a - D | GG 495 | 2--3 | Landolt | 01 06 71 | NGC 6093 | |||
1554 | 16 25 24 | - 25 59 | 20 m | 103a - O | GG 385 | 4 | Landolt | 01 06 71 | NGC 6144 | |||
1555 | 17 46 14 | - 24 45.9 | 60 m | 098 - 02 | RG 610 | 4 | Landolt | 01 06 71 | IRC 20385 | |||
1556 | (*) |
(*) Corresponde a Tubo Imagen
Last Updated on 8/27/99
By Guerra & Marin
August 1971 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
1587 | 13 44 00 | - 47 06 | 01 seg | II a - D | GG 495 | 2--3 | Graham | 02 08 71 | NGC 5139 | |||
1588 | 13 44 00 | - 47 06 | 15 seg | II a - O | U G 2 | 2--3 | Graham | 02 08 71 | NGC 5139 | |||
1589 | 13 44 00 | - 47 06 | 7 seg | II a - O | U G 2 | 2--3 | Graham | 02 08 71 | NGC 5139 | |||
1590 | 13 44 00 | - 47 06 | 5 seg | II a - D | GG 495 | 2--3 | Graham | 02 08 71 | NGC 5139 | |||
1591 | (1) | |||||||||||
1602 | 05 40 06 | - 66 39 | 3 m | 103a - O | NO | 2 | Smith | 17 08 71 | Nova Graham 1971 b | |||
1603 | 05 40 06 | - 66 39 | 1 m | 103a - O | NO | 2 | Smith | 17 08 71 | Nova Graham 1971 b | |||
1604 | 15 25 06 | - 50 31 | 1 m | II a - D | GG 495 | ? | 27 08 71 | NGC 5927 | ||||
1605 | 15 25 06 | - 50 31 | 12 m | II a - O | U G 2 | ? | 27 08 71 | NGC 5927 | ||||
1606 | 15 32 30 | - 50 32 | 24 m | II a - O | U G 2 | ? | 27 08 71 | NGC 5946 | ||||
1607 | 15 32 30 | - 50 32 | 2 m | II a - D | GG 495 | ? | 27 08 71 | NGC 5946 | ||||
1608 | 17 22 24 | - 48 27 | 30 sec | II a - D | GG 495 | ? | 27 08 71 | NGC 6352 | ||||
1609 | 17 22 24 | - 48 27 | 6 m | II a - O | U G 2 | ? | 27 08 71 | NGC 6352 | ||||
1610 | 17 37 36 | - 53 39 | 2 m | II a - O | U G 2 | ? | 27 08 71 | NGC 6397 | ||||
1611 | 17 37 36 | - 53 39 | 10 sec | II a - D | GG 495 | ? | 27 08 71 | NGC 6397 | ||||
1612 | 00 25 42 | - 71 41 | 45 m | 103a - O | GG 385 | ? | 27 08 71 | NGC 121 | ||||
1613 | 01 00 00 | - 33 40 | 75 m | 103a - O | GG 385 | ? | 27 08 71 | Sculptor | ||||
1613 | 00 23 48 | - 72 56 | 75 m | 103a - O | GG 385 | ? | 27 08 71 | Kron 3 | ||||
1614 | 00 25 42 | - 71 41 | 50 m | 103a - O | GG 385 | ? | 27 08 71 | NGC 121 | ||||
1615 | 00 25 42 | - 71 41 | 50 m | 103a - O | GG 385 | ? | 27 08 71 | NGC 121 | ||||
1616 | 00 25 42 | - 71 41 | 0 | 103a - O | GG 385 | ? | 27 08 71 | NGC 121 | Bad plate | |||
1617 | 05 41 00 | - 66 40 | 5 m | 103a - O | GG 385 | ? | 27 08 71 | Nova Dor. 1971 l | ||||
1618 | 23 09 00 | - 35 42 | 15 m | 103a - O | GG 385 | Lasker | 28 08 71 | Stock Object | ||||
1619 | 23 09 00 | - 35 42 | 15 m | 103a - D | GG 495 | Lasker | 28 08 71 | Stock Object | ||||
1620 | 00 32 00 | - 07 29 | 60 m | 103a - O | GG 385 | Lasker | 28 08 71 | MP 00 31 | CTIO | |||
1621 | 04 51 00 | - 17 57 | 60 m | 103a - O | GG 385 | Lasker | 28 08 71 | MP 04 50 | CTIO | |||
1622 | 14 51 10 | - 64 37 | 60 m | 103a - O | GG 385 | Lasker | 29 08 71 | MP 14 49 | CTIO | |||
1623 | 14 51 10 | - 65 33 | 30 m | 103a - O | GG 385 | Lasker | 29 08 71 | MP 14 49 | CTIO | |||
1624 | 20 49 18 | - 69 21 | 60 m | 103a - D | GG 495 | Lasker | 29 08 71 | IC 5152 | ||||
1625 | 20 46 59 | - 16 22.7 | 30 m | 103a - O | GG 385 | Lasker | 29 08 71 | PSR 2045-16 | CTIO | |||
1626 | 00 53 30 | - 37 52 | 130 m | 103a - O | GG 385 | Lasker | 29 08 71 | NGC 300 | Bad plate | |||
1627 | 01 00 00 | - 33 40 | 45 m | 103a - O | GG 385 | ? | 27 08 71 | Sculptor | ||||
1627 | 00 23 48 | - 72 56 | 45 m | 103a - O | GG 385 | ? | 27 08 71 | Kron 3 |
(1) Al 1601 corresponde a Tubo Imagen
Last Updated on 8/27/99
By Jorge Marin
September 1971 Plate logs for 1.5-m telescope
Plate | N. N | R . A | Dec | Exp.Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
1628 | (1) | |||||||||||
1630 | 17 11 00 | - 29 24 | 15 m | 103a - O | GG 385 | Smith | 17 09 71 | NGC 6304 | ||||
1631 | 17 11 00 | - 29 24 | 15 m | 103a - D | GG 495 | Smith | 17 09 71 | NGC 6304 | ||||
1632 | 17 48 06 | - 37 02 | 15 m | 103a - D | GG 495 | 3--4 | Smith | 17 09 71 | NGC 6441 | |||
1633 | 17 48 06 | - 37 02 | 15 m | 103a - D | GG 495 | 3 | Smith | 17 09 71 | NGC 6441 | |||
1634 | 17 23 00 | - 48 21 | 15 m | 103a - O | GG 385 | 3 | Smith | 17 09 71 | NGC 6352 | |||
1635 | 17 23 00 | - 48 21 | 15 m | 103a - D | GG 495 | 3 | Smith | 17 09 71 | NGC 6352 | |||
1636 | 17 11 24 | - 29 24 | 15 m | 103a - D | GG 495 | 3 | Smith | 17 09 71 | NGC 6304 | |||
1637 | 23 10 15 | - 35 29 | 15 m | 103a - D | GG 495 | 4 | Smith | 17 09 71 | Field JEM | |||
1638 | 23 10 15 | - 35 29 | 15 m | 103a - O | GG 385 | 4 | Graham | 21 09 71 | Field JEM | |||
1639 | 00 25 42 | - 71 41 | 60 m | 103a - O | GG 385 | 4 | Graham | 21 09 71 | NGC 121 | |||
1640 | 00 25 42 | - 71 41 | 55 m | 103a - O | GG 385 | 4 | Graham | 21 09 71 | NGC 121 | |||
1641 | 00 25 42 | - 71 41 | 55 m | 103a - O | GG 385 | 2 | Graham | 21 09 71 | NGC 121 | |||
1642 | 00 25 42 | - 71 41 | 60 m | 103a - D | GG 495 | Graham | 21 09 71 | NGC 121 | ||||
1643 | 00 25 42 | - 71 41 | 55 m | 103a - O | GG 385 | Graham | 21 09 71 | NGC 121 | ||||
1644 | 00 25 42 | - 71 41 | 55 m | 103a - O | GG 385 | Graham | 21 09 71 | NGC 121 | ||||
1645 | 00 25 42 | - 71 41 | 55 m | 103a - O | GG 385 | Graham | 21 09 71 | NGC 121 | ||||
1646 | 00 25 42 | - 71 41 | 55 m | 103a - O | GG 385 | Graham | 21 09 71 | NGC 121 | ||||
1647 | 05 41 00 | - 66 40 | 10 m | 103a - O | GG 385 | Graham | 21 09 71 | Nova Dor 1971 b | ||||
1648 | 00 25 42 | - 71 41 | 60 m | 103a - O | GG 385 | Graham | 22 09 71 | NGC 121 | ||||
1649 | 00 25 42 | - 71 41 | 60 m | 103a - O | GG 385 | Graham | 22 09 71 | NGC 121 | ||||
1650 | 00 25 42 | - 71 41 | 60 m | 103a - O | GG 385 | Graham | 22 09 71 | NGC 121 | ||||
1651 | 00 25 42 | - 71 41 | 60 m | 103a - D | GG 495 | Graham | 22 09 71 | NGC 121 | ||||
1652 | 00 25 42 | - 71 41 | 60 m | 103a - O | GG 385 | Graham | 22 09 71 | NGC 121 | ||||
1653 | 00 25 42 | - 71 41 | 60 m | 103a - O | GG 385 | Graham | 22 09 71 | NGC 121 | ||||
1654 | 00 25 42 | - 71 41 | 60 m | 103a - O | GG 385 | Graham | 22 09 71 | NGC 121 | ||||
1655 | 02 00 00 | - 74 30 | 10 m | 103a - O | GG 385 | Graham | 22 09 71 | NGC 121 | ||||
1656 | 05 41 00 | - 66 40 | 10 m | 103a - O | GG 385 | Graham | 22 09 71 | Nova Dor 1971 b | ||||
1657 | 00 25 42 | - 71 41 | 60 m | 103a - O | GG 385 | Graham | 24 09 71 | NGC 121 | ||||
1658 | 00 25 42 | - 71 41 | 60 m | 103a - O | GG 385 | Graham | 24 09 71 | NGC 121 | ||||
1659 | 00 25 42 | - 71 41 | 60 m | 103a - O | GG 385 | Graham | 24 09 71 | NGC 121 | ||||
1660 | 00 25 42 | - 71 41 | 60 m | 103a - D | GG 495 | Graham | 24 09 71 | NGC 121 | ||||
1661 | 00 25 42 | - 71 41 | 60 m | 103a - O | GG 385 | Graham | 24 09 71 | NGC 121 | ||||
1662 | 00 25 42 | - 71 41 | 60 m | 103a - O | GG 385 | Graham | 24 09 71 | NGC 121 | ||||
1663 | 00 25 42 | - 71 41 | 60 m | 103a - O | GG 385 | Graham | 24 09 71 | NGC 121 | ||||
1664 | 02 00 00 | - 74 30 | 10 m | 103a - O | GG 385 | Graham | 24 09 71 | NGC 121 | ||||
1665 | 00 25 42 | - 71 41 | 60 m | 103a - O | GG 385 | Graham | 25 09 71 | NGC 121 | ||||
1666 | 00 25 42 | - 71 41 | 60 m | 103a - O | GG 385 | Graham | 25 09 71 | NGC 121 | ||||
1667 | 00 25 42 | - 71 41 | 60 m | 103a - O | GG 385 | Graham | 25 09 71 | NGC 121 | ||||
1668 | 00 25 42 | - 71 41 | 60 m | 103a - D | GG 495 | Graham | 25 09 71 | NGC 121 | ||||
1669 | 00 25 42 | - 71 41 | 60 m | 103a - O | GG 385 | Graham | 25 09 71 | NGC 121 | ||||
1670 | 00 25 42 | - 71 41 | 60 m | 103a - O | GG 385 | Graham | 25 09 71 | NGC 121 | ||||
1671 | 00 25 42 | - 71 41 | 60 m | 103a - O | GG 385 | Graham | 25 09 71 | NGC 121 | ||||
1672 | 00 25 42 | - 71 41 | 60 m | 103a - O | GG 385 | Graham | 25 09 71 | NGC 121 |
(1) Al 1629 corresponde a Tubo Imagen
Last Updated on 8/27/99
By Guerra & Marin
October 1971 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
1673 | 18 55 36 | - 62 09 | 10 m | 103a - O | GG 385 | 2 | Graham | 14 10 71 | Nova IC 4798 | |||
1674 | 00 25 42 | - 71 41 | 60 m | 103a - O | GG 385 | 1.5 | Graham | 14 10 71 | NGC 121 | |||
1675 | 00 25 42 | - 71 41 | 10 m | 103a - O | GG 385 | 1.5 | Graham | 14 10 71 | NGC 121 | |||
1676 | 00 25 42 | - 71 41 | 60 m | 103a - O | GG 385 | 1.5 | Graham | 14 10 71 | NGC 121 | |||
1677 | 04 59 00 | - 66 01 | 40 m | 103a - O | GG 385 | 1.5 | Graham | 14 10 71 | NGC 1783 | |||
1678 | 04 58 24 | - 68 08 | 40 m | 103a - O | GG 385 | 1.5 | Graham | 14 10 71 | 1971 b Doradus | |||
1679 | 04 59 00 | - 66 01 | 40 m | 103a - O | GG 385 | 1.5 | Graham | 14 10 71 | NGC 1783 | |||
1680 | 04 59 00 | - 66 01 | 40 m | 103a - O | GG 385 | 1.5 | Graham | 14 10 71 | NGC 1783 | |||
1681 | 04 59 00 | - 66 01 | 35 m | 103a - O | GG 385 | 1.5 | Graham | 14 10 71 | 1971 b Doradus | |||
1682 | 04 59 00 | - 66 01 | 35 m | 103a - O | GG 385 | 1.5 | Graham | 14 10 71 | NGC 1783 | |||
1683 | - 90 00 | 5 m | 103a - O | GG 385 | 1.5 | Graham | 14 10 71 | Pole | ||||
1684 | 18 55 36 | - 62 09 | 60 m | 103a - O | GG 385 | 1.5 | Graham | 15 10 71 | Nova IC 4798 | |||
1685 | 00 25 42 | - 71 41 | 60 m | 103a - O | GG 385 | 1.5 | Graham | 15 10 71 | NGC 121 | |||
1686 | 00 25 42 | - 71 41 | 60 m | 103a - O | GG 385 | 1.5 | Graham | 15 10 71 | NGC 121 | |||
1687 | 02 00 00 | - 74 30 | 10 m | 103a - O | GG 385 | 1.5 | Graham | 15 10 71 | NGC 1783 | |||
1688 | 04 59 00 | - 66 01 | 40 m | 103a - O | GG 385 | 1.5 | Graham | 15 10 71 | NGC 1783 | |||
1689 | 04 59 00 | - 66 01 | 40 m | 103a - O | GG 385 | 1.5 | Graham | 15 10 71 | NGC 121 | |||
1690 | 00 25 42 | - 71 41 | 40 m | 103a - O | GG 385 | 1.5 | Graham | 15 10 71 | NGC 121 | |||
1691 | 04 59 00 | - 66 01 | 40 m | 103a - O | GG 385 | 1.5 | Graham | 15 10 71 | NGC 1783 | |||
1692 | 04 59 00 | - 66 01 | 40 m | 103a - O | GG 385 | 1.5 | Graham | 15 10 71 | NGC 1783 | |||
1693 | 17 38 00 | - 53 40 | 15 m | 103a - O | GG 385 | 3 | Hesser | 19 10 71 | NGC 6397 | |||
1694 | 17 38 00 | - 53 40 | 15 m | 103a - D | GG 495 | 3 | Hesser | 19 10 71 | NGC 6397 | |||
1695 | 22 00 54 | - 51 26 | 60 m | 103a - O | GG 385 | 2--3 | Hesser | 19 10 71 | IC 5152 | |||
1696 | 00 21 50 | - 72 09.7 | 60 m | 103a - D | GG 495 | 3 | Hesser | 19 10 71 | 47 Tucana | |||
1697 | 00 21 50 | - 72 09.7 | 15 m | 103a - D | GG 495 | 2 | Hesser | 19 10 71 | 47 Tucana | |||
1698 | 00 21 50 | - 72 09.7 | 60 m | 103a - O | GG 385 | 2 | Hesser | 19 10 71 | 47 Tucana | |||
1699 | 00 21 50 | - 72 09.7 | 15 m | 103a - O | GG 385 | 2 | Hesser | 19 10 71 | 47 Tucana | |||
1700 | 00 53 36 | - 37 51 | 60 m | 103a - O | GG 385 | 1.5 | Hesser | 19 10 71 | NGC 300 | CTIO | ||
1701 | 00 53 36 | - 37 51 | 60 m | 103a - D | GG 495 | 1.5 | Hesser | 19 10 71 | NGC 300 | CTIO | ||
1702 | 04 30 30 | - 27 43.6 | 15 m | 103a - D | GG 495 | 1.5 | Hesser | 19 10 71 | Field | |||
1703 | 04 30 30 | - 27 43.6 | 15 m | 103a - O | GG 385 | 1.5 | Hesser | 19 10 71 | Field | |||
1704 | 17 38 00 | - 53 40 | 30 m | 103a - D | GG 495 | 3 | Hesser | 20 10 71 | NGC 6397 | |||
1705 | 17 38 00 | - 53 40 | 15 m | 103a - O | GG 385 | 2.5 | Hesser | 20 10 71 | NGC 6397 | |||
1706 | 18 39 34 | - 49 07 | 10 m | 103a - O | GG 385 | 2.5 | Hesser | 20 10 71 | Field | |||
1707 | 18 39 34 | - 49 07 | 10 m | 103a - D | GG 495 | 2.5 | Hesser | 20 10 71 | Field | |||
1708 | 22 00 54 | - 51 26 | 60 m | 103a - O | GG 385 | 2.5 | Hesser | 20 10 71 | IC 5152 | |||
1709 | 00 53 36 | - 37 51 | 120 m | 103a - O | GG 385 | 2.5 | Hesser | 20 10 71 | NGC 300 | CTIO | ||
1710 | 00 21 50 | - 72 09.7 | 30 m | 103a - O | GG 385 | 2.5 | Hesser | 20 10 71 | 47 Tucana | |||
1711 | 00 21 50 | - 72 09.7 | 30 m | 103a - D | GG 495 | 2.5 | Hesser | 20 10 71 | 47 Tucana | |||
1712 | 00 21 50 | - 72 09.7 | 15 m | 103a - D | GG 495 | 2.5 | Hesser | 20 10 71 | 47 Tucana | |||
1713 | 00 21 50 | - 72 09.7 | 15 m | 103a - O | GG 385 | 2.5 | Hesser | 20 10 71 | 47 Tucana | |||
1714 | 00 21 50 | - 72 09.7 | 15 m | 103a - O | GG 385 | 2.5 | Hesser | 20 10 71 | 47 Tucana | |||
1715 | 00 21 50 | - 72 09.7 | 15 m | 103a - D | GG 495 | 2.5 | Hesser | 20 10 71 | 47 Tucana | |||
1716 | 05 00 00 | - 31 41 | 15 m | 103a - D | GG 495 | 2 | Hesser | 20 10 71 | Field | |||
1717 | 05 00 00 | - 31 41 | 15 m | 103a - O | GG 385 | 2 | Hesser | 20 10 71 | Field | |||
1718 | 23 42 30 | - 15 30 | 60 m | 098 - 02 | RG 610 | 1.5 | Blanco | 28 10 71 | R. Acuarium | CTIO | ||
1719 | 00 13 30 | - 39 21 | 30 m | 103a - O | GG 385 | 1.5 | Blanco | 28 10 71 | NGC 55 | |||
1720 | 00 53 54 | - 37 49 | 20 m | 103a - O | GG 385 | 1.5 | Blanco | 28 10 71 | NGC 300 | BROKEN OK" | CTIO | |
1721 | 00 46 18 | - 25 25 | 20 m | 103a - O | GG 385 | 1.5 | Blanco | 28 10 71 | NGC 253 | CTIO | ||
1722 | 06 35 30 | - 62 36.9 | 90 m | 098 - 02 | RG 610 | 1.5 | Blanco | 28 10 71 | Nova 1925 | CTIO | ||
1723 | 18 24 09 | - 31 42 | 12 m | 098 - 02 | RG 610 | 2 | Blanco | 29 10 71 | V455 Sagittarius | CTIO | ||
1724 | 21 25 47 | - 65 24 | 30 m | 098 - 02 | RG 610 | 2 | Blanco | 29 10 71 | AR Pavonis | CTIO | ||
1725 | 20 08 42 | - 53 12 | 30 m | 098 - 02 | RG 610 | 2 | Blanco | 29 10 71 | BL Telescopium | CTIO | ||
1726 | 23 42 30 | - 15 30 | 30 m | 098 - 02 | RG 610 | 2 | Blanco | 29 10 71 | R Aquarius | CTIO | ||
1727 | 00 24 00 | - 72 04 | 30 m | 098 - 02 | RG 610 | 3 | Blanco | 29 10 71 | VW Tucana | CTIO | ||
1728 | 04 24 40 | - 21 12 | 30 m | 098 - 02 | RG 610 | 3 | Blanco | 29 10 71 | UV Eridanus | CTIO | ||
1729 | 07 15 24 | - 26 53 | 21 m | 098 - 02 | RG 610 | 3.5 | Blanco | 29 10 71 | CG C.Ma | CTIO |
Last Updated on 8/27/99
By Guerra & Marin
November 1971 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
1730 | (1) | |||||||||||
1799 | 00 21 54 | - 72 21 | 10 m | IN + H2O | RG 695 | 3 | Spinrad | 17 11 71 | 47 Tucana | |||
1800 | 00 21 54 | - 72 21 | 20 m | IN + H2O | RG 695 | 2 | Spinrad | 17 11 71 | 47 Tucana | |||
1801 | 00 21 54 | - 72 21 | 6 m | 103a - D | GG 495 | 2 | Spinrad | 17 11 71 | 47 Tucana | |||
1802 | 00 21 54 | - 72 21 | 6 m | 098 - 02 | RG 610 | 2 | Spinrad | 17 11 71 | 47 Tucana | |||
1803 | 00 25 40 | - 71 41 | 120 m | 098 - 02 | RG 610 | 2--3 | Spinrad | 17 11 71 | NGC 121 | |||
1804 | 00 50 00 | - 73 10 | 90 m | 098 - 02 | RG 610 | 2 | Spinrad | 17 11 71 | LMC Center | |||
1805 | 05 24 40 | - 69 47 | 90 m | 098 - 02 | RG 610 | 1.5 | Spinrad | 17 11 71 | LMC Bar | |||
1806 | 05 24 40 | - 69 47 | 40 m | 103a - O | GG 385 | 1.5 | Spinrad | 17 11 71 | LMC Bar | |||
1807 | 04 19 19 | - 55 00 | 10 m | III a - J | GG 385 | 1 | Spinrad | 17 11 71 | NGC 1566 | |||
1808 | 05 38 00 | - 69 00 | 12 m | 098 - 02 | RG 610 | 3 | Spinrad | 17 11 71 | 30 Doradus | |||
1809 | 00 50 00 | - 73 10 | 40 m | 103a - O | GG 385 | 2 | Graham | 18 11 71 | SMC Center | |||
1810 | 04 59 00 | - 66 01 | 40 m | 103a - O | GG 385 | 2 | Graham | 18 11 71 | NGC 1783 | |||
1811 | 04 59 00 | - 66 01 | 40 m | 103a - O | GG 385 | 1.5 | Graham | 18 11 71 | NGC 1783 | |||
1812 | 04 59 00 | - 66 01 | 40 m | 103a - D | GG 495 | 1.5 | Graham | 18 11 71 | NGC 1783 | |||
1813 | 04 59 00 | - 66 01 | 40 m | 103a - O | GG 385 | 1.5 | Graham | 18 11 71 | NGC 1783 | |||
1814 | 05 05 00 | - 69 26 | 60 m | 103a - D | GG 495 | 1.5 | Graham | 18 11 71 | NGC 1835 | |||
1815 | 05 05 00 | - 69 26 | 30 m | 103a - O | GG 385 | 1.5 | Graham | 18 11 71 | NGC 1835 | |||
1816 | 04 59 00 | - 66 01 | 40 m | 103a - O | GG 385 | 1.5 | Graham | 18 11 71 | NGC 1783 | |||
1817 | 05 41 00 | - 66 40 | 15 m | 103a - O | GG 385 | 1.5 | Graham | 18 11 71 | Nova 1971b |
(1) Al 1798 corresponde a Tubo Imagen
Last Updated on 8/27/99
By Guerra & Marin
December 1971 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
1818 | 04 59 00 | - 66 01 | 40 m | 103a - O | GG 385 | Graham | 11 12 71 | NGC 1783 | ||||
1819 | 05 07 06 | - 69 14 | 40 m | 103a - O | GG 385 | Graham | 11 12 71 | Bok | ||||
1820 | 05 07 06 | - 69 14 | 60 m | 103a - D | GG 495 | Graham | 11 12 71 | Bok | ||||
1821 | 04 59 00 | - 66 01 | 40 m | 103a - O | GG 385 | Graham | 11 12 71 | NGC 1783 | ||||
1822 | 05 05 00 | - 69 26 | 40 m | 103a - O | GG 385 | Graham | 11 12 71 | NGC 1835 | ||||
1823 | 04 59 00 | - 66 01 | 40 m | 103a - O | GG 385 | Graham | 11 12 71 | NGC 1783 | ||||
1824 | 05 05 00 | - 69 26 | 40 m | 103a - O | GG 385 | Graham | 11 12 71 | NGC 1835 | ||||
1825 | 04 59 00 | - 66 01 | 40 m | 103a - O | GG 385 | Graham | 11 12 71 | NGC 1783 | ||||
1826 | 04 59 00 | - 66 01 | 40 m | 103a - O | GG 385 | Graham | 12 12 71 | NGC 1783 | ||||
1827 | 05 07 06 | - 69 14 | 40 m | 103a - O | GG 385 | Graham | 12 12 71 | Bok | ||||
1828 | 04 59 00 | - 66 01 | 40 m | 103a - O | GG 385 | Graham | 12 12 71 | NGC 1783 | ||||
1829 | 04 59 00 | - 66 01 | 60 m | 103a - D | GG 495 | Graham | 12 12 71 | NGC 1783 | ||||
1830 | 04 59 00 | - 66 01 | 40 m | 103a - O | GG 385 | Graham | 12 12 71 | NGC 1783 | ||||
1831 | 05 07 06 | - 69 14 | 10 m | 103a - D | GG 495 | Graham | 12 12 71 | Bok | ||||
1832 | 05 07 06 | - 69 14 | 40 m | 103a - O | GG 385 | Graham | 12 12 71 | Bok | ||||
1833 | 05 07 06 | - 69 14 | 10 m | 103a - O | GG 385 | Graham | 12 12 71 | Bok | ||||
1834 | 04 59 00 | - 66 01 | 30 m | 103a - O | GG 385 | Graham | 12 12 71 | NGC 1783 | ||||
1835 | 05 07 06 | - 69 14 | 30 m | 103a - O | GG 385 | Graham | 12 12 71 | Bok | ||||
1836 | 05 07 06 | - 69 14 | 13 m | 103a - O | GG 385 | Graham | 13 12 71 | Bok | ||||
1837 | 05 07 06 | - 69 14 | 40 m | 103a - O | GG 385 | Graham | 13 12 71 | Bok | ||||
1838 | 04 59 00 | - 66 01 | 40 m | 103a - O | GG 385 | Graham | 13 12 71 | NGC 1783 | ||||
1839 | 05 07 06 | - 69 14 | 40 m | 103a - O | GG 385 | Graham | 13 12 71 | Bok | ||||
1840 | 04 59 00 | - 66 01 | 40 m | 103a - O | GG 385 | Graham | 13 12 71 | NGC 1783 | ||||
1841 | 05 07 06 | - 69 14 | 40 m | 103a - O | GG 385 | Graham | 13 12 71 | Bok | CTIO | |||
1842 | 04 59 00 | - 66 01 | 40 m | 103a - O | GG 385 | Graham | 13 12 71 | NGC 1783 | ||||
1843 | 05 07 06 | - 69 14 | 40 m | 103a - O | GG 385 | Graham | 13 12 71 | Bok | ||||
1844 | 00 06 00 | - 41 48 | 60 m | 103a - O | GG 385 | 1.5 | Buarbidge | 16 12 71 | Anon Trio | |||
1845 | 01 17 48 | - 41 31 | 60 m | 103a - O | GG 385 | 1.5 | Buarbidge | 16 12 71 | Anon Group | |||
1846 | 03 16 18 | - 41 13 | 60 m | 103a - O | GG 385 | 1.5 | Buarbidge | 16 12 71 | NGC 1291 | |||
1847 | 03 54 50 | - 42 27 | 60 m | 103a - O | GG 385 | 1.5 | Buarbidge | 16 12 71 | NGC 1487 | |||
1848 | 04 28 24 | - 53 53.4 | 60 m | 103a - O | GG 385 | 1.5 | Buarbidge | 16 12 71 | IC 2082 | |||
1849 | 06 17 29 | - 48 44.1 | 65 m | 103a - O | GG 385 | 1.5 | Buarbidge | 16 12 71 | PKS 0616 - 48 | |||
1850 | 05 19 00 | - 72 33 | 90 m | 098 - 02 | RG 610 | 1.5 | Graham | 25 12 71 | LMC X2 | |||
1851 | 04 59 00 | - 66 01 | 40 m | 103a - O | GG 385 | 1.5 | Graham | 25 12 71 | NGC 1783 | |||
1852 | 04 59 00 | - 66 01 | 40 m | 103a - O | GG 385 | 1.5 | Graham | 25 12 71 | NGC 1783 | |||
1853 | 04 59 00 | - 66 01 | 40 m | 103a - O | GG 385 | 1.5 | Graham | 25 12 71 | NGC 1783 | |||
1854 | 04 59 00 | - 66 01 | 60 m | 103a - O | GG 385 | 1.5 | Graham | 25 12 71 | NGC 1783 | |||
1855 | 04 59 00 | - 66 01 | 40 m | 103a - O | GG 385 | 1.5 | Graham | 26 12 71 | NGC 1783 | |||
1856 | 04 59 00 | - 66 01 | 40 m | 103a - O | GG 385 | 1.5 | Graham | 26 12 71 | NGC 1783 | |||
1857 | 04 59 00 | - 66 01 | 40 m | 103a - O | GG 385 | 1--2 | Graham | 26 12 71 | NGC 1783 | |||
1858 | 04 59 00 | - 66 01 | 50 m | 103a - O | GG 385 | 1--2 | Graham | 26 12 71 | NGC 1783 | |||
1859 | 05 38 00 | - 64 06 | 90 m | 098 - 02 | RG 610 | 1 | Graham | 26 12 71 | LMC X3 | |||
1860 | 04 59 00 | - 66 01 | 90 m | 098 - 02 | RG 610 | 1--3 | Graham | 26 12 71 | NGC 1783 | |||
1861 | 04 59 00 | - 66 01 | 40 m | 103a - O | GG 385 | 1 | Graham | 26 12 71 | NGC 1783 | |||
1862 | 04 59 00 | - 66 01 | 40 m | 103a - O | GG 385 | 1--3 | Graham | 26 12 71 | NGC 1783 | |||
1863 | 04 59 00 | - 66 01 | 50 m | 103a - O | GG 385 | 2--3 | Graham | 26 12 71 | NGC 1783 |
Last Updated on 8/27/99
By Jorge Marin
1972 Plate logs for 1.5-m telescope
February 1972 Plate logs for 1.5-m telescope
Plate | N.N. | R.A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
1997 | (1) | |||||||||||
(2) | ||||||||||||
2018 | 1918 | 08 34 23 | - 45 05 | 10 m | 103a - O | GG 385 | 1.5 | Lasker Hilther | 15 02 72 | PSR 0833 - 45 | ||
2019 | 1919 | 11 20 00 | - 60 26 | 15 m | II a - O | GG 385 | 1.5 | Lasker Hilther | 15 02 72 | 2ASE 1119 - 60 | Broken | CTIO |
2020 | 1920 | 11 20 00 | - 60 26 | 60 m | II a - O | GG 385 | 1.5 | Lasker Hilther | 15 02 72 | 2ASE 1119 - 60 | Broken | CTIO |
2021 | 1921 | 15 45 25 | - 47 39 | 12 m | II a - O | GG 385 | 1.5 | Lasker Hilther | 15 02 72 | 2ASE 1543 - 47 | CTIO | |
2022 | 1922 | 15 45 25 | - 47 39 | 60 m | II a - O | GG 385 | 1.5 | Lasker Hilther | 15 02 72 | 2ASE 1543 - 47 | Broken | CTIO |
2023 | 1923 | 05 39 00 | - 69 10 | 10 m | II a - O | GG 385 | 1.5 | Graham | 15 02 72 | 30 Doradus | ||
2024 | 1924 | 05 39 00 | - 69 10 | 10 m | 098 - 02 | GG 385 | 1.5 | Graham | 19 02 72 | 30 Doradus | ||
2025 | 1925 | 04 59 00 | - 66 02 | 30 m | 103a - O | GG 385 | 1.5 | Graham | 19 02 72 | NGC 1783 | ||
2026 | 1926 | 10 46 00 | - 59 29 | 5 m | 103a - O | GG 385 | 1.5 | Graham | 19 02 72 | Eta Carina | ||
2027 | 1927 | 10 46 00 | - 59 29 | 5 m | 103a - O | GG 385 | 1.5 | Graham | 19 02 72 | Eta Carina | ||
2028 | 1928 | 13 23 00 | - 42 52 | 60 m | 103a - O | GG 385 | 1.5 | Graham | 19 02 72 | NGC 5128 | ||
2029 | 1929 | 13 25 00 | - 47 20 | 45 m | 103a - O | GG 385 | Graham | 19 02 72 | Omega Cen. | |||
2030 | 1930 | 13 25 00 | - 47 20 | 12 m | 103a - O | GG 385 | Graham | 19 02 72 | Omega Cen. | |||
2031 | 1931 | 05 39 00 | - 69 10 | 20 m | 103a - O | GG 385 | Graham | 20 02 72 | 30 Doradus | |||
2032 | 1932 | 05 09 00 | - 69 00 | 30 m | 103a - O | GG 385 | Graham | 20 02 72 | Bok Tifft | |||
2033 | 1933 | 05 22 00 | - 68 00 | 30 m | 103a - O | GG 385 | Graham | 20 02 72 | Constellation I | |||
2034 | 1934 | 06 30 00 | - 64 18 | 60 m | 103a - O | GG 385 | Graham | 20 02 72 | NGC 2257 | |||
2035 | 1935 | 10 59 30 | - 60 00 | 30 m | 103a - O | GG 385 | Graham | 20 02 72 | Carina arm | |||
2036 | 1936 | 10 34 06 | - 58 05 | 10 m | 103a - O | GG 385 | Graham | 20 02 72 | NGC 3293 | |||
2037 | 1937 | 11 12 00 | - 61 05 | 30 m | 103a - O | GG 385 | Graham | 20 02 72 | NGC 3603 | |||
2038 | 1938 | 11 12 00 | - 61 05 | 30 m | 103a - O | GG 385 | Graham | 20 02 72 | NGC 3603 | |||
2039 | 1939 | 10 59 30 | - 60 00 | 30 m | 103a - O | GG 385 | Graham | 20 02 72 | Carina arm | |||
2040 | 1940 | 13 25 00 | - 47 20 | 45 m | 103a - O | GG 385 | Graham | 20 02 72 | Omega Cen. | |||
2041 | 1941 | 15 54 00 | - 54 40 | 30 m | 103a - O | GG 385 | Graham | 20 02 72 | Norma Field | |||
2042 | 1942 | 15 54 00 | - 54 40 | 30 m | 103a - O | GG 385 | Graham | 20 02 72 | Norma Field | |||
2043 | 1943 | 17 37 36 | - 53 39 | 5 m | 103a - O | GG 385 | Graham | 20 02 72 | NGC 6397 | |||
2044 | 1944 | 04 36 18 | - 08 51 | 10 m | 103a - O | GG 385 | Graham | 21 02 72 | EG 41 | |||
2045 | 1945 | 07 53 36 | - 14 41 | 10 m | 103a - O | GG 385 | Graham | 21 02 72 | EG 57 | |||
2046 | 1946 | 06 57 00 | - 04 30 | 30 m | 103a - O | GG 385 | Graham | 21 02 72 | Monoceros | |||
2047 | 1947 | 07 52 00 | - 28 22 | 30 m | 103a - O | GG 385 | Graham | 21 02 72 | Puppis | |||
2048 | 1948 | 09 25 42 | - 52 56 | 30 m | 103a - O | GG 385 | Graham | 21 02 72 | Vela | |||
2049 | 1949 | 12 14 00 | - 62 50 | 30 m | 103a - O | GG 385 | Graham | 21 02 72 | Crux | CTIO | ||
2050 | 1950 | 13 27 00 | - 63 45 | 30 m | 103a - O | GG 385 | Graham | 21 02 72 | Centaurus | |||
2051 | 1951 | 09 25 42 | - 52 56 | 30 m | 103a - O | GG 385 | Graham | 21 02 72 | Vela | |||
2052 | 1952 | 12 14 00 | - 62 50 | 30 m | 103a - O | GG 385 | Graham | 21 02 72 | Crux | |||
2053 | 1953 | 13 27 00 | - 63 45 | 30 m | 103a - O | GG 385 | Graham | 21 02 72 | Centaurus | |||
2054 | 1954 | 15 54 00 | - 54 40 | 30 m | 103a - O | GG 385 | Graham | 21 02 72 | Norma Field | |||
2055 | 1955 | 17 37 36 | - 53 39 | 30 m | 103a - O | GG 385 | Graham | 21 02 72 | NGC 6397 | |||
2056 | 1956 | 02 45 12 | - 30 24 | 25 m | 103a - O | GG 385 | Smith | 22 02 72 | NGC 1097 | |||
2057 | 1957 | 05 35 29 | - 49 45 | 30 m | 103a - O | GG 385 | Smith | 22 02 72 | PKS 0535 - 49 | CTIO | ||
2058 | 1958 | 05 35 29 | - 49 45 | 60 m | 103a - O | GG 385 | Smith | 22 02 72 | PKS 0535 - 49 | CTIO | ||
2059 | 1959 | 07 43 26 | - 67 22 | 120 m | 103a - O | GG 385 | Smith | 22 02 72 | PKS 0744 - 67 | CTIO | ||
2060 | 1960 | 11 17 10 | - 46 25 | 100 m | II a -O | GG 385 | Smith | 22 02 72 | PKS 1116 - 46 | CTIO |
(1) Al 2017 Corresponde a Tubo Imagen
(2) Nueva numeracion por error por tanto desde el Nº 1990 a el Nº 1999 estan repetidos
Last Updated on 8/27/99
By Guerra & Marin
March 1972 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
2061 | 1961 | (1) | ||||||||||
2063 | 1963 | 10 03 30 | - 58 32 | 90 m | 098 - 02 | RG 610 | 2 | Henize | 17 03 72 | HD 87643 | ||
2064 | 1964 | 11 07 00 | - 77 30 | 120 m | 103a - O | GG 385 | 2 | Henize | 17 03 72 | HD 97048 | ||
2065 | 1965 | 11 07 00 | - 76 27 | 120 m | 103a - O | GG 385 | 2 | Henize | 17 03 72 | HD 97300 | ||
2066 | 1966 | 11 07 00 | - 77 30 | 120 m | 103a - D | GG 495 | 2 | Henize | 17 03 72 | HD 97048 | ||
2067 | 1967 | 18 59 00 | - 37 00 | 58 m | 103a - O | GG 385 | 2 | Henize | 17 03 72 | R Corona Australis | ||
2068 | 1968a | 08 35 00 | - 26 17 | 4 m | 098 - 02 | RG 610 | 2 | Henize | 18 03 72 | He -2 - 10 | ||
2068 | 1968b | 08 35 00 | - 26 17 | 15 m | 098 - 02 | RG 610 | 2 | Henize | 18 03 72 | He -2 - 10 | ||
2068 | 1968c | 08 35 00 | - 26 17 | 60 m | 098 - 02 | RG 610 | 2 | Henize | 18 03 72 | He -2 - 10 | ||
2069 | 1969 | 11 07 00 | - 77 30 | 100 m | 098 - 02 | RG 610 | 2 | Henize | 18 03 72 | HD 97048 | ||
2070 | 1970 | 11 07 00 | - 76 27 | 100 m | 098 - 02 | RG 610 | 2 | Henize | 18 03 72 | HD 97300 | ||
2071 | 1971 | 11 07 00 | - 76 27 | 120 m | 103a - D | GG 495 | 2 | Henize | 18 03 72 | HD 97300 | ||
2072 | 1972 | 11 07 00 | - 77 30 | 94 m | 103a - D | GG 495 | 2 | Henize | 18 03 72 | HD 97048 |
(1) Al 1962 corresponde a Tubo Imagen
Last Updated on 8/27/99
By Guerra & Marin
May 1972 Plate logs for 1.5-m telescope
Plate | N. N | R . A | Dec | Exp.Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
2073 | 1973 | 07 52 00 | - 38 26 | 15 m | 103a - O | GG 385 | 2 | Hesser Hartwich | 10 05 72 | NGC 2477 | ||
2074 | 1974 | 07 52 00 | - 38 26 | 15 m | 103a - O | GG 385 | 2 | Hesser Hartwich | 10 05 72 | NGC 2477 | ||
2075 | 1975 | 07 52 00 | - 38 26 | 15 m | 103a - D | GG 495 | 2 | Hesser Hartwich | 10 05 72 | NGC 2477 | ||
2076 | 1976 | 10 42 00 | - 71 00 | 15 m | 103a - D | GG 495 | 2 | Hesser Hartwich | 10 05 72 | Field | ||
2077 | 1977 | 10 42 00 | - 71 00 | 15 m | 103a - O | GG 385 | 2 | Hesser Hartwich | 10 05 72 | Field | ||
2078 | 1978 | 10 42 00 | - 71 00 | 15 m | 103a - O | GG 385 | 2 | Hesser Hartwich | 10 05 72 | Field | ||
2079 | 1979 | 10 42 00 | - 71 00 | 15 m | 103a - D | GG 495 | 2 | Hesser Hartwich | 10 05 72 | Field | ||
2080 | 1980 | 17 13 00 | - 29 26 | 30 m | 103a - D | GG 495 | 2 | Hesser Hartwich | 10 05 72 | NGC 6304 | ||
2081 | 1981 | 17 13 00 | - 29 26 | 30 m | 103a - O | GG 385 | 2 | Hesser Hartwich | 10 05 72 | NGC 6304 | ||
2082 | 1982 | 17 13 00 | - 29 26 | 30 m | 103a - O | GG 385 | 2 | Hesser Hartwich | 10 05 72 | NGC 6304 | ||
2083 | 1983 | 17 13 00 | - 29 26 | 30 m | 103a - D | GG 495 | 2 | Hesser Hartwich | 10 05 72 | NGC 6304 | ||
2084 | 1984 | 17 48 00 | - 37 02 | 30 m | 103a - D | GG 495 | 2 | Hesser Hartwich | 10 05 72 | NGC 6441 | ||
2085 | 1985 | 17 48 00 | - 37 02 | 30 m | 103a - O | GG 385 | 2 | Hesser Hartwich | 10 05 72 | NGC 6441 | ||
2086 | 1986 | 17 48 00 | - 37 02 | 30 m | 103a - O | GG 385 | 2 | Hesser Hartwich | 10 05 72 | NGC 6441 | ||
2087 | 1987 | 17 48 00 | - 37 02 | 30 m | 103a - D | GG 495 | 2 | Hesser Hartwich | 10 05 72 | NGC 6441 | ||
2088 | 1988 | 17 48 00 | - 37 02 | 15 m | 103a - D | GG 495 | 2 | Hesser Hartwich | 10 05 72 | NGC 6441 | ||
2089 | 1989 | 17 48 00 | - 37 02 | 30 m | 103a - O | GG 385 | 2 | Hesser Hartwich | 10 05 72 | NGC 6441 | ||
2090 | 1990 | 17 48 00 | - 37 02 | 45 m | 103a - O | GG 385 | 2 | Hesser Hartwich | 10 05 72 | NGC 6441 | ||
2091 | 1991 | 17 48 00 | - 37 02 | 10 m | 103a - D | GG 495 | 2.5 | Hesser Hartwich | 10 05 72 | NGC 6441 | ||
2092 | 1992 | 17 48 00 | - 37 02 | 10 m | 103a - D | GG 495 | 2.5 | Hesser Hartwich | 10 05 72 | NGC 6441 | ||
2093 | 1993 | 17 48 00 | - 37 02 | 5 m | 103a - D | GG 495 | 2.5 | Hesser Hartwich | 10 05 72 | NGC 6441 | ||
2094 | 1994 | 17 48 00 | - 37 02 | 5 m | 103a - D | GG 495 | 2.5 | Hesser Hartwich | 10 05 72 | NGC 6441 | ||
2095 | 1995 | 07 52 00 | - 38 10 | 15 m | 103a - O | GG 385 | 1.5 | Hesser Hartwich | 11 05 72 | NGC 2477 | ||
2096 | 1996 | 07 52 00 | - 38 10 | 15 m | 103a - D | GG 495 | 1.5 | Hesser Hartwich | 11 05 72 | NGC 2477 | ||
2097 | 1997 | 07 52 00 | - 38 10 | 15 m | 103a - D | GG 495 | 1.5 | Hesser Hartwich | 11 05 72 | NGC 2477 | ||
2098 | 1998 | 07 52 00 | - 38 10 | 15 m | 103a - O | GG 385 | 1.5 | Hesser Hartwich | 11 05 72 | NGC 2477 | ||
2099 | 1999 | 10 42 00 | - 71 00 | 15 m | 103a - O | GG 385 | 1.5 | Hesser Hartwich | 11 05 72 | Field | ||
2100 | 2000 | 10 42 00 | - 71 00 | 15 m | 103a - D | GG 495 | 1.5 | Hesser Hartwich | 11 05 72 | Field | ||
2101 | 2001 | 13 25 00 | - 47 09 | 5 m | 103a - D | GG 495 | 1.5 | Hesser Hartwich | 11 05 72 | Omega Cen. | ||
2102 | 2002 | 13 25 00 | - 47 09 | 5 m | 103a - O | GG 385 | 1.5 | Hesser Hartwich | 11 05 72 | Omega Cen. | ||
2103 | 2003 | 17 24 00 | - 48 24 | 30 m | 103a - O | GG 385 | 1.5 | Hesser Hartwich | 11 05 72 | NGC 6352 | ||
2104 | 2004 | 17 24 00 | - 48 24 | 30 m | 103a - D | GG 495 | 1.5 | Hesser Hartwich | 11 05 72 | NGC 6352 | ||
2105 | 2005 | 17 24 00 | - 48 24 | 30 m | 103a - D | GG 495 | 1.5 | Hesser Hartwich | 11 05 72 | NGC 6352 | ||
2106 | 2006 | 17 24 00 | - 48 24 | 30 m | 103a - O | GG 385 | 1.5 | Hesser Hartwich | 11 05 72 | NGC 6352 | ||
2107 | 2007 | 17 48 00 | - 37 02 | 45 m | 103a - O | GG 385 | 1.5 | Hesser Hartwich | 11 05 72 | NGC 6441 | ||
2108 | 2008 | 17 48 00 | - 37 02 | 45 m | 103a - O | GG 385 | 1.5 | Hesser Hartwich | 11 05 72 | NGC 6441 | ||
2109 | 2009 | 17 48 00 | - 37 02 | 7 m | 103a - D | GG 495 | 1.5 | Hesser Hartwich | 11 05 72 | NGC 6441 | ||
2110 | 2010 | 17 13 00 | - 29 13 | 30 m | 103a - D | GG 495 | 1.5 | Hesser Hartwich | 11 05 72 | NGC 6304 | ||
2111 | 2011 | 17 13 00 | - 29 13 | 30 m | 103a - O | GG 385 | 2 | Hesser Hartwich | 11 05 72 | NGC 6304 | ||
2112 | 2012 | 17 13 00 | - 29 13 | 20 m | 103a - O | GG 385 | 2 | Hesser Hartwich | 11 05 72 | NGC 6304 | ||
2113 | 2013 | 17 13 00 | - 29 13 | 20 m | 103a - D | GG 495 | 2 | Hesser Hartwich | 11 05 72 | NGC 6304 | ||
2114 | 2014 | Al 2075? (1) | ||||||||||
2176 | 2076 | 17 03 48 | -36 24 | 1.5m | lla - D | Spinad | Liller / Forman / Gomez | 14 05 72 | 1702 - 36 | |||
2177 | 2077 | 17 45 48 | -26 33 | 8m | lla - D | Spinad | Liller / Forman / Gomez | 14 05 72 | 1744 - 26 | |||
2178 | 2078 | 17 45 48 | -26 33 | 1.5m | lla - D | Spinad | Liller / Forman / Gomez | 14 05 72 | 1744 - 26 | |||
2179 | 2079 | 17 59 06 | -25 05 | 8m | lla - D | Spinad | Liller / Forman / Gomez | 14 05 72 | 1757 - 25 | |||
2180 | 2080 | 17 59 06 | -25 05 | 1.5m | lla - D | Spinad | Liller / Forman / Gomez | 14 05 72 | 1757 - 25 | |||
2181 | 2081 | 17 59 48 | -20 32 | 8m | lla - D | Spinad | Liller / Forman / Gomez | 14 05 72 | 1758 - 20 | |||
2182 | 2082 | 17 59 48 | -20 32 | 1.5m | lla - D | Spinad | Liller / Forman / Gomez | 14 05 72 | 1758 - 20 | |||
2183 | 2083 | 11 37 36 | -37 28 | 3m | lla - D | l | 4 | Smith / Gomez | 18 05 72 | NGC 3783 | ||
2184 | 2084 | 12 34 00 | -39 45 | 3m | lla - D | l | 3 | Smith / Gomez | 18 05 72 | NGC 4507 | ||
2185 | 2085 | 13 03 48 | -49 21 | 3m | lla - D | l | 3 | Smith / Gomez | 18 05 72 | NGC 4945 | ||
2186 | 2086 | 13 03 48 | -49 21 | 9m | lla - D | l | 2" - 3 | Smith / Gomez | 18 05 72 | NGC 4945 | ||
2187 | 2087 | 11 37 36 | -37 28 | 9m | lla - D | l | 2" - 3 | Smith / Gomez | 18 05 72 | NGC 3783 | ||
2188 | 2088 | 11 37 40 | -37 36 | 9m | lla - D | l | 2" - 3 | Smith / Gomez | 18 05 72 | NGC 3783 | ||
2189 | 2089 | 12 34 00 | -39 45 | 9m | lla - D | l | 2" - 3 | Smith / Gomez | 18 05 72 | NGC 4507 | ||
2190 | 2090 | 13 07 24 | -49 22 | 15m | lla - D | l | 2" - 3 | Smith / Gomez | 18 05 72 | NGC 4976 | ||
2191 | 2091 | 17 46 12 | -24 45 | 3m | lla - D | l | 2" - 3 | Smith / Gomez | 18 05 72 | IRC 20385 | ||
2192 | 2092 | 17 46 12 | -24 45 | 9m | lla - D | l | 2" - 3 | Smith / Gomez | 18 05 72 | IRC 20385 | ||
2193 | 2093 | 13 37 08 | -64 53 42 | 10m | lla - O | 2" - 3 | Smith / Gomez | 18 05 72 | Field Landolt | |||
2194 | 2094 | 12 34 00 | -39 45 | 60m | lla - O | 2" - 3 | Smith / Gomez | 18 05 72 | NGC 4507 | |||
2195 | 2095 | 14 30 42 | -44 04 | 60m | lla - O | 2" - 3 | Smith / Gomez | 18 05 72 | NGC 5643 | |||
2196 | 2096 | 20 16 12 | -44 54 | 123m | lla - O | 2" - 3 | Smith / Gomez | 18 05 72 | NGC 6890 |
(1) ( faltan hojas ) Corresponde a Tubo Imagen
Last Updated on 8/27/99
By Guerra & Marin
June 1972 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
2197 | 2097 | 17 13 52 | -29 26 | 30m | 103a - O | GG 13 | 3 | Hesser / Zemelman | 16 06 72 | NGC 6304 | ||
2198 | 2098 | 17 13 52 | -29 26 | 30m | 103a - D | GG 14 | 3 | Hesser / Zemelman | 16 06 72 | NGC 6304 | ||
2199 | 2099 | 17 48 22 | -37 03 | 30m | 103a - D | GG 14 | 2" - 3 | Hesser / Zemelman | 16 06 72 | NGC 6441 | ||
2200 | 2100 | 17 48 22 | -37 03 | 90m | 103a - O | GG 13 | 3 | Hesser / Zemelman | 16 06 72 | NGC 6441 | ||
2201 | 2101 | 17 48 22 | -37 03 | 90m | 103a - O | GG 13 | 3 | Hesser / Zemelman | 16 06 72 | NGC 6441 | ||
2202 | 2102 | 17 48 22 | -37 03 | 30m | 103a - D | GG 14 | 3 | Hesser / Zemelman | 16 06 72 | NGC 6441 | ||
2203 | 2103 | 17 48 22 | -37 03 | 60m | 103a - O | GG 13 | 2" - 3 | Hesser / Zemelman | 16 06 72 | NGC 6441 | ||
2204 | 2104 | 17 48 22 | -37 03 | 60m | 103a - O | GG 13 | 2" - 3 | Hesser / Zemelman | 16 06 72 | NGC 6441 | ||
2205 | 2105 | 17 48 22 | -37 03 | 15m | 103a - D | GG 14 | 2" - 3 | Hesser / Zemelman | 16 06 72 | NGC 6441 | ||
2206 | 2106 | 17 48 22 | -37 03 10 | 15m | 103a - D | GG 14 | 2" - 3" | Hesser / Zemelman | 16 06 72 | NGC 6441 | ||
2207 | 2107 | 13 18 17 | - 31 30 | 30 m | 103a - D | GG 495 | 1.5" - 2" | Hesser / Zemelman | 17 06 72 | Nova en NGC 5253 | CTIO | |
2208 | 2108 | 17 12 54 | -29 26 30 | 30m | 103a - O | GG 13 | 1.5" - 2" | Hesser / Zemelman | 17 06 72 | NGC 6304 | ||
2209 | 2109 | 17 12 54 | -29 26 30 | 30m | 103a - O | GG 13 | 1.5" - 2" | Hesser / Zemelman | 17 06 72 | NGC 6304 | ||
2210 | 2110 | 17 12 54 | -29 26 30 | 30m | 103a - O | GG 13 | 1.5" - 2" | Hesser / Zemelman | 17 06 72 | NGC 6304 | ||
2211 | 2111 | 17 12 54 | -29 27 00 | 30m | 103a - D | GG 14 | 1.5" - 2" | Hesser / Zemelman | 17 06 72 | NGC 6304 | ||
2212 | 2112 | 17 12 54 | -29 27 00 | 30m | 103a - O | GG 13 | 1.5" - 2" | Hesser / Zemelman | 17 06 72 | NGC 6304 | ||
2213 | 2113 | 17 48 00 | -37 03 00 | 30m | 103a - O | GG 13 | 1.5" - 2" | Hesser / Zemelman | 17 06 72 | NGC 6441 | ||
2214 | 2114 | 17 48 00 | -37 03 00 | 30m | 103a - D | GG 14 | 1.5" - 2" | Hesser / Zemelman | 17 06 72 | NGC 6441 | ||
2215 | 2115 | 17 12 54 | -29 26 52 | 30m | 103a - O | GG 13 | 1.5" - 2" | Hesser / Zemelman | 17 06 72 | NGC 6304 | ||
2216 | 2116 | 17 12 54 | -29 26 52 | 30m | 103a - O | GG 13 | 2" - 3" | Hesser / Zemelman | 17 06 72 | NGC 6304 | ||
2217 | 2117 | 17 12 54 | -29 26 52 | 30m | 103a - D | GG 14 | 2" - 3" | Hesser / Zemelman | 17 06 72 | NGC 6304 | ||
2218 | 2118 | 17 12 54 | -29 26 52 | 30m | 103a - O | GG 13 | 2" | Hesser / Zemelman | 17 06 72 | NGC 6304 | ||
2219 | 2119 | 17 12 54 | -29 26 52 | 30m | 103a - O | GG 13 | 2" - 3" | Hesser / Zemelman | 17 06 72 | NGC 6304 | ||
2220 | 2120 | 17 12 54 | -29 26 52 | 52m | 103a - O | GG 13 | 2" - 3" | Hesser / Zemelman | 17 06 72 | NGC 6304 |
Last Updated on 8/27/99
By Guerra & Marin
July 1972 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
2221 | 2121 | 17 12 54 | -29 24 30 | 30m | 103a - O | GG 13 | 2" - 1" | Hesser / Gonzalez | 17 07 72 | NGC 6304 | ||
2222 | 2122 | 17 12 54 | -29 24 30 | 30m | 103a - O | GG 13 | 1.5" | Hesser / Gonzalez | 17 07 72 | NGC 6304 | ||
2223 | 2123 | 17 12 54 | -29 24 30 | 30m | 103a - D | GG 14 | 1" - 2" | Hesser / Gonzalez | 17 07 72 | NGC 6304 | ||
2224 | 2124 | 17 12 54 | -29 24 30 | 30m | 103a - O | GG 13 | 1" - 2" | Hesser / Gonzalez | 17 07 72 | NGC 6304 | ||
2225 | 2125 | 17 12 54 | -29 24 30 | 30m | 103a - O | GG 13 | 1" - 3" | Hesser / Gonzalez | 17 07 72 | NGC 6304 | ||
2226 | 2126 | 17 12 54 | -29 24 30 | 30m | 103a - O | GG 13 | 1" - 3" | Hesser / Gonzalez | 17 07 72 | NGC 6304 | ||
2227 | 2127 | 17 12 54 | -29 24 30 | 30m | 103a - O | GG 13 | 1" - 3" | Hesser / Gonzalez | 17 07 72 | NGC 6304 | ||
2228 | 2128 | 17 12 54 | -29 24 30 | 30m | 103a - O | GG 13 | 1" - 3" | Hesser / Gonzalez | 17 07 72 | NGC 6304 | ||
2229 | 2129 | 17 12 54 | -29 24 30 | 30m | 103a - O | GG 13 | 1" - 3" | Hesser / Gonzalez | 17 07 72 | NGC 6304 | ||
2230 | 2130 | 17 12 54 | -29 24 30 | 30m | 103a - O | GG 13 | 1" - 3" | Hesser / Gonzalez | 17 07 72 | NGC 6304 | ||
2231 | 2131 | 00 21 15 | -72 15 30 | 60m | 103a - D | GG 14 | 1" - 2" | Hesser / Gonzalez | 17 07 72 | 47 Tuc | ||
2232 | 2132 | 17 12 54.5 | -29 24 32 | 30m | 103a - O | GG 13 | 2" - 3" | Hesser / Gonzalez | 18 07 72 | NGC 6304 | ||
2233 | 2133 | 17 12 54.5 | -29 24 32 | 30m | 103a - O | GG 13 | 1" - 2" | Hesser / Gonzalez | 18 07 72 | NGC 6304 | ||
2234 | 2134 | 17 12 54.5 | -29 24 32 | 30m | 103a - O | GG 13 | 1" - 3" | Hesser / Gonzalez | 18 07 72 | NGC 6304 | ||
2235 | 2135 | 30m | 103a - O | GG 13 | Hesser / Gonzalez | 18 07 72 | NGC 6441 | |||||
2236 | 2136 | 17 12 54 | -29 24 32 | 12m | 103a - D | GG 14 | 1" - 3" | Hesser / Gonzalez | 18 07 72 | NGC 6441 | ||
2237 | 2137 | 17 12 54 | -29 24 32 | 30m | 103a - D | GG 14 | 1" - 3" | Hesser / Gonzalez | 18 07 72 | NGC 6441 | ||
2238 | 2138 | 17 12 54 | -29 24 32 | 30m | 103a - O | GG 13 | 1" - 3" | Hesser / Gonzalez | 18 07 72 | NGC 6304 | ||
2239 | 2139 | 17 12 54 | -29 24 32 | 30m | 103a - O | GG 13 | 1" - 3" | Hesser / Gonzalez | 18 07 72 | NGC 6304 | ||
2240 | 2140 | 17 12 54 | -29 24 32 | 30m | 103a - D | GG 14 | 1" - 3" | Hesser / Gonzalez | 18 07 72 | NGC 6304 | ||
2241 | 2141 | 17 12 54 | -29 24 32 | 30m | 103a - O | GG 13 | 1" - 3" | Hesser / Gonzalez | 18 07 72 | NGC 6304 | ||
2242 | 2142 | 17 12 54 | -29 24 32 | 60m | 103a - D | GG 14 | 1" - 5" | Hesser / Gonzalez | 18 07 72 | NGC 6304 | ||
2243 | 2143 | 17 12 54 | -29 24 32 | 30m | 103a - O | GG 13 | 1" - 5" | Hesser / Gonzalez | 18 07 72 | NGC 6304 | ||
2244 | 2144 | 17 12 54 | -29 24 32 | 30m | 103a - O | GG 13 | 1" - 5" | Hesser / Gonzalez | 18 07 72 | NGC 6304 | ||
2245 | 2145 | 17 12 54 | -29 24 32 | 30m | 103a - O | GG 13 | 3" - 5" | Hesser / Gonzalez | 18 07 72 | NGC 6304 | ||
2246 | 2146 | 00 21 15 | -72 15 30 | 60m | 103a - O | GG 13 | 1" - 3" | Hesser / Gonzalez | 18 07 72 | 47 Tuc | ||
2247 | 2147 | 00 21 15 | -72 15 30 | 60m | 103a - O | GG 13 | 1" - 3" | Hesser / Gonzalez | 18 07 72 | 47 Tuc | ||
2248 | 2148 | 00 21 15 | -72 15 30 | 20m | 103a - D | GG 14 | 1" - 3" | Hesser / Gonzalez | 18 07 72 | 47 Tuc |
Last Updated on 8/27/99
By Guerra & Marin
August 1972 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
2249 | 2149 | 17 46 21 | -24 45 | 6m | lla - D | I | 3" | Smith / Gomez | 14 08 72 | IRC 20385 | image tube | |
2250 | 2150 | 17 46 21 | -24 45 | 4m | lla - D | I | 3" | Smith / Gomez | 14 08 72 | IRC 20385 | image tube | |
2251 | 2151 | 17 46 21 | -24 45 | 4m | lla - D | I | 2" | Smith / Gomez | 14 08 72 | IRC 20385 | image tube | |
2252 | 2152 | 17 46 21 | -24 45 | 4m | lla - D | I | 2" | Smith / Gomez | 14 08 72 | IRC 20385 | image tube |
Last Updated on 8/27/99
By Jorge Marin
October 1972 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
2274 | 2174 | 00 25 36 | -71 39 30 | 60m | 103a - O | GG 13 | J.Graham / R.Gonzalez | 07 10 72 | NGC 121 | |||
2275 | 2175 | 00 25 36 | -71 39 30 | 60m | 103a - O | GG 13 | J.Graham / R.Gonzalez | 07 10 72 | NGC 121 | |||
2276 | 2176 | 00 25 36 | -71 39 30 | 25m | 103a - O | GG 13 | J.Graham / R.Gonzalez | 07 10 72 | NGC 121 | |||
2277 | 2177 | 00 25 36 | -71 39 30 | 60m | 103a - O | GG 13 | J.Graham / Czuia | 16 10 72 | NGC 121 | |||
2278 | 2178 | 19 59 18 | -47 07 36 | 60m | 098 - 02 | RG 2 | J.Graham / Czuia | 16 10 72 | K 30 | |||
2279 | 2179 | 00 25 36 | -71 39 36 | 60m | 103a - O | GG 13 | J.Graham / Czuia | 16 10 72 | NGC 121 | |||
2280 | 2180 | 00 07 18 | -33 59 30 | 30m | 103a - O | GG 13 | J.Graham / Czuia | 16 10 72 | SCI 3 | |||
2281 | 2181 | 00 25 36 | -71 39 30 | 60m | 103a - O | GG 13 | J.Graham / Czuia | 16 10 72 | NGC 121 | |||
2282 | 2182 | 05 28 36 | -68 50 | 10m | 103a - O | GG 13 | J.Graham / Czuia | 16 10 72 | LMC nova 72/1 | |||
2283 | 2183 | 00 25 36 | -71 39 30 | 60m | 103a - O | GG 13 | J.Graham / Czuia | 16 10 72 | NGC 121 | |||
2284 | 2184 | 00 25 36 | -71 39 30 | 60m | 103a - O | GG 13 | J.Graham / Czuia | 16 10 72 | NGC 121 | |||
2285 | 2185 | 19 59 18 | -47 08 | 120m | llla - J baked | J.Graham / Gomez | 29 10 72 | Klemola 30 | ||||
2286 | 2186 | 23 22 00 | -58 05 | 36m | 103a - O | J.Graham / Gomez | 29 10 72 | NGC 7650 | ||||
2287 | 2187 | 19 59 00 | -47 09 | 120m | 103a - O | 1.5" | J.Graham / Gomez | 30 10 72 | Klemola 30 | |||
2288 | 2188 | 23 22 00 | -58 05 | 120m | 103a - O | 2" | J.Graham / Gomez | 30 10 72 | NGC 7650 | |||
2289 | 2189 | 03 29 36 | -52 40 | 60m | 103a - O | 2" | J.Graham / Gomez | 30 10 72 | Klemola 8 | |||
2290 | 2190 | 05 28 36 | -68 50 | 5m | 103a - O | GG 13 | 2" | J.Graham / Gomez | 30 10 72 | LMC nova 1972/1 | ||
2291 | 2191 | 05 40 36 | -66 41 | 5m | 103a - O | GG 13 | 2" | J.Graham / Gomez | 30 10 72 | LMC nova 1971/2 | ||
2292 | 2192 | 04 59 00 | -66 01 | 5m | 103a - O | GG 13 | J.Graham / Gomez | 30 10 72 | NGC 1783 | |||
2293 | 2193 | 05 22 00 | -68 00 | 60m | 098 - 02 | RG 2 | 2.5" | J.Graham / Gomez | 30 10 72 | constellation l LMC |
Last Updated on 8/27/99
By Guerra & Marin
November 1972 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
2294 | 2194 | 00 22 36 | -72 14 | 2m | 103a - O | J.Graham / Gomez | 19 11 72 | 47 Tuc | ||||
2295 | 2195 | 05 38 00 | -01 58 | 30m | 098 - 02 | RG 1 | R.Gonzalez | 19 11 72 | epsillon Orion | |||
2296 | 2196 | 05 39 48 | -02 26 | 90m | 098 - 02 | RG 1 | J.Graham / R.Gonzalez | 19 11 72 | epsillon Orion | |||
2297 | 2197 | 05 33 54 | -05 24 | 5m | 098 - 02 | RG 2 | J.Graham / R.Gonzalez | 19 11 72 | M 42 | |||
2298 | 2198 | 05 33 54 | -05 24 | 5m | 103a - O | GG 13 | J.Graham / R.Gonzalez | 19 11 72 | M 42 | |||
2299 | 2199 | 00 23 00 | -72 20 | 2m | 103a - D | GG 14 | 3" | Hesser / R.Gonzalez | 22 11 72 | Nova | ||
2300 | 2200 | 00 23 00 | -72 20 | 2m | lla - O | GG 13 | 3" | Hesser / R.Gonzalez | 22 11 72 | Nova | ||
2301 | 2201 | 07 50 30 | -38 25 | 10m | 103a - D | GG 14 | 2" | Hesser / R.Gonzalez | 23 11 72 | NGC 2477 | ||
2302 | 2202 | 07 50 30 | -38 25 | 10m | lla - O | GG 13 | 2" | Hesser / R.Gonzalez | 23 11 72 | NGC 2477 | ||
2303 | 2203 | 03 07 30 | -20 46 | 100m | lla - O | GG 13 | 3" | R.Gonzalez | 24 11 72 | NGC 1232 | ||
2304 | 2204 | 06 29 36 | +04 40 | 180m | 098 - 02 | RG 1 | 3" | R.Gonzalez | 24 11 72 | NGC 2237 |
Last Updated on 8/27/99
By Guerra & Marin
1973 Plate logs for 1.5-m telescope.
January 1973 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
2314 | 2214 | 04 28 30 | -53 59 | 60m | 103a - D | GG 14 | 1.5" | Sersic / Czuia | 13 01 73 | IC 2082 | ||
2315 | 2215 | 07 36 24 | -69 28 06 | 90m | 098 - 02 | RG 2 | Sersic / Czuia | 13 01 73 | NGC 2442 | |||
2316 | 2216 | 07 36 24 | -69 28 06 | 80m | 103a - D | GG 14 | Sersic / Czuia | 13 01 73 | NGC 2442 | |||
2317 | 2217 | 07 36 24 | -69 28 06 | 80m | 103a - O | GG 13 | Sersic / Czuia | 13 01 73 | NGC 2442 | |||
2318 | 2218 | 13 38 12 | -31 29 | 55m | 103a - D | GG 14 | Sersic / Czuia | 13 01 73 | NGC 5253 |
Last Updated on 8/27/99
By Guerra & Marin
February 1973 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
2319 | 2219 | 07 24 12 | -21 07 36 | 15m | 103a - D | GG 13 | Miller / Zemelman | 08 02 73 | Vela F | |||
2320 | 2220 | 07 24 12 | -20 54 | 15m | 103a - D | GG 13 | Miller / Zemelman | 08 02 73 | Vela F | |||
2321 | 2221 | 07 24 12 | -20 54 | 40m | 103a - O | UG 2 | Miller / Zemelman | 08 02 73 | Vela F | |||
2322 | 2222 | 07 24 12 | -20 54 | 8m | 103a - O | GG 13 | Miller / Zemelman | 08 02 73 | Vela F | |||
2323 | 2223 | 07 24 12 | -20 54 | 15m | 103a - D | GG 14 | Miller / Zemelman | 08 02 73 | Vela F | |||
2324 | 2224 | 07 44 36 | -34 08 | 15m | 103a - D | GG 14 | Miller / Zemelman | 08 02 73 | Vela D | |||
2325 | 2225 | 07 44 36 | -34 08 | 40m | 103a - O | UG 2 | Miller / Zemelman | 08 02 73 | Vela D | |||
2326 | 2226 | 07 44 36 | -34 08 | 8m | 103a - O | GG 13 | 1" | Miller / Zemelman | 08 02 73 | Vela D | ||
2327 | 2227 | 07 57 48 | -28 23 | 8m | 103a - O | GG 13 | 1" | Miller / Zemelman | 08 02 73 | Vela B | ||
2328 | 2228 | 07 57 48 | -28 23 | 40m | 103a - O | UG 2 | 1" | Miller / Zemelman | 08 02 73 | Vela B | ||
2329 | 2229 | 07 57 48 | -28 23 | 15m | 103a - D | GG 14 | 1" | Miller / Zemelman | 08 02 73 | Vela B | ||
2330 | 2230 | 10 59 00 | -60 10 | 60m | 098 - 02 | RG 2 | 1" | Miller / Zemelman | 08 02 73 | HD 95540 | ||
2331 | 2231 | 10 59 00 | -60 10 | 10m | 103a - O | GG 13 | 1" | Miller / Zemelman | 08 02 73 | HD 95540 | ||
2332 | 2232 | 10 59 00 | -60 10 | 5m | 103a - D | GG 14 | 1" | Miller / Zemelman | 08 02 73 | HD 95540 | ||
2333 | 2233 | 07 45 42 | -34 09 | 30m | 103a - O | UG 2 | 2" | Miller / Bolelli | 09 02 73 | Vela D | ||
2334 | 2234 | 07 45 42 | -34 09 | 10m | 103a - O | GG 13 | 2" | Miller / Bolelli | 09 02 73 | Vela D | ||
2335 | 2235 | 07 45 42 | -34 09 | 10m | 103a - D | GG 14 | 2" | Miller / Bolelli | 09 02 73 | Vela D | ||
2336 | 2236 | 07 57 48 | -28 23 | 10m | 103a - D | GG 14 | 2" | Miller / Bolelli | 09 02 73 | Vela B | ||
2337 | 2237 | 07 57 48 | -28 23 | 30m | 103a - O | UG 2 | 2" | Miller / Bolelli | 09 02 73 | Vela B | ||
2338 | 2238 | 07 57 48 | -28 23 | 8m | 103a - O | GG 13 | 2" | Miller / Bolelli | 09 02 73 | Vela B | ||
2339 | 2239 | 07 24 06 | -21 07 | 10m | 103a - D | GG 14 | 2" | Miller / Bolelli | 09 02 73 | Vela F | ||
2340 | 2240 | 07 24 06 | -21 07 | 10m | 103a - D | GG 14 | 2" | Miller / Bolelli | 09 02 73 | Vela F | ||
2341 | 2241 | 07 24 06 | -21 07 | 8m | 103a - O | GG 13 | 2" | Miller / Bolelli | 09 02 73 | Vela F | ||
2342 | 2242 | 07 24 06 | -21 07 | 30m | 103a - O | UG 2 | 2" | Miller / Bolelli | 09 02 73 | Vela F | ||
2343 | 2243 | 07 43 54 | -31 50 | 10m | 103a - D | GG 14 | 2" | Miller / Bolelli | 09 02 73 | Vela A | ||
2344 | 2244 | 07 43 54 | -31 50 | 8m | 103a - O | GG 13 | 2" | Miller / Bolelli | 09 02 73 | Vela A | ||
2345 | 2245 | 07 43 54 | -31 50 | 30m | 103a - O | UG 2 | 2" | Miller / Bolelli | 09 02 73 | Vela A | ||
2346 | 2246 | 08 57 00 | -46 58 | 10m | 103a - D | GG 14 | 2" | Miller / Bolelli | 09 02 73 | RCW 38 | ||
2347 | 2247 | 08 57 00 | -46 58 | 8m | 103a - O | GG 13 | 2" | Miller / Bolelli | 09 02 73 | RCW 38 | ||
2348 | 2248 | 08 57 00 | -46 58 | 30m | 103a - O | UG 2 | 2" | Miller / Bolelli | 09 02 73 | RCW 38 | ||
2349 | 2249 | 14 19 54 | -60 48 | 10m | 103a - D | GG 14 | 2" | Miller / Bolelli | 09 02 73 | Cen l | ||
2350 | 2250 | 14 19 54 | -60 48 | 10m | 103a - D | GG 14 | 2" | Miller / Bolelli | 09 02 73 | Cen l | ||
2351 | 2251 | 07 43 54 | -31 50 | 10m | 103a - D | GG 14 | 2" | Miller / Zemelman | 09 02 73 | Vela A | ||
2352 | 2252 | 07 43 54 | -31 50 | 30m | 103a - O | UG 2 | 2" | Miller / Zemelman | 10 02 73 | Vela A | ||
2353 | 2253 | 07 43 54 | -31 50 | 30m | 103a - O | UG 2 | 2" | Miller / Zemelman | 10 02 73 | Vela A | ||
2354 | 2254 | 07 43 54 | -31 50 | 10m | 103a - D | GG 14 | 2" | Miller / Zemelman | 10 02 73 | Vela A | ||
2355 | 2255 | 07 43 54 | -31 50 | 8m | 103a - O | GG 13 | 2" | Miller / Zemelman | 10 02 73 | Vela A | ||
2356 | 2256 | 07 43 54 | -31 50 | 8m | 103a - O | GG 13 | 2" - 3" | Miller / Zemelman | 10 02 73 | Vela A | ||
2357 | 2257 | 07 58 00 | -28 32 | 8m | 103a - O | GG 13 | 3" - 4" | Miller / Zemelman | 10 02 73 | Vela B | ||
2358 | 2258 | 07 58 00 | -28 32 | 8m | 103a - O | GG 13 | 3" - 4" | Miller / Zemelman | 10 02 73 | Vela B | ||
2359 | 2259 | 07 58 00 | -28 32 | 40m | 103a - O | UG 2 | 3" - 4" | Miller / Zemelman | 10 02 73 | Vela B | ||
2360 | 2260 | 07 58 00 | -28 32 | 10m | 103a - D | GG 14 | 3" - 4" | Miller / Zemelman | 10 02 73 | Vela B | ||
2361 | 2261 | 08 56 12 | -47 40 | 10m | 103a - D | GG 14 | 3" - 4" | Miller / Zemelman | 10 02 73 | RCW 38 | ||
2362 | 2262 | 08 56 12 | -47 40 | 8m | 103a - O | GG 13 | 3" - 4" | Miller / Zemelman | 10 02 73 | RCW 38 | ||
2363 | 2263 | 08 56 12 | -47 40 | 20m | 103a - O | UG 2 | 3" - 4" | Miller / Zemelman | 10 02 73 | RCW 38 | ||
2364 | 2264 | 07 24 06 | -21 07 36 | 10m | 103a - D | GG 14 | 3" - 4" | Miller / Zemelman | 10 02 73 | Vela F | ||
2365 | 2265 | 10 59 00 | -60 10 | 8m | 103a - O | GG 13 | 3" - 4" | Miller / Zemelman | 10 02 73 | HD 95540 | ||
2366 | 2266 | 10 59 00 | -60 10 | 10m | 103a - O | UG 2 | 3" - 4" | Miller / Zemelman | 10 02 73 | HD 95540 | ||
2367 | 2267 | 14 19 54 | -60 48 | 5m | 103a - O | GG 13 | 3" - 4" | Miller / Zemelman | 10 02 73 | Cen I | ||
2368 | 2268 | 14 19 54 | -60 48 | 30m | 103a - D | GG 14 | 3" - 4" | Miller / Zemelman | 10 02 73 | Cen I | ||
2369 | 2269 | 07 45 00 | -34 42 | 5m | lla - O | 2" | Miller / Zemelman | 11 02 73 | Vela D | |||
2370 | 2270 | 07 45 00 | -34 42 | 40m | lla - O | 2" | Miller / Zemelman | 11 02 73 | Vela D | |||
2371 | 2271 | 07 45 00 | -34 42 | 32m | lla - O | 2" | Miller / Zemelman | 11 02 73 | Vela D | |||
2372 | 2272 | 07 24 06 | -21 07 36 | 30m | 103a - O | 2" | Miller / Zemelman | 11 02 73 | Vela F | |||
2373 | 2273 | 07 58 00 | -28 31 | 30m | 103a - O | 2" | Miller / Zemelman | 11 02 73 | Vela F | |||
2374 | 2274 | 07 43 54 | -31 50 | 30m | 103a - O | 2" | Miller / Zemelman | 11 02 73 | Vela A | |||
2375 | 2275 | 08 56 12 | -47 40 | 30m | 103a - O | 2" | Miller / Zemelman | 11 02 73 | RCW 38 | |||
2376 | 2276 | 14 19 54 | -60 48 | 30m | 103a - O | 2" | Miller / Zemelman | 11 02 73 | Cen I | |||
2377 | 2277 | 11 00 25 | -59 35 | 30m | 103a - O | 2" | Miller / Zemelman | 11 02 73 | HD 95540 | |||
2378 | 2278 | 10 59 54 | -60 05 | 35m | 098 - 02 | 2" | Miller / Zemelman | 11 02 73 | HD 95540 | |||
2379 | 2279 | 11 02 54 | -60 33 | 10m | 098 - 02 | 2" | Miller / Zemelman | 11 02 73 | HD 95540 | |||
2380 | 2280 | 04 20 00 | -48 20 | 60m | 103a - O | UG 2 | 2" | Graham / Elicer / Gonzalez | 11 02 73 | galaxy | ||
2381 | 2281 | 06 43 00 | -74 20 | 60m | 103a - O | 2" | Graham / Elicer / Gonzalez | 11 02 73 | galaxy ring type | |||
2382 | 2282 | 06 43 00 | -74 20 | 120m | 098 - 02 | GG 13 | 2" | Graham / Elicer / Gonzalez | 11 02 73 | galaxy ring type | ||
2383 | 2283 | 13 19 00 | -43 31 | 15m | 098 - 02 | RG 1 | 2" | Graham / Elicer / Gonzalez | 11 02 73 | NGC 5090 | ||
2384 | 2284 | 04 20 00 | -48 20 | 10m | 103a - D | GG 14 | 2" | Graham / Czuia / Elicer | 25 02 73 | galaxy | ||
2385 | 2285 | 04 20 00 | -48 20 | 30m | 103a - O | GG 13 | Graham / Czuia / Elicer | 25 02 73 | galaxy | |||
2386 | 2286 | 04 20 00 | -48 20 | 6m | 103a - O | GG 13 | Graham / Czuia / Elicer | 25 02 73 | galaxy | |||
2387 | 2287 | 10 07 48 | -38 15 | 90m | 103a - O | Graham / Czuia / Elicer | 25 02 73 | Anom 10 07 - 38 | ||||
2388 | 2288 | 10 07 48 | -38 15 | 120m | 098 - 02 | GG 14 | Graham / Czuia / Elicer | 25 02 73 | Anom 10 07 - 38 | |||
2389 | 2289 | 13 19 00 | +43 31 | 40m | 103a - O | GG 13 | Graham / Czuia / Elicer | 25 02 73 | NGC 5090 |
Last Updated on 8/27/99
By Guerra & Marin
April 1973 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
2396 | 2296 | 09 44 00 | -31 04 | 60m | lla - O | 1.5" | Sersic / Czuia | 10 04 73 | N 2997 | |||
2397 | 2297 | 10 26 42 | -39 48 | 60m | lla - O | 1.5" | Sersic / Czuia | 10 04 73 | N 3256 | |||
2398 | 2298 | 13 20 30 | -38 13 | 59m | lla - O | GG 13 | 2" | Sersic / Czuia | 10 04 73 | N 5102 | ||
2399 | 2299 | 13 20 30 | -38 13 | 7m | lla - D | GG 14 | 2" | Sersic / Czuia | 10 04 73 | N 5102 | ||
2400 | 2300 | 13 38 24 | -31 31 | 60m | lla - D | GG 14 | 2" | Sersic / Czuia | 10 04 73 | N 5253 | ||
2401 | 2301 | 13 38 24 | -31 31 | 61m | lla - D | GG 13 | 2" | Sersic / Czuia | 10 04 73 | N 5253 | ||
2402 | 2302 | 56m | lla - D | GG 13 | 2.5" | Sersic / Czuia | 10 04 73 | N 6438 | ||||
2403 | 2303 | 09 44 30 | -31 04 | 61m | lla - D | GG 14 | 1.5" | Sersic / Czuia | 11 04 73 | N 2997 | ||
2404 | 2304 | 10 26 42 | -43 45 | 60m | lla - D | GG 14 | Sersic / Czuia | 11 04 73 | N 3256 | |||
2405 | 2305 | 10 26 42 | -43 45 | 60m | lla - O | GG 13 | 1.5" | Sersic / Czuia | 11 04 73 | N 3256 | ||
2406 | 2306 | 13 38 24 | -31 31 | 60m | 098 - 02 | RG 2 | Sersic / Czuia | 11 04 73 | N 5253 | |||
2407 | 2307 | 13 19 30 | -36 19 | 60m | lla - O | GG 13 | Sersic / Czuia | 11 04 73 | N 5102 | |||
2408 | 2308 | 13 19 30 | -36 19 | 60m | lla - D | GG 13 | Sersic / Czuia | 11 04 73 | N 5102 | |||
2409 | 2309 | 13 23 48 | -42 52 | 120m | 103a - D | GG 5 | Sersic / Czuia | 11 04 73 | N 5128 | |||
2410 | 2310 | 13 34 48 | -33 39 | 60m | lla - D | GG 14 | 1.5" | Sersic / Czuia | 12 04 73 | IC 4296 | ||
2411 | 2311 | 13 34 48 | -33 39 | 60m | lla - O | GG 13 | Sersic / Czuia | 12 04 73 | IC 4296 | |||
2412 | 2312 | 13 19 30 | -36 19 | 60m | lla - O | GG 13 | Sersic / Czuia | 12 04 73 | N 5102 | |||
2413 | 2313 | 13 19 30 | -36 19 | 60m | lla - D | GG 14 | Sersic / Czuia | 12 04 73 | N 5102 | |||
2414 | 2314 | 20 12 06 | -71 01 | 150m | 103a - D | Sersic / Czuia | 12 04 73 | T P |
Last Updated on 8/27/99
By Jorge Marin
June 1973 Plate logs for 1.5-m telescope
December 1973 Plate logs for 1.5-m telescope
1974 Plate logs for 1.5-m telescope
January 1974 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
2553 | 2453 | 04 20 18 | -68 20 | 17m | RG 2 | 08 01 74 | NGC 1567 | |||||
2554 | 2454 | 05 33 48 | -05 25 | 15m | RG 2 | 08 01 74 | Orion nebulae | |||||
2555 | 2455 | 03 59 24 | -67 42 | 60m | 098 - 02 | RG 1 | Graham / Gonzalez /Elicer | 08 01 74 | NGC 1511 | |||
2556 | 2456 | 06 27 00 | -47 05 | 45m | 098 - 02 | RG 1 | Graham / Gonzalez / Elicer | 08 01 74 | peculiar niple | |||
2557 | 2457 | 08 25 24 | -68 02 | 45m | 098 - 02 | RG 1 | Graham / Gonzalez / Elicer | 08 01 74 | NGC 2601 | |||
2558 | 2458 | 09 26 06 | -76 37 | 45m | 098 - 02 | RG 1 | Graham / Gonzalez / Elicer | 08 01 74 | NGC 2915 | |||
2559 | 2459 | 04 20 18 | -48 20 | 15m | 098 - 02 | RG 1 | Graham / Gomez / Elicer | 09 01 74 | NGC 1567 ecliptical galaxy | |||
2560 | 2460 | 06 27 00 | -47 05 | 90m | 098 - 02 | RG 1 | Graham / Gomez / Elicer | 09 01 74 | peculiar niple | |||
2561 | 2461 | 09 26 06 | -76 37 | 90m | 098 - 02 | RG 1 | Graham / Gomez / Elicer | 09 01 74 | NGC 2915 | |||
2562 | 2462 | 06 28 50 | -28 34 | 120 m | lla - O | GG 385 | 2" | R.Gonzalez | 22 01 74 | BSR 0628 - 28 | CTIO | |
2563 | 2463 | 08 18 06 | -13 41 | 90 m | lla - O | GG 385 | 2" | R.Gonzalez | 22 01 74 | BSR 0818 - 13 | CTIO | |
2564 | 2464 | 07 36 51 | -40 34 30 | 90 m | lla - O | GG 385 | 2" | R.Gonzalez | 22 01 74 | BSR 0736 - 40 | CTIO | |
2565 | 2465 | 07 24 06 | -21 07 36 | 40m | 103a - O | UG 2 | 2" | Miller / R.Gonzalez | 23 01 74 | HD 58510 | ||
2566 | 2466 | 07 24 06 | -21 07 36 | 40m | 103a - O | UG 2 | 2" | Miller / R.Gonzalez | 23 01 74 | HD 58510 | ||
2567 | 2467 | 07 24 06 | -21 07 36 | 10m | 103a - O | GG 13 | 2" | Miller / R.Gonzalez | 23 01 74 | HD 58510 | ||
2568 | 2468 | 07 24 06 | -21 07 36 | 10m | 103a - O | GG 13 | 2" | Miller / R.Gonzalez | 23 01 74 | HD 58510 | ||
2569 | 2469 | 07 24 06 | -21 07 36 | 15m | 103a - O | GG 13 | 2" | Miller / R.Gonzalez | 23 01 74 | HD 58510 | ||
2570 | 2470 | 07 24 06 | -21 07 36 | 15m | 103a - D | GG 14 | 2" | Miller / R.Gonzalez | 23 01 74 | HD 58510 | ||
2571 | 2471 | 07 24 06 | -21 07 36 | 40m | 103a - D | GG 14 | 2" | Miller / R.Gonzalez | 23 01 74 | HD 58510 | ||
2572 | 2472 | 07 57 48 | -28 30 | 40m | 103a - O | UG 2 | Miller / R.Gonzalez | 23 01 74 | Vela B | |||
2573 | 2473 | 07 57 48 | -28 30 | 40m | 103a - O | UG 2 | Miller / R.Gonzalez | 23 01 74 | Vela B | |||
2574 | 2474 | 07 57 48 | -28 30 | 15m | 103a - D | GG 14 | Miller / R.Gonzalez | 23 01 74 | Vela B | |||
2575 | 2475 | 08 57 48 | -47 36 | 40m | 103a - O | UG 2 | Miller / R.Gonzalez | 23 01 74 | RCW 38 | |||
2576 | 2476 | 08 57 48 | -47 36 | 15m | 103a - D | GG 14 | Miller / R.Gonzalez | 23 01 74 | RCW 38 | |||
2577 | 2477 | 07 24 06 | -21 07 36 | 40m | 103a - O | UG 2 | Miller / R.Gonzalez | 23 01 74 | HD 58510 | |||
2578 | 2478 | 07 24 06 | -21 07 36 | 10m | 103a - O | GG 13 | Miller / R.Gonzalez | 24 01 74 | HD 58510 | |||
2579 | 2479 | 07 57 48 | -28 30 | 40m | 103a - O | UG 2 | Miller / R.Gonzalez | 24 01 74 | Vela B | |||
2580 | 2480 | 07 57 48 | -28 30 | 10m | 103a - O | GG 13 | Miller / R.Gonzalez | 24 01 74 | Vela B | |||
2581 | 2481 | 08 57 48 | -47 36 | 40m/10m | 103a - O | UG 2 / GG 13 | 3" | Miller / R.Gonzalez | 24 01 74 | RCW 38 | ||
2582 | 2482 | 08 57 48 | -47 36 | 40m/10m | 103a - O | UG 2 / GG 13 | 3" | Miller / R.Gonzalez | 24 01 74 | RCW 38 | ||
2583 | 2483 | 08 57 48 | -47 36 | 10m/40m | 103a - O | GG 13 / UG 2 | 3" | Miller / R.Gonzalez | 24 01 74 | RCW 38 | ||
2584 | 2484 | 08 36 24 | -45 07 | 40m/10m | 103a - O | UG 2 / GG 13 | 3" | Miller / R.Gonzalez | 24 01 74 | HD 73568 | ||
2585 | 2485 | 08 36 24 | -45 07 | 10m/40m | 103a - O | GG 13 / UG 2 | 3" | Miller / R.Gonzalez | 24 01 74 | HD 73568 |
Last Updated on 8/27/99
By Guerra & Marin
February 1974 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
2586 | 2486 | 03 59 24 | -67 42 | 60m | 103a - O | Graham / Saá / Elicer | 22 02 74 | NGC 1511 | ||||
2587 | 2487 | 06 27 00 | -47 05 | 90m | 103a - O | Graham / Saá / Elicer | 22 02 74 | faint group of galaxies | ||||
2588 | 2488 | 06 25 54 | -53 40 | 30m | 103a - O | Graham / Saá / Elicer | 22 02 74 | PKS 625 - 53 | ||||
2589 | 2489 | 09 25 00 | -76 51 | 90m | 103a - O | Graham / Saá / Elicer | 22 02 74 | NGC 2915 | ||||
2590 | 2490 | 09 25 00 | -76 51 | 60m | 103a - O | Graham / Saá / Elicer | 22 02 74 | NGC 2915 | ||||
2591 | 2491 | 15 16 12 | -24 15 | 75m | 103a - O | Graham / Saá / Elicer | 22 02 74 | AP Librae |
Last Updated on 8/27/99
By Guerra & Marin
March 1974 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
2592 | 2492 | 06 27 00 | -47 05 | 3m | llla - J | Graham / Richer / Czuia | 22 03 74 | grupo de galaxias | ||||
2593 | 2493 | 13 04 42 | -37 26 | llla - J | Graham / Richer / Czuia | 22 03 74 | NGC 4953 | |||||
2594 | 2494 | 18 41 00 | -48 39 | 118m | llla - J | Graham / Richer / Czuia | 22 03 74 | PKS 1839 - 48 | ||||
2595 | 2495 | 10 36 12 | -27 18 | 33m | lla - O | GG 13 | Smith / Weedman / Czuia | 25 03 74 | Hydra l cluster of galaxies | |||
2596 | 2496 | 12 48 24 | -41 08 | 30m | lla - O | GG 13 | Smith / Weedman / Czuia | 25 03 74 | Centaurus cluster | |||
2597 | 2497 | 12 48 24 | -41 08 | 90m | lla - O | GG 13 | Smith / Weedman / Czuia | 25 03 74 | Centaurus cluster | |||
2598 | 2498 | 10 36 12 | -27 18 | 30m | lla - O | Smith / Weedman / Czuia | 26 03 74 | Hydra l cluster | ||||
2599 | 2499 | 10 36 12 | -27 18 | 180m | llla - J | Smith / Weedman / Czuia | 26 03 74 | Hydra l cluster | ||||
2600 | 2500 | 12 48 50 | -41 15 48 | 180m | llla - J | Smith / Weedman / Czuia | 26 03 74 | Centaurus cluster | ||||
2601 | 2501 | 12 43 54 | -40 36 22 | 30m | lla - O | Smith / Weedman / Czuia | 26 03 74 | Centaurus cluster | ||||
2602 | 2502 | 18 17 12 | -13 47 47 | 32m | llla - J | Smith / Weedman / Czuia | 26 03 74 | M 16 |
Last Updated on 8/27/99
By Guerra & Marin
April 1974 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
2603 | 2503 | 12 38 06 | -26 36 54 | 10m | 103a - D | GG 14 | 1" | Hesser / Gonzalez | 25 04 74 | NGC 4590 | ||
2604 | 2504 | 12 38 06 | -26 36 54 | 13m | 103a - O | GG 385 | 1" | Hesser / Gonzalez | 25 04 74 | NGC 4590 | ||
2605 | 2505 | 12 38 06 | -26 36 54 | 60m | 103a - D | GG 14 | 1" | Hesser / Gonzalez | 25 04 74 | NGC 4590 | ||
2606 | 2506 | 12 38 06 | -26 36 54 | 60m | 103a - O | GG 385 | 1" | Hesser / Gonzalez | 25 04 74 | NGC 4590 | ||
2607 | 2507 | 13 44 30 | -51 14 | 60m | 103a - D | GG 14 | 1" | Hesser / Gonzalez | 25 04 74 | NGC 5286 | ||
2608 | 2508 | 13 44 30 | -51 14 | 60m | 103a - O | GG 385 | < 1" | Hesser / Gonzalez | 25 04 74 | NGC 5286 | ||
2609 | 2509 | 17 23 30 | -48 27 | 120m | 103a - D | GG 14 | 1" - 1.5" | Hesser / Gonzalez | 25 04 74 | NGC 6352 | ||
2610 | 2510 | 17 23 30 | -48 27 | 56m | 103a - O | GG 385 | 1" - 2" | Hesser / Gonzalez | 25 04 74 | NGC 6352 | ||
2611 | 2511 | 12 38 06 | -26 36 54 | 20m | 103a - O | GG 385 | 1.5" - 2" | Hesser / Gonzalez | 26 04 74 | NGC 4590 | ||
2612 | 2512 | 12 38 06 | -26 36 54 | 20m | 103a - O | GG 385 | 2" | Hesser / Gonzalez | 26 04 74 | NGC 4590 | ||
2613 | 2513 | 12 38 06 | -26 36 54 | 60m | 103a - D | GG 14 | 1.5" | Hesser / Gonzalez | 26 04 74 | NGC 4590 | ||
2614 | 2514 | 12 38 06 | -26 36 54 | 40m | 103a - O | GG 385 | 1" - 2" | Hesser / Gonzalez | 26 04 74 | NGC 4590 | ||
2615 | 2515 | 14 57 00 | -82 08 | 120m | 103a - D | GG 14 | 2" - 2.5" | Hesser / Gonzalez | 26 04 74 | IC 4499 | ||
2616 | 2516 | 17 23 30 | -48 27 | 115m | 103a - D | GG 14 | 1.5" | Hesser / Gonzalez | 26 04 74 | NGC 6352 | ||
2617 | 2517 | 17 23 30 | -48 27 | 120m | 103a - O | GG 385 | 1.5" - 2" | Hesser / Gonzalez | 26 04 74 | NGC 6352 |
Last Updated on 8/27/99
By Jorge Marin
May 1974 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
2618 | 2518 | 18 34 48 | -23 57 | 20m | 103a - D | GG 14 | 2" - 3" | Hesser / Czuia / Poblete | 25 05 74 | M 22 | ||
2619 | 2519 | 18 34 48 | -23 57 | 20m | 103a - O | GG 385 | 3" | Hesser / Czuia / Poblete | 25 05 74 | M 22 | ||
2620 | 2520 | 18 34 48 | -23 57 | 60m | 103a - D | GG 14 | 3" | Hesser / Czuia / Poblete | 25 05 74 | M 22 | ||
2621 | 2521 | 13 44 00 | -51 14 | 60m | 103a - D | GG 14 | 3" | Hesser / Czuia / Poblete | 26 05 74 | NGC 5286 | ||
2622 | 2522 | 13 44 00 | -51 14 | 0.5m | 103a - O | GG 385 | 2" | Hesser / Czuia / Poblete | 26 05 74 | NGC 5286 | ||
2623 | 2523 | 13 44 00 | -51 14 | 0.5m | 103a - O | GG 385 | 2.5" | Hesser / Czuia / Poblete | 26 05 74 | NGC 5286 | ||
2624 | 2524 | 13 44 00 | -51 14 | 0.5m | 103a - O | GG 385 | 2.5" | Hesser / Czuia / Poblete | 26 05 74 | NGC 5286 | ||
2625 | 2525 | 13 44 00 | -51 14 | 0.5m | 103a - D | GG 14 | 2.5" | Hesser / Czuia / Poblete | 26 05 74 | NGC 5286 | ||
2626 | 2526 | 13 44 00 | -51 14 | 0.5m | 103a - D | GG 14 | 2.5" | Hesser / Czuia / Poblete | 26 05 74 | NGC 5286 | ||
2627 | 2527 | 13 44 00 | -51 14 | 0.5m | 103a - D | GG 14 | 2.5" | Hesser / Czuia / Poblete | 26 05 74 | NGC 5286 | ||
2628 | 2528 | 13 44 00 | -51 14 | 0.5m | 103a - O | GG 385 | 2.5" | Hesser / Czuia / Poblete | 26 05 74 | NGC 5286 | ||
2629 | 2529 | 17 23 00 | -48 27 | 60m | 103a - D | GG 14 | 2.5" | Hesser / Czuia / Poblete | 26 05 74 | NGC 6352 | ||
2630 | 2530 | 17 23 00 | -48 27 | 60m | 103a - O | GG 385 | 2.5" | Hesser / Czuia / Poblete | 26 05 74 | NGC 6352 | ||
2631 | 2531 | 17 23 00 | -48 27 | 120m | 103a - O | GG 385 | 2" | Hesser / Czuia / Poblete | 26 05 74 | NGC 6352 | ||
2632 | 2532 | 17 23 00 | -48 27 | 120m | 103a - D | GG 14 | 1.5" - 2" | Hesser / Czuia / Poblete | 26 05 74 | NGC 6352 | ||
2633 | 2533 | 18 34 48 | -23 57 | 20m | 103a - D | GG 14 | 1.5" - 2" | Hesser / Czuia / Poblete | 26 05 74 | M 22 | ||
2634 | 2534 | 18 34 48 | -23 57 | 20m | 103a - O | GG 385 | 1.5" - 2" | Hesser / Czuia / Poblete | 26 05 74 | M 22 | ||
2635 | 2535 | 18 34 48 | -23 57 | 5m | 103a - O | GG 385 | 1.5" - 2" | Hesser / Czuia / Poblete | 26 05 74 | M 22 | ||
2636 | 2536 | 18 34 48 | -23 57 | 5m | 103a - O | GG 385 | 1.5" | Hesser / Czuia / Poblete | 26 05 74 | M 22 | ||
2637 | 2537 | 18 34 48 | -23 57 | 5m | 103a - D | GG 14 | 1.5" | Hesser / Czuia / Poblete | 26 05 74 | M 22 | ||
2638 | 2538 | 18 34 48 | -23 57 | 5m | 103a - D | GG 14 | 1.5" | Hesser / Czuia / Poblete | 26 05 74 | M 22 |
Last Updated on 8/27/99
By Guerra & Marin
June 1974 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
2639 | 2539 | 18 05 42 | -24 40 | 25m | lla - O | UG 2 | 2" - 3" | Racine / R.Gonzalez | 29 06 74 | NGC 6544 | ||
2640 | 2540 | 18 05 42 | -24 40 | 15m | lla - O | UG 2 | 2" - 3" | Racine / R.Gonzalez | 29 06 74 | NGC 6544 | ||
2641 | 2541 | 18 05 42 | -24 40 | 3m | lla - D | GG 14 | 2" - 5" | Racine / R.Gonzalez | 29 06 74 | NGC 6544 | ||
2642 | 2542 | 18 05 42 | -24 40 | 1m | lla - D | GG 14 | 2" - 5" | Racine / R.Gonzalez | 29 06 74 | NGC 6544 | ||
2643 | 2543 | 18 07 36 | -25 35 | 6m | lla - O | GG 14 | 2" - 5" | Racine / R.Gonzalez | 29 06 74 | NGC 6553 | ||
2644 | 2544 | 18 07 36 | -25 35 | 20m | lla - D | UG 2 | 2" - 5" | Racine / R.Gonzalez | 29 06 74 | NGC 6553 | ||
2645 | 2545 | 18 08 24 | -31 26 | 30m | lla - O | UG 2 | 2" - 20" | Racine / R.Gonzalez | 30 06 74 | NGC 6558 | ||
2646 | 2546 | 18 08 24 | -31 26 | 8m | lla - D | GG 14 | 2" - 20" | Racine / R.Gonzalez | 30 06 74 | NGC 6558 | ||
2647 | 2547 | 21 44 54 | -21 22 | 4m | lla - D | GG 14 | 2" - 20" | Racine / R.Gonzalez | 30 06 74 | Pal 12 | ||
2648 | 2548 | 21 44 54 | -21 22 | 25m | lla - O | UG 2 | 2" - 20" | Racine / R.Gonzalez | 30 06 74 | Pal 12 | ||
2649 | 2549 | 19 43 42 | -07 46 | 3m | lla - D | GG 14 | 2" - 4" | Racine / R.Gonzalez | 30 06 74 | Pal 11 | ||
2650 | 2550 | 19 43 42 | -07 46 | 20m | lla - O | UG 2 | 2" - 4" | Racine / R.Gonzalez | 30 06 74 | Pal 11 | ||
2651 | 2551 | 21 31 54 | -00 58 | 3m | lla - O | UG 2 | 3" - 10" | Racine / R.Gonzalez | 30 06 74 | NGC 7089 | ||
2652 | 2552 | 21 31 54 | -00 58 | 15m | lla - O | UG 2 | 3" - 10" | Racine / R.Gonzalez | 30 06 74 | NGC 7089 | ||
2653 | 2553 | 21 31 54 | -00 58 | 40s | lla - D | GG 14 | 3" - 10" | Racine / R.Gonzalez | 30 06 74 | NGC 7089 | ||
2654 | 2554 | 21 31 54 | -00 58 | 3m | lla - D | GG 14 | 3" - 10" | Racine / R.Gonzalez | 30 06 74 | NGC 7089 |
Last Updated on 8/27/99
By Guerra & Marin
July 1974 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
2655 | 2555 | 16 25 48 | -38 25 | 10m | lla - D | GG 14 | 5" | Racine / R.Gonzalez | 01 07 74 | NGC 6139 | ||
2656 | 2556 | 16 25 48 | -38 25 | 5m | lla - O | GG 385 | 5" | Racine / R.Gonzalez | 01 07 74 | NGC 6139 | ||
2657 | 2557 | 17 14 42 | -27 46 | 10m | lla - D | GG 14 | 6" - 10" | Racine / R.Gonzalez | 01 07 74 | NGC 6316 | ||
2658 | 2558 | 17 14 42 | -27 46 | 5m | lla - O | GG 385 | 8" - 10" | Racine / R.Gonzalez | 01 07 74 | NGC 6316 | ||
2659 | 2559 | 17 19 30 | -19 13 | 10m | lla - D | GG 14 | 4" | Racine / R.Gonzalez | 01 07 74 | NGC 6342 | ||
2660 | 2560 | 17 19 30 | -19 13 | 5m | lla - O | GG 385 | Racine / R.Gonzalez | 01 07 74 | NGC 6342 | |||
2661 | 2561 | 17 22 12 | -25 59 | 10m | lla - D | GG 14 | 4" | Racine / R.Gonzalez | 01 07 74 | NGC 6355 | ||
2662 | 2562 | 17 22 12 | -25 59 | 5m | lla - O | GG 385 | Racine / R.Gonzalez | 01 07 74 | NGC 6355 | |||
2663 | 2563 | 17 36 54 | -23 33 | 10m | lla - D | GG 14 | 3" | Racine / R.Gonzalez | 01 07 74 | NGC 6401 | ||
2664 | 2564 | 17 36 54 | -23 33 | 5m | lla - O | GG 385 | Racine / R.Gonzalez | 01 07 74 | NGC 6401 | |||
2564 | 13 04 00 | -49 21 | 60m | 103a - O | 1" | Racine / R.Gonzalez | 21 07 74 | NGC 4945 | ||||
2665 | 2565 | 13 29 00 | -86 24 | 115m | 103a - O | 1" | Racine / R.Gonzalez | 21 07 74 | cumulo de galaxias | |||
2666 | 2566 | 20 43 00 | -55 10 | 90m | 103a - O | 1" | Racine / R.Gonzalez | 21 07 74 | grupo de galaxias | |||
2667 | 2567 | 22 46 00 | -58 04 | 120m | llla - J | 2" | Racine / R.Gonzalez | 21 07 74 | galaxy chain | |||
2668 | 2568 | 22 35 00 | -61 32 | 120m | llla - J | 2" | Racine / R.Gonzalez | 21 07 74 | interacting galaxies | |||
2669 | 2569 | 18 35 00 | -30 00 | 10s each | lla - O | V.Blanco / Saá / Czuia | 30 07 74 | focus plate |
Last Updated on 8/27/99
By Guerra & Marin
October 1974 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
2670 | 2570 | 18 01 12 | -24 24 | 20m | llla - J | GG 13 | 2" | Dufour / Ríos | 10 10 74 | M 8 | ||
2671 | 2571 | 00 46 20 | -73 24 | 30m | 127 - 02 | RG 2 | 2" | Dufour / Ríos | 10 10 74 | SMC N 19 | ||
2672 | 2572 | 00 46 20 | -73 24 | 60m | 127 - 02 | RG 2 | 3" | Dufour / Ríos | 10 10 74 | SMC N 19 | ||
2673 | 2573 | 00 46 20 | -73 24 | 30m | llla - J | GG 13 | 2.5" | Dufour / Ríos | 10 10 74 | SMC N 19 | ||
2674 | 2574 | 00 46 20 | -73 24 | 45m | llla - J | UG 2 | 2" | Dufour / Ríos | 10 10 74 | SMC N 19 | ||
2675 | 2575 | 00 58 27 | -72 18 | 30m | llla - J | UG 2 | 2" | Dufour / Ríos | 10 10 74 | SMC N 66A | ||
2676 | 2576 | 00 58 27 | -72 18 | 20m | llla - J | GG 385 | 2" | Dufour / Ríos | 10 10 74 | SMC N 66A | ||
2677 | 2577 | 00 58 27 | -72 18 | 15m | 127 - 02 | RG 2 | 2" | Dufour / Ríos | 10 10 74 | SMC N 66A | ||
2678 | 2578 | 05 40 00 | -69 45 | 30m | llla - J | UG 2 | 2" | Dufour / Ríos | 10 10 74 | LMC X - 1 | ||
2679 | 2579 | 05 38 40 | -64 06 | 180m | llla - J | UG 2 | 2" | Dufour / Ríos | 10 10 74 | LMC X - 3 | ||
2680 | 2580 | 05 38 40 | -64 06 | 60m | llla - J | UG 2 | 2" | Dufour / Ríos | 10 10 74 | LMC X - 3 | ||
2681 | 2581 | 00 58 30 | -33 50 | 180m | 103a - D | 2" - 5" | Demers / R.Gonzalez | 14 10 74 | Sculptor galaxy | |||
2682 | 2582 | 04 34 24 | -58 59 | 180m | 103a - O | 3" | Demers / R.Gonzalez | 14 10 74 | Reticulum galaxy | |||
2683 | 2583 | 04 34 24 | -58 59 | 75m | 103a - D | 5" | Demers / R.Gonzalez | 14 10 74 | Reticulum galaxy | |||
2684 | 2584 | 00 58 30 | -33 50 | 180m | 103a - D | 3" | Demers / Kunkel / R.Gonzalez | 15 10 74 | Sculptor galaxy | |||
2685 | 2585 | 04 34 24 | -58 59 | 62m | 103a - O | 3" | Demers / Kunkel / R.Gonzalez | 15 10 74 | Reticulum galaxy | |||
2686 | 2586 | 04 34 24 | -58 59 | 40m | 103a - D | Demers / Kunkel / R.Gonzalez | 15 10 74 | Reticulum galaxy | ||||
2687 | 2587 | 04 34 24 | -58 59 | 40m | 103a - O | Demers / Kunkel / R.Gonzalez | 15 10 74 | Reticulum galaxy |
Last Updated on 8/27/99
By Guerra & Marin
December 1974 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
2688 | 2588 | 04 58 48 | -66 02 | 40m | 103a - O | 1.5" | Graham / Poblete / Rojas | 17 12 74 | NGC 1783 | |||
2689 | 2589 | 04 58 48 | -66 02 | 40m | 103a - O | 1.5" | Graham / Poblete / Rojas | 17 12 74 | NGC 1783 | |||
2690 | 2590 | 04 58 48 | -66 02 | 40m | 103a - O | 1.5" | Graham / Poblete / Rojas | 17 12 74 | NGC 1783 | |||
2691 | 2591 | 04 58 48 | -66 02 | 40m | 103a - O | 1" | Graham / Poblete / Rojas | 17 12 74 | NGC 1783 | |||
2692 | 2592 | 04 58 48 | -66 02 | 40m | 103a - O | 1" | Graham / Poblete / Rojas | 17 12 74 | NGC 1783 | |||
2693 | 2593 | 04 58 48 | -66 02 | 40m | 103a - O | 1" - 1.5" | Graham / Poblete / Rojas | 17 12 74 | NGC 1783 | |||
2694 | 2594 | 04 58 48 | -66 02 | 40m | 103a - O | GG 385 | 1" | Graham / Poblete / Rojas | 17 12 74 | NGC 1783 | ||
2695 | 2595 | 04 58 48 | -66 02 | 40m | 103a - O | GG 385 | > 1" | Graham / Poblete / Rojas | 18 12 74 | NGC 1783 | ||
2696 | 2596 | 04 58 48 | -66 02 | 40m | 103a - O | GG 385 | > 1" | Graham / Poblete / Rojas | 18 12 74 | NGC 1783 | ||
2697 | 2597 | 04 58 48 | -66 02 | 40m | 103a - O | GG 385 | < 1" | Graham / Poblete / Rojas | 18 12 74 | NGC 1783 | ||
2698 | 2598 | 04 58 48 | -66 02 | 60m | 103a - D | GG 495 | > 1" | Graham / Poblete / Rojas | 18 12 74 | NGC 1783 | ||
2699 | 2599 | 04 58 48 | -66 02 | 40m | 103a - O | GG 385 | > 1.5" | Graham / Poblete / Rojas | 18 12 74 | NGC 1783 | ||
2700 | 2600 | 04 58 48 | -66 02 | 40m | 103a - O | GG 385 | 1.5" | Graham / Poblete / Rojas | 18 12 74 | NGC 1783 | ||
2701 | 2601 | 04 58 48 | -66 02 | 40m | 103a - O | GG 385 | 1.5" | Graham / Poblete / Rojas | 18 12 74 | NGC 1783 | ||
2702 | 2602 | cenit | -30 00 | 12s each | 103a - D | GG 385 | 5" | Cosgrove | 27 12 74 | focus plate | ||
2703 | 2603 | 08 36 12 | -30 00 | 12s each | 103a - D | 5" | Cosgrove | 27 12 74 | focus plate | |||
2704 | 2604 | 01 26 36 | -30 00 | 12s each | 103a - D | 5" | Cosgrove | 27 12 74 | focus plate | |||
2705 | 2605 | 05 42 30 | +20 00 | 12s each | 103a - D | 5" | Cosgrove | 27 12 74 | focus plate | |||
2706 | 2606 | 06 12 42 | -75 00 | 12s each | 103a - D | 5" | Cosgrove | 27 12 74 | focus plate | |||
2707 | 2607 | 09 35 12 | -30 00 | 12s each | lla - O | 3" | Cosgrove | 27 12 74 | focus plate | |||
2708 | 2608 | 10 57 36 | -75 00 | 12s each | lla - O | 3" | Cosgrove | 27 12 74 | focus plate | |||
2709 | 2609 | 04 02 48 | -30 00 | 12s each | 103a - O | 2" | Cosgrove | 28 12 74 | focus plate | |||
2710 | 2610 | 08 17 00 | -30 00 | 12s each | 103a - O | 2" | Cosgrove | 28 12 74 | focus plate | |||
2711 | 2611 | 01 25 00 | -30 00 | 12s each | 103a - O | 2" | Cosgrove | 28 12 74 | focus plate | |||
2712 | 2612 | 06 01 12 | -75 00 | 12s each | 103a - O | 2" | Cosgrove | 28 12 74 | focus plate | |||
2713 | 2613 | 07 06 06 | +20 00 | 12s each | 103a - O | 2" | Cosgrove | 28 12 74 | focus plate |
Last Updated on 8/27/99
By Jorge Marin
1975 Plate logs for 1.5-m telescope
January 1975 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
2714 | 2614 | 05 37 36 | -70 12 | 20m | 103a - D | GG 14 | 2" | Flower / Pinto | 21 01 75 | focus plate | ||
2715 | 2615 | 05 37 36 | -70 12 | 20m | 103a - O | GG 13 | 3" | Flower / Pinto | 21 01 75 | focus plate | ||
2716 | 2616 | 05 37 36 | -70 12 | 60m | 103a - D | GG 14 | 3" | Flower / Pinto | 21 01 75 | focus plate | ||
2717 | 2617 | 05 37 36 | -70 12 | 60m | 103a - O | 3" | Flower / Pinto | 21 01 75 | focus plate | |||
2718 | 2618 | 05 37 36 | -70 12 | 90m | 103a - D | 3" | Flower / Pinto | 21 01 75 | focus plate | |||
2719 | 2619 | 05 37 36 | -70 12 | 20m | 103a - O | 3" | Flower / Pinto | 21 01 75 | focus plate | |||
2720 | 2620 | 05 37 36 | -70 12 | 20m | 103a - D | 3" | Flower / Pinto | 21 01 75 | focus plate |
Last Updated on 8/27/99
By Guerra & Marin
February 1975 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
2721 | 2621 | 05 13 12 | -40 03 | 10m | 103a - O | GG 385 | 5" | Mrs.Liller / Ríos | 03 02 75 | NGC 1851 | ||
2722 | 2622 | 06 15 42 | +09 08 | 20m | 103a - O | GG 385 | 4" - 5" | Mrs.Liller / Ríos | 03 02 75 | 0614 + 09 | ||
2723 | 2623 | 09 11 24 | -64 45 | 10m | 103a - O | GG 385 | 5" - 6" | Mrs.Liller / Ríos | 03 02 75 | 2808 | ||
2724 | 2624 | 06 48 06 | -35 59 | 10m | 103a - O | GG 385 | 5" - 6" | Mrs.Liller / Ríos | 03 02 75 | NGC 2298 | ||
2725 | 2625 | 09 11 24 | -64 45 | 10m | 103a - O | GG 385 | 5" - 6" | Mrs.Liller / Ríos | 03 02 75 | 2808 | ||
2726 | 2626 | 15 18 43 | -57 04 | 60m | 098 - 04 | RG 1 | 4" - 5" | Mrs.Liller / Ríos | 03 02 75 | Cir X - 1 | ||
2727 | 2627 | 15 37 33 | -52 15 | 30m | 098 - 04 | RG 1 | 4" - 5" | Mrs.Liller / Ríos | 03 02 75 | Nova Normae | ||
2728 | 2628 | 05 13 12 | -40 03 | 10m | 103a - O | GG 385 | 2" - 3" | Mrs.Liller / Ríos | 04 02 75 | NGC 1851 | ||
2729 | 2629 | 06 48 06 | -35 59 | 10m | 103a - O | GG 385 | 2" - 3" | Mrs.Liller / Ríos | 04 02 75 | NGC 2298 | ||
2730 | 2630 | 09 11 24 | -64 45 | 10m | 103a - O | GG 385 | 2" - 3" | Mrs.Liller / Ríos | 04 02 75 | NGC 2808 | ||
2731 | 2631 | 06 15 42 | +09 08 | 30m | 103a - O | GG 385 | 2" - 3" | Mrs.Liller / Ríos | 04 02 75 | 0614 + 09 | ||
2732 | 2632 | 05 38 06 | -44 06 | 10m | 103a - O | GG 385 | 2" | Mrs.Liller / Ríos | 04 02 75 | 537 - 44 | ||
2733 | 2633 | 12 24 30 | -72 32 | 10m | 103a - O | GG 385 | 2" | Mrs.Liller / Ríos | 04 02 75 | NGC 4372 | ||
2734 | 2634 | 05 13 12 | -40 03 | 10m | 103a - O | GG 385 | 2" | Mrs.Liller / Ríos | 04 02 75 | NGC 1851 | ||
2735 | 2635 | 06 48 06 | -35 59 | 10m | 103a - O | GG 385 | 2" | Mrs.Liller / Ríos | 04 02 75 | NGC 2298 | ||
2736 | 2636 | 08 30 30 | +04 35 | 10m | 103a - O | GG 385 | 2" | Mrs.Liller / Ríos | 04 02 75 | MA 0829 + 04 | ||
2737 | 2637 | 09 11 24 | -64 45 | 10m | 103a - O | GG 385 | 2" | Mrs.Liller / Ríos | 04 02 75 | NGC 2808 | ||
2738 | 2638 | 12 24 30 | -72 32 | 10m | 103a - O | GG 385 | 2" | Mrs.Liller / Ríos | 04 02 75 | NGC 4372 | ||
2739 | 2639 | 13 23 54 | -42 53 | 30m | 098 - 04 | RG 1 | 2" | Mrs.Liller / Ríos | 04 02 75 | Cent A | ||
2740 | 2640 | 15 18 43 | -57 04 | 60m | 098 - 04 | RG 1 | 2" | Mrs.Liller / Ríos | 04 02 75 | Cir X - 1 | ||
2741 | 2641 | 05 09 00 | -69 00 | 40m | 103a - D | GG 14 | 3" | Ríos | 08 02 75 | -69º 5:09 | ||
2742 | 2642 | 05 09 00 | -69 00 | 40m | 103a - D | GG 14 | 3" | Ríos | 08 02 75 | -69º 5:09 | ||
2743 | 2643 | 05 09 00 | -69 00 | 40m | 1 N | RG 8 | 3" - 5" | Ríos | 08 02 75 | -69º 5:09 | ||
2744 | 2644 | cenit | -30 00 | 10s each | 103a - D | 3" | Ríos | 08 02 75 | focus plate | |||
2745 | 2645 | 07 50 44 | -40 00 | 10s each | 103a - D | 3" | Ríos | 08 02 75 | focus plate | |||
2746 | 2646 | 16 22 57 | -40 00 | 10s each | 103a - D | 3" | Ríos | 08 02 75 | focus plate | |||
2747 | 2647 | 12 55 50 | -70 00 | 10s each | 103a - D | 3" | Ríos | 08 02 75 | focus plate | |||
2748 | 2648 | 03 11 42 | -55 23 | 10m | 103a - O | GG 385 | 2" | Mrs.Liller / Pinto | 17 02 75 | NGC 1261 | ||
2749 | 2649 | 09 11 24 | -64 45 | 10m | 103a - O | GG 385 | 2" | Mrs.Liller / Pinto | 17 02 75 | NGC 2808 | ||
2750 | 2650 | 06 15 42 | +09 08 | 30m | 103a - O | GG 385 | 2" | Mrs.Liller / Pinto | 17 02 75 | 3U 0614 | ||
2751 | 2651 | 05 13 12 | -40 03 | 10m | 103a - O | GG 385 | 2" | Mrs.Liller / Pinto | 17 02 75 | NGC 1851 | ||
2752 | 2652 | 06 48 06 | -35 59 | 10m | 103a - O | GG 385 | 2" | Mrs.Liller / Pinto | 17 02 75 | NGC 2298 | ||
2753 | 2653 | 09 11 24 | -64 45 | 10m | 103a - O | GG 385 | 2" | Mrs.Liller / Pinto | 17 02 75 | NGC 2808 | ||
2754 | 2654 | 12 24 30 | -72 32 | 10m | 103a - O | GG 385 | 2" - 3" | Mrs.Liller / Pinto | 17 02 75 | NGC 4372 | ||
2755 | 2655 | 05 13 12 | -40 03 | 10m | 103a - O | GG 385 | 2" - 3" | Mrs.Liller / Pinto | 17 02 75 | NGC 1851 | ||
2756 | 2656 | 06 48 06 | -35 59 | 10m | 103a - O | GG 385 | 2" - 3" | Mrs.Liller / Pinto | 17 02 75 | NGC 2298 | ||
2757 | 2657 | 13 23 54 | -42 53 | 30m | 098 - 04 | RG 1 | 2" - 3" | Mrs.Liller / Pinto | 17 02 75 | Cent A | ||
2758 | 2658 | 14 28 18 | -55 12 | 15m | 103a - O | GG 385 | 2" - 3" | Mrs.Liller / Pinto | 17 02 75 | NGC 5634 | ||
2759 | 2659 | 15 18 42 | -57 04 | 60m | 098 - 04 | RG 1 | 2" - 3" | Mrs.Liller / Pinto | 17 02 75 | Cir X - 1 | ||
2760 | 2660 | 14 28 18 | -55 02 | 15m | 103a - O | GG 385 | 2" - 3" | Mrs.Liller / Pinto | 17 02 75 | NGC 5634 | ||
2761 | 2661 | 03 11 42 | -55 23 | 10m | 103a - D | GG 14 | Mrs.Liller / Pinto | 18 02 75 | NGC 1261 | |||
2762 | 2662 | 03 11 42 | -55 23 | 10m | 103a - O | GG 385 | Mrs.Liller / Pinto | 18 02 75 | NGC 1261 | |||
2763 | 2663 | 06 48 06 | -35 59 | 10m | 103a - O | GG 385 | Mrs.Liller / Pinto | 18 02 75 | NGC 2298 | |||
2764 | 2664 | 09 11 24 | -64 45 | 10m | 103a - O | GG 385 | Mrs.Liller / Pinto | 18 02 75 | NGC 2808 | |||
2765 | 2665 | 06 15 42 | +09 08 | 30m | 103a - O | GG 385 | Mrs.Liller / Pinto | 18 02 75 | 3U 0614 | |||
2766 | 2666 | 05 13 12 | -40 03 | 10m | 103a - D | GG 14 | Mrs.Liller / Pinto | 18 02 75 | NGC 1851 | |||
2767 | 2667 | 05 13 12 | -40 03 | 10m | 103a - O | GG 385 | Mrs.Liller / Pinto | 18 02 75 | NGC 1851 | |||
2768 | 2668 | 06 48 06 | -35 59 | 10m | 103a - O | GG 385 | Mrs.Liller / Pinto | 18 02 75 | NGC 2298 | |||
2769 | 2669 | 09 11 24 | -64 45 | 10m | 103a - O | GG 385 | Mrs.Liller / Pinto | 18 02 75 | NGC 2808 | |||
2770 | 2670 | 12 24 30 | -72 32 | 10m | 103a - O | GG 385 | Mrs.Liller / Pinto | 18 02 75 | NGC 4372 | |||
2771 | 2671 | 14 28 18 | -05 52 | 15m | 103a - O | GG 385 | Mrs.Liller / Pinto | 18 02 75 | NGC 5634 | |||
2772 | 2672 | 15 18 42 | -57 04 | 60m | 098 - 4 | RG 1 | Mrs.Liller / Pinto | 18 02 75 | Cir X - 1 | |||
2773 | 2673 | 15 45 36 | -47 47 | 25m | 098 - 4 | RG 1 | Mrs.Liller / Pinto | 18 02 75 | 3U 1543 | |||
2774 | 2674 | 14 28 18 | -05 52 | 15m | 103a - O | GG 385 | Mrs.Liller / Pinto | 18 02 75 | NGC 5634 |
Last Updated on 8/27/99
By Guerra & Marin
April 1975 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
2775 | 2675 | 10 44 00 | -59 32 | 20m | lla - O | 1.5" | J.Hesser / Pinto | 20 04 75 | eta Carina | |||
2776 | 2676 | 10 44 00 | -59 32 | 10m | lla - O | 1.5" | J.Hesser / Pinto | 20 04 75 | eta Carina | |||
2777 | 2677 | 13 25 24 | -47 32 | 5m | lla - O | 1.5" | J.Hesser / Pinto | 20 04 75 | omega Centauri | |||
2778 | 2678 | 13 25 24 | -47 32 | 10m | lla - O | 1.5" | J.Hesser / Pinto | 20 04 75 | omega Centauri | |||
2779 | 2679 | 13 25 24 | -47 32 | 20m | lla - O | 1.5" | J.Hesser / Pinto | 20 04 75 | omega Centauri | |||
2780 | 2680 | 13 25 24 | -47 32 | 20m | llla - J baked | 1.5" | J.Hesser / Pinto | 20 04 75 | omega Centauri | |||
2781 | 2681 | 17 13 18 | -29 38 | 20m | llla - J baked | 1.5" | J.Hesser / Pinto | 20 04 75 | NGC 6304 | |||
2782 | 2682 | 17 13 18 | -29 38 | 30m | llla - J baked | 1.5" | J.Hesser / Pinto | 20 04 75 | NGC 6304 | |||
2783 | 2683 | 17 23 48 | -48 25 | 15m | llla - J baked | 1.5" | J.Hesser / Pinto | 20 04 75 | NGC 6352 | |||
2784 | 2684 | 17 23 48 | -48 25 | 30m | llla - J baked | 2" | J.Hesser / Pinto | 20 04 75 | NGC 6352 | |||
2785 | 2685 | 17 48 48 | -37 05 | 15m | llla - J baked | 2" | J.Hesser / Pinto | 20 04 75 | NGC 6441 | |||
2786 | 2686 | 17 48 48 | -37 05 | 30m | llla - J baked | 2" | J.Hesser / Pinto | 20 04 75 | NGC 6441 | |||
2787 | 2687 | 18 02 00 | -30 04 | 30m | llla - J baked | 2" | J.Hesser / Pinto | 20 04 75 | NGC 6522 | |||
2788 | 2688 | 18 02 00 | -30 04 | 15m | llla - J baked | 2" | J.Hesser / Pinto | 20 04 75 | NGC 6522 | |||
2789 | 2689 | 18 02 00 | -30 04 | 7.5m | llla - J baked | 2" | J.Hesser / Pinto | 20 04 75 | NGC 6522 |
Last Updated on 8/27/99
By Jorge Marin
June 1975 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
2790 | 2690 | 22 28 00 | -20 57 | 180m | 098 - 02 | RG 610 | 2" | V.Blanco / Czuia | 30 06 75 | NGC 7293 | CTIO |
Last Updated on 8/27/99
By Guerra & Marin
October 1975 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
2791 | 2691 | 19 43 54 | -08 05 | 120m | 103a - D | GG 14 | 2" | R.W.C / R.Gonzalez | 06 10 75 | Pal 11 | ||
2792 | 2692 | 21 45 00 | -21 21 | 120m | 103a - D | R.W.C / R.Gonzalez | 06 10 75 | Pal 12 | ||||
2793 | 2693 | 21 45 00 | -21 21 | 60m | 103a - O | GG 13 | R.W.C / R.Gonzalez | 06 10 75 | Pal 12 | |||
2794 | 2694 | 00 52 00 | -26 44 | 60m | 103a - O | R.W.C / R.Gonzalez | 06 10 75 | NGC 298 | ||||
2795 | 2695 | 05 23 00 | -24 32 | 75m | 103a - D | GG 14 | R.W.C / R.Gonzalez | 06 10 75 | NGC 1904 | |||
2796 | 2696 | 19 43 54 | -08 05 | 80m | 103a - O | GG 385 | R.W.C / R.Gonzalez | 07 10 75 | Pal 11 | |||
2797 | 2697 | 19 43 54 | -08 05 | 35m | 103a - D | GG 14 | R.W.C / R.Gonzalez | 07 10 75 | Pal 11 | |||
2798 | 2698 | 21 45 00 | -21 21 | 60m | 103a - D | GG 14 | R.W.C / R.Gonzalez | 07 10 75 | Pal 12 | |||
2799 | 2699 | 21 45 00 | -21 21 | 60m | 103a - O | GG 385 | R.W.C / R.Gonzalez | 07 10 75 | Pal 12 | |||
2800 | 2700 | 05 23 00 | -24 32 | 60m | 103a - O | GG 385 | R.W.C / R.Gonzalez | 07 10 75 | NGC 1904 | |||
2801 | 2701 | 05 23 00 | -24 32 | 70m | 103a - D | GG 14 | R.W.C / R.Gonzalez | 07 10 75 | NGC 1904 |
Last Updated on 8/27/99
By Guerra & Marin
December 1975 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
2802 | 2702 | 00 51 24 | -26 44 | 30m | 103a - D | GG 14 | McClure / Pinto | 13 12 75 | NGC 288 | |||
2803 | 2703 | 00 51 24 | -26 44 | 34m | 103a - D | GG 14 | McClure / Pinto | 13 12 75 | NGC 288 | |||
2804 | 2704 | 00 51 24 | -26 44 | 40m | 103a - D | GG 14 | McClure / Pinto | 13 12 75 | NGC 288 | |||
2805 | 2705 | 00 51 24 | -26 44 | 40m | 103a - D | GG 14 | McClure / Pinto | 13 12 75 | NGC 288 | |||
2806 | 2706 | 07 58 42 | -10 43 | 45m | 103a - D | GG 14 | McClure / Pinto | 13 12 75 | NGC 2506 | |||
2807 | 2707 | 07 58 42 | -10 43 | 45m | 103a - D | GG 14 | McClure / Pinto | 13 12 75 | NGC 2506 | |||
2808 | 2708 | 07 58 42 | -10 43 | 45m | 103a - D | GG 14 | McClure / Pinto | 13 12 75 | NGC 2506 | |||
2809 | 2709 | 07 58 42 | -10 43 | 76m | llla - J | GG 385 | McClure / Pinto | 13 12 75 | NGC 2506 |
Last Updated on 8/27/99
By Guerra & Marin
1976 Plate logs for 1.5-m telescope
July 1976 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
2810 | 2710 | 18 03 50 | -29 30 | 10s each | 103a - D | O.Saá | 13 07 76 | focus Nº1 | ||||
2811 | 2711 | 20 05 30 | -35 40 | 10s each | 103a - D | O.Saá | 13 07 76 | focus Nº2 | ||||
2812 | 2712 | 19 48 00 | +08 46 | 5m | 103a - D | O.Saá | 13 07 76 | alpha Aql | ||||
2813 | 2713 | 22 56 00 | -29 45 | 5m | 103a - D | O.Saá | 13 07 76 | alpha PsA | ||||
2814 | 2714 | 22 56 00 | -29 45 | 10m | 103a - D | O.Saá | 14 07 76 | alpha PsA |
Last Updated on 8/27/99
By Guerra & Marin
August 1976 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
2815 | 2715 | 18 56 42 | -08 44 | 2m | llla - J | 1.5" | Carney / Czuia | 20 08 76 | NGC 6712 | |||
2816 | 2716 | 18 56 42 | -08 44 | 10m | llla - J | 1.5" | Carney / Czuia | 20 08 76 | NGC 6712 | |||
2817 | 2717 | 18 56 42 | -08 44 | 0.3m | llla - J | 1.5" | Carney / Czuia | 20 08 76 | NGC 6712 | |||
2818 | 2718 | 19 08 00 | -60 02 | 30m | 103a - O | GG 385 | 3" | Carney / Czuia | 21 08 76 | NGC 6752 | ||
2819 | 2719 | 19 08 00 | -60 02 | 35m | 103a - D | GG 14 | 3" - 4" | Carney / Czuia | 21 08 76 | NGC 6752 | ||
2820 | 2720 | 00 55 24 | -72 37 | 30m | 103a - D | GG 14 | 3" - 4" | Carney / Czuia | 21 08 76 | NGC 330 | ||
2821 | 2721 | 00 55 24 | -72 37 | 30m | 103a - D | GG 14 | 3" - 4" | Carney / Czuia | 21 08 76 | NGC 330 | ||
2822 | 2722 | 00 55 24 | -72 37 | 40m | 103a - O | UG 2 | 3" - 4" | Carney / Czuia | 21 08 76 | NGC 330 | ||
2823 | 2723 | 00 55 24 | -72 37 | 6m | 103a - O | UG 2 | 3" - 4" | Carney / Czuia | 21 08 76 | NGC 330 | ||
2824 | 2724 | 00 55 24 | -72 37 | 10m | 103a - O | UG 2 | 3" - 4" | Carney / Czuia | 21 08 76 | NGC 330 | ||
2825 | 2725 | 00 55 24 | -72 37 | 15m | 103a - O | GG 385 | 3" - 4" | Carney / Czuia | 21 08 76 | NGC 330 | ||
2826 | 2726 | 00 55 24 | -72 37 | 10m | 103a - O | GG 385 | 3" - 4" | Carney / Czuia | 21 08 76 | NGC 330 | ||
2827 | 2727 | 00 55 24 | -72 37 | 5m | 103a - O | GG 385 | 3" - 4" | Carney / Czuia | 21 08 76 | NGC 330 | ||
2828 | 2728 | 00 55 24 | -72 37 | 5m | 103a - O | GG 385 | 3" - 4" | Carney / Czuia | 21 08 76 | NGC 330 | ||
2829 | 2729 | 00 55 24 | -72 37 | 5m | 103a - D | GG 14 | 3" - 4" | Carney / Czuia | 21 08 76 | NGC 330 | ||
2830 | 2730 | 00 55 24 | -72 37 | 5m | 103a - D | GG 14 | 3" | Carney / Czuia | 21 08 76 | NGC 330 | ||
2831 | 2731 | 00 23 06 | -72 11 | 10m | 103a - D | GG 14 | Carney / Czuia | 21 08 76 | NGC 104 (47 Tuc) |
Last Updated on 8/27/99
By Jorge Marin
September 1976 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
2832 | 2732 | 00 51 12 | -26 46 | 15m | 103a - D | GG 14 | 3" - 4" | Canterna | 02 09 76 | NGC 288 | ||
2833 | 2733 | 00 51 12 | -26 46 | 90m | 103a - D | GG 14 | 3" - 4" | Canterna | 02 09 76 | NGC 288 |
Last Updated on 8/27/99
By Guerra & Marin
1977 Plate logs for 1.5-m telescope
June 1977 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
2834 | 2734 | 15:05:00 | -30:00 | 10s each | 103a - D | GG 495 | 1.5" | V.Blanco / Czuia | 07 06 77 | Focus plate | Broken Ok" | CTIO |
2835 | 2735 | 15 05 00 | -30 00 | 10s each | 103a - O | GG 385 | 1.5" | V.Blanco / Czuia | 07 06 77 | Focus plate | Broken Ok" | CTIO |
2836 | 2736 | 18 02 18 | -30 01 | 20m | 103a - O | GG 385 | 1.5" | V.Blanco / Czuia | 07 06 77 | NGC 6522 | Broken Ok" | CTIO |
2837 | 2737 | 18 02 18 | -30 01 | 30m | 103a - D | GG 495 | 2" | V.Blanco / Czuia | 07 06 77 | NGC 6522 | Broken Ok" | CTIO |
2838 | 2738 | 18 02 18 | -30 01 53 | 20m | 103a - O | GG 385 | 1.5" | V.Blanco / Czuia | 07 06 77 | NGC 6522 | ||
2839 | 2739 | 18 02 18 | -30 01 53 | 30m | 103a - D | GG 495 | 1.5" | V.Blanco / Czuia | 07 06 77 | NGC 6522 | CTIO | |
2840 | 2740 | 18 02 18 | -30 01 53 | 15m | 103a - O | GG 385 | 1.5" | V.Blanco / Czuia | 07 06 77 | NGC 6522 | CTIO | |
2841 | 2741 | 18 02 18 | -30 01 53 | 20m | 103a - D | GG 495 | 1.5" | V.Blanco / Czuia | 07 06 77 | NGC 6522 | Broken Ok" | CTIO |
2842 | 2742 | 18 02 18 | -30 01 53 | 15m | 103a - O | GG 385 | 1.5" | V.Blanco / Czuia | 07 06 77 | NGC 6522 | CTIO | |
2843 | 2743 | 18 02 18 | -30 01 53 | 30m | 103a - D | GG 495 | 1.5" | V.Blanco / Czuia | 07 06 77 | NGC 6522 | CTIO | |
2844 | 2744 | 18 02 18 | -30 01 | 20m | 103a - O | GG 385 | 1.5" | V.Blanco / Czuia | 07 06 77 | NGC 6522 | Broken Ok" | CTIO |
2845 | 2745 | 18 02 18 | -30 01 | 30m | 103a - O | GG 385 | 1.5" | V.Blanco / Czuia | 07 06 77 | NGC 6522 | CTIO | |
2846 | 2746 | 18 02 18 | -30 01 | 30m | IN | RG 695 | 1.5" | V.Blanco / Czuia | 08 06 77 | NGC 6522 | CTIO | |
2847 | 2747 | 18 02 22 | -30 01 33 | 20m | 103a - O | GG 385 | 1.3" | V.Blanco / Czuia | 08 06 77 | NGC 6522 | CTIO | |
2848 | 2748 | 18 02 22 | -30 01 33 | 30m | 103a - D | GG 495 | 1.3" | V.Blanco / Czuia | 08 06 77 | NGC 6522 | CTIO | |
2849 | 2749 | 18 02 22 | -30 01 33 | 20m | 098 - O4 | RG 610 | 1.3" | V.Blanco / Czuia | 08 06 77 | NGC 6522 | CTIO | |
2850 | 2750 | 18 02 22 | -30 01 33 | 20m | 103a - O | GG 385 | 1.3" | V.Blanco / Czuia | 08 06 77 | NGC 6522 | CTIO | |
2851 | 2751 | 18 02 22 | -30 01 33 | 30m | 103a - D | GG 495 | 1.3" | V.Blanco / Czuia | 08 06 77 | NGC 6522 | CTIO | |
2852 | 2752 | 18 02 22 | -30 01 33 | 20m | 103a - O | GG 385 | 1" | V.Blanco / Czuia | 08 06 77 | NGC 6522 | Broken Ok" ??? | CTIO |
2853 | 2753 | 18 02 22 | -30 01 33 | 30m | 103a - D | GG 495 | 1" | V.Blanco / Czuia | 08 06 77 | NGC 6522 | Broken Ok" | CTIO |
2854 | 2754 | 18 02 22 | -30 01 33 | 20m | 103a - O | GG 385 | 1.5" | V.Blanco / Czuia | 08 06 77 | NGC 6522 | CTIO | |
2855 | 2755 | 18 02 22 | -30 01 33 | 30m | 103a - D | GG 495 | 1.5" | V.Blanco / Czuia | 08 06 77 | NGC 6522 | CTIO | |
2856 | 2756 | 18 02 22 | -30 01 33 | 20m | 103a - O | GG 385 | 1.5" | V.Blanco / Czuia | 08 06 77 | NGC 6522 | CTIO | |
2857 | 2757 | 18 02 22 | -30 01 33 | 30m | 103a - D | GG 495 | 1.5" | V.Blanco / Czuia | 08 06 77 | NGC 6522 | CTIO | |
2858 | 2758 | 18 02 22 | -30 01 33 | 20m | 103a - O | GG 385 | 1.5" | V.Blanco / Czuia | 08 06 77 | NGC 6522 | CTIO | |
2859 | 2759 | 18 02 22 | -30 01 33 | 30m | 103a - D | GG 495 | 2" | V.Blanco / Czuia | 08 06 77 | NGC 6522 | CTIO | |
2860 | 2760 | 18 02 22 | -30 01 33 | 20m | 103a - O | GG 385 | 2" | V.Blanco / Czuia | 08 06 77 | NGC 6522 | CTIO | |
2861 | 2761 | 18 02 22 | -30 01 33 | 20m | 103a - D | GG 495 | 2.5" | V.Blanco / Czuia | 08 06 77 | NGC 6522 | CTIO | |
2862 | 2762 | 18 02 22 | -30 01 33 | 20m | 103a - O | GG 385 | 2" | V.Blanco / Czuia | 08 06 77 | NGC 6522 | CTIO |
Last Updated on 8/27/99
By Guerra & Marin
July 1977 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
2863 | 2763 | 18 02 00 | -30 14 | 20m | 103a - O | GG 385 | 2" - 3" | Blanco / Zemelman | 09 07 77 | NGC 6522 | CTIO | |
2864 | 2764 | 18 02 00 | -30 14 | 20m | 103a - O | GG 385 | 2" - 3" | Blanco / Zemelman | 09 07 77 | NGC 6522 | CTIO | |
2865 | 2765 | 18 02 00 | -30 14 | 20m | 103a - O | GG 385 | 2" - 3" | Blanco / Zemelman | 09 07 77 | NGC 6522 | CTIO | |
2866 | 2766 | 18 02 00 | -30 14 | 30m | 103a - D | GG 495 | 2" - 3" | Blanco / Zemelman | 09 07 77 | NGC 6522 | CTIO | |
2867 | 2767 | 18 02 00 | -30 14 | 20m | 103a - O | GG 385 | 2" - 3" | Blanco / Zemelman | 09 07 77 | NGC 6522 | CTIO | |
2868 | 2768 | 18 02 00 | -30 14 | 30m | 103a - D | GG 495 | 2" - 3" | Blanco / Zemelman | 09 07 77 | NGC 6522 | CTIO | |
2869 | 2769 | 18 02 00 | -30 14 | 20m | 103a - O | GG 385 | 2" - 3" | Blanco / Zemelman | 09 07 77 | NGC 6522 | CTIO | |
2870 | 2770 | 18 02 00 | -30 14 | 30m | 103a - D | GG 495 | 2" - 3" | Blanco / Zemelman | 09 07 77 | NGC 6522 | CTIO | |
2871 | 2771 | 18 02 00 | -30 14 | 20m | 103a - O | GG 385 | 2" | Blanco / Zemelman | 09 07 77 | NGC 6522 | CTIO | |
2872 | 2772 | 18 02 00 | -30 14 | 30m | 103a - D | GG 495 | 2" | Blanco / Zemelman | 09 07 77 | NGC 6522 | CTIO | |
2873 | 2773 | 18 02 00 | -30 14 | 20m | 103a - O | GG 385 | 2" | Blanco / Zemelman | 09 07 77 | NGC 6522 | CTIO | |
2874 | 2774 | 18 02 00 | -30 14 | 30m | 103a - D | GG 495 | 1.5" - 2" | Blanco / Zemelman | 09 07 77 | NGC 6522 | CTIO | |
2875 | 2775 | 18 02 00 | -30 14 | 20m | 103a - O | GG 385 | 3" | Blanco / Zemelman | 09 07 77 | NGC 6522 | CTIO | |
2876 | 2776 | 18 02 00 | -30 14 | 30m | 103a - D | GG 495 | 3" | Blanco / Zemelman | 09 07 77 | NGC 6522 | CTIO | |
2877 | 2777 | 18 02 00 | -30 14 | 20m | 103a - O | GG 385 | 3" | Blanco / Zemelman | 09 07 77 | NGC 6522 | CTIO | |
2878 | 2778 | 18 02 00 | -30 14 | 20m | 103a - O | GG 385 | 2" - 3" | Blanco / Zemelman / M.N | 10 07 77 | NGC 6522 | CTIO | |
2879 | 2779 | 18 02 00 | -30 14 | 20m | 103a - O | GG 385 | 2" | Blanco / Zemelman / M.N | 10 07 77 | NGC 6522 | CTIO | |
2880 | 2780 | 18 02 00 | -30 14 | 20m | 103a - O | GG 495 | 2" - 3" | Blanco / Zemelman / M.N | 10 07 77 | NGC 6522 | Broken Ok" | CTIO |
2881 | 2781 | 18 02 00 | -30 14 | 30m | 103a - D | GG 495 | 2" - 3" | Blanco / Zemelman / M.N | 10 07 77 | NGC 6522 | Broken Ok" | CTIO |
2882 | 2782 | 18 02 00 | -30 14 | 20m | 103a - O | GG 495 | 1.5" | V.Blanco / R.Gonzalez | 16 07 77 | NGC 6522 | Broken Ok" | CTIO |
2883 | 2783 | 18 02 00 | -30 14 | 30m | 103a - D | GG 495 | 1.5" | V.Blanco / R.Gonzalez | 16 07 77 | NGC 6522 | Broken Ok" | CTIO |
2884 | 2784 | 18 02 00 | -30 14 | 20m | 103a - O | GG 495 | 1.5" | V.Blanco / R.Gonzalez | 17 07 77 | NGC 6522 | Broken Ok" | CTIO |
2885 | 2785 | 18 02 00 | -30 14 | 30m | 103a - D | GG 495 | 1.5" | V.Blanco / R.Gonzalez | 17 07 77 | NGC 6522 | CTIO | |
2886 | 2786 | 18 02 00 | -30 14 | 20m | 103a - O | GG 495 | 1.5" | V.Blanco / R.Gonzalez | 17 07 77 | NGC 6522 | CTIO | |
2887 | 2787 | 18 02 00 | -30 14 | 30m | 103a - D | GG 495 | 1.5" | V.Blanco / R.Gonzalez | 17 07 77 | NGC 6522 | CTIO | |
2888 | 2788 | 18 02 00 | -30 14 | 20m | 103a - O | GG 495 | 1.5" | V.Blanco / R.Gonzalez | 17 07 77 | NGC 6522 | CTIO | |
2889 | 2789 | 18 02 00 | -30 14 | 30m | 103a - D | GG 495 | 1.5" | V.Blanco / R.Gonzalez | 17 07 77 | NGC 6522 | CTIO | |
2890 | 2790 | 18 02 00 | -30 14 | 20m | 103a - O | GG 495 | 2.5" | V.Blanco / R.Gonzalez | 17 07 77 | NGC 6522 | CTIO | |
2891 | 2791 | 18 02 00 | -30 14 | 30m | 103a - D | GG 495 | 2.5" | V.Blanco / R.Gonzalez | 17 07 77 | NGC 6522 | CTIO | |
2892 | 2792 | 18 02 00 | -30 14 | 20m | 103a - O | GG 495 | 1.5" - 3" | V.Blanco / R.Gonzalez | 17 07 77 | NGC 6522 | CTIO | |
2893 | 2793 | 18 02 00 | -30 14 | 30m | 103a - D | GG 495 | 1.5" - 3" | V.Blanco / R.Gonzalez | 17 07 77 | NGC 6522 | CTIO | |
2894 | 2794 | 18 02 00 | -30 14 | 20m | 103a - O | GG 495 | 1.5" - 3" | V.Blanco / R.Gonzalez | 17 07 77 | NGC 6522 | Broken Ok" | CTIO |
2895 | 2795 | 18 02 00 | -30 14 | 30m | 103a - D | GG 495 | 2" - 4" | V.Blanco / R.Gonzalez | 17 07 77 | NGC 6522 | Broken Ok" | CTIO |
2896 | 2796 | 18 02 00 | -30 14 | 20m | 103a - O | GG 495 | 2" - 6" | V.Blanco / R.Gonzalez | 17 07 77 | NGC 6522 | CTIO | |
2897 | 2797 | 18 02 00 | -30 14 | 20m | 103a - O | GG 385 | 1.5" | V.Blanco / R.Gonzalez | 17 07 77 | NGC 6522 | Broken Ok" | CTIO |
2898 | 2798 | 18 02 00 | -30 14 | 30m | 103a - D | GG 495 | 1.5" | V.Blanco / R.Gonzalez | 17 07 77 | NGC 6522 | CTIO | |
2899 | 2799 | 18 02 00 | -30 14 | 20m | 103a - O | GG 385 | 1.5" | V.Blanco / R.Gonzalez | 18 07 77 | NGC 6522 | Broken Ok" | CTIO |
2900 | 2800 | 18 02 00 | -30 14 | 30m | 103a - D | GG 495 | 1.5" | V.Blanco / R.Gonzalez | 18 07 77 | NGC 6522 | Broken Ok" | CTIO |
2901 | 2801 | 18 02 00 | -30 14 | 20m | 103a - O | GG 385 | 1.5" | V.Blanco / R.Gonzalez | 18 07 77 | NGC 6522 | CTIO | |
2902 | 2802 | 18 02 00 | -30 14 | 30m | 103a - D | GG 495 | 1.5" | V.Blanco / R.Gonzalez | 18 07 77 | NGC 6522 | CTIO | |
2903 | 2803 | 18 02 00 | -30 14 | 20m | 103a - O | GG 385 | 1.5" | V.Blanco / R.Gonzalez | 18 07 77 | NGC 6522 | CTIO | |
2904 | 2804 | 18 02 00 | -30 14 | 30m | 103a - D | GG 495 | 1.5" | V.Blanco / R.Gonzalez | 18 07 77 | NGC 6522 | CTIO | |
2905 | 2805 | 18 02 00 | -30 14 | 20m | 103a - O | GG 385 | 1.5" | V.Blanco / R.Gonzalez | 18 07 77 | NGC 6522 | CTIO | |
2906 | 2806 | 18 02 00 | -30 14 | 30m | 103a - D | GG 495 | 1.5" | V.Blanco / R.Gonzalez | 18 07 77 | NGC 6522 | CTIO | |
2907 | 2807 | 18 02 00 | -30 14 | 20m | 103a - O | GG 385 | 1.5" | V.Blanco / R.Gonzalez | 18 07 77 | NGC 6522 | Broken Ok" | CTIO |
2908 | 2808 | 18 02 00 | -30 14 | 30m | 103a - D | GG 495 | 1.5" | V.Blanco / R.Gonzalez | 18 07 77 | NGC 6522 | CTIO | |
2909 | 2809 | 18 02 00 | -30 14 | 20m | 103a - O | GG 385 | 1.5" | V.Blanco / R.Gonzalez | 18 07 77 | NGC 6522 | CTIO | |
2910 | 2810 | 18 02 00 | -30 14 | 30m | 103a - D | GG 495 | 1.5" - 3" | V.Blanco / R.Gonzalez | 18 07 77 | NGC 6522 | CTIO | |
2911 | 2811 | 18 02 00 | -30 14 | 20m | 103a - O | GG 385 | 2" - 3" | V.Blanco / R.Gonzalez | 18 07 77 | NGC 6522 | Broken Ok" | CTIO |
2912 | 2812 | 18 02 00 | -30 14 | 20m | 103a - O | GG 385 | 1" - 2" | V.Blanco / R.Gonzalez | 18 07 77 | NGC 6522 | CTIO | |
2913 | 2813 | 18 02 00 | -30 14 | 30m | 103a - D | GG 495 | 2" | V.Blanco / R.Gonzalez | 18 07 77 | NGC 6522 | CTIO | |
2914 | 2814 | 18 02 00 | -30 14 | 20m | 103a - O | GG 385 | 3" | V.Blanco / R.Gonzalez | 19 07 77 | NGC 6522 | CTIO | |
2915 | 2815 | 18 02 00 | -30 14 | 30m | 103a - D | GG 495 | 3" | V.Blanco / R.Gonzalez | 19 07 77 | NGC 6522 | CTIO | |
2916 | 2816 | 18 02 00 | -30 14 | 20m | 103a - O | GG 385 | 3" - 4" | V.Blanco / R.Gonzalez | 19 07 77 | NGC 6522 | CTIO | |
2917 | 2817 | 18 02 00 | -30 14 | 30m | 103a - D | GG 495 | 3" - 4" | V.Blanco / R.Gonzalez | 19 07 77 | NGC 6522 | CTIO | |
2918 | 2818 | 18 02 00 | -30 14 | 20m | 103a - O | GG 385 | 3" - 4" | V.Blanco / R.Gonzalez | 19 07 77 | NGC 6522 | CTIO | |
2919 | 2819 | 18 02 00 | -30 14 | 30m | 103a - D | GG 495 | 5" | V.Blanco / R.Gonzalez | 19 07 77 | NGC 6522 | CTIO |
Last Updated on 8/27/99
By Guerra & Marin
1978 Plate logs for 1.5-m telescope
March 1978 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
2920 | 2820 | 05 32 44 | -66 23 03 | 30m | llla - J baked | 2" | D.Crampton / A.Cowley / D.Maturana | 10 03 78 | LMC X - 1 | |||
2921 | 2821 | 09 19 40 | -55 05 39 | 90m | llla - J baked | 2" | D.Crampton / A.Cowley / D.Maturana | 10 03 78 | 250918 - 549 | |||
2922 | 2822 | 09 24 20 | -31 35 06 | 90m | llla - J baked | 2" | D.Crampton / A.Cowley / D.Maturana | 10 03 78 | 400923 - 31 | |||
2923 | 2823 | 12 40 31 | -60 03 30 | 105m | llla - J baked | 2" | D.Crampton / A.Cowley / D.Maturana | 10 03 78 | 251239 - 599 | |||
2924 | 2824 | 15 40 28 | -52 18 10 | 72m | llla - J baked | 2" | D.Crampton / A.Cowley / D.Maturana | 10 03 78 | 251538 - 522 | |||
2925 | 2825 | 05 39 52 | -69 46 52 | 30m | llla - J baked | 2" | D.Crampton / A.Cowley / D.Maturana | 11 03 78 | LMC X - 1 | |||
2926 | 2826 | 05 20 45.2 | -71 59 46 | 60m | llla - J baked | 2" | D.Crampton / A.Cowley / D.Maturana | 11 03 78 | LMC X - 2 | |||
2927 | 2827 | 09 19 40 | -55 05 39 | 120m | llla - J baked | 3" | D.Crampton / A.Cowley / D.Maturana | 11 03 78 | 250918 - 549 | |||
2928 | 2828 | 11 23 54 | -59 11 40 | 90m | llla - J baked | 3" | D.Crampton / A.Cowley / D.Maturana | 11 03 78 | #1122 - 59 | |||
2929 | 2829 | 14 09 05 | -62 02 06 | 90m | llla - J baked | 3" | D.Crampton / A.Cowley / D.Maturana | 11 03 78 | MX 1406 - 61 | |||
2930 | 2830 | 16 34 13.4 | -64 27 59 | 90m | llla - J baked | 3" - 4" | D.Crampton / A.Cowley / D.Maturana | 11 03 78 | 2A 1631 - 644 | |||
2931 | 2831 | 05 39 04.9 | -64 06 58 | 90m | llla - J baked | 3" - 4" | D.Crampton / A.Cowley / D.Maturana | 12 03 78 | LMC X - 3 | |||
2932 | 2832 | 08 37 02 | -42 42 00 | 90m | llla - J baked | 3" - 4" | D.Crampton / A.Cowley / D.Maturana | 12 03 78 | 4U 0836 - 42 | |||
2933 | 2833 | 12 55 55 | -69 09 05 | 90m | llla - J baked | 3" | D.Crampton / A.Cowley / D.Maturana | 12 03 78 | 251254 - 690 | |||
2934 | 2834 | 13 29 13 | -08 29 32 | 5m | llla - J baked | 4" | D.Crampton / A.Cowley / D.Maturana | 12 03 78 | W 485 | |||
2935 | 2835 | 15 45 46 | -62 29 02 | 90m | llla - J baked | 4" | D.Crampton / A.Cowley / D.Maturana | 12 03 78 | 251553 - 624 | |||
2936 | 2836 | 15 55 48 | -54 20 20 | 120m | llla - J baked | D.Crampton / A.Cowley / D.Maturana | 12 03 78 | 251553 - 542 | ||||
2937 | 2837 | 09 36 14 | -37 14 50 | 15m | llla - J baked | 4" - 5" | D.Crampton / A.Cowley / D.Maturana | 13 03 78 | LDS 275 AB | |||
2938 | 2838 | 08 37 02 | -42 42 00 | 90m | llla - J baked | 4" - 5" | D.Crampton / A.Cowley / D.Maturana | 13 03 78 | 4 U 0836 - 42 | |||
2939 | 2839 | 10 37 10 | -56 41 00 | 90m | llla - J baked | 4" - 5" | D.Crampton / A.Cowley / D.Maturana | 13 03 78 | 4 U 1036 - 56 | |||
2940 | 2840 | 12 55 55 | -69 09 05 | 120m | llla - J baked | 4" | D.Crampton / A.Cowley / D.Maturana | 13 03 78 | 251254 - 690 | |||
2941 | 2841 | 15 58 55 | -60 39 55 | 90m | llla - J baked | 4" | D.Crampton / A.Cowley / D.Maturana | 13 03 78 | 251556 - 605 | |||
2942 | 2842 | 16 26 29 | -49 08 53 | 100m | llla - J baked | 3" | D.Crampton / A.Cowley / D.Maturana | 13 03 78 | 251624 - 490 | |||
2843 | 17 02 23 | -37 49 16 | 90s / 30s | llla - J baked | 3" | D.Crampton / A.Cowley / D.Maturana | 13 03 78 | 3 U 1700 - 37 | ||||
2844 | 09 24 20 | -31 35 06 | 90m | llla - J baked | 3" | D.Crampton / A.Cowley / D.Maturana | 14 03 78 | 4 U 0923 - 31 | ||||
2845 | 11 38 44 | -65 15 47 | 90m | llla - J baked | 3" | D.Crampton / A.Cowley / D.Maturana | 14 03 78 | 4 U 1137 - 65 | ||||
2846 | 12 10 22 | -64 38 24 | 90m | llla - J baked | 3" | D.Crampton / A.Cowley / D.Maturana | 14 03 78 | 4 U 1210 - 64 | ||||
2847 | 15 58 55 | -60 39 54 | 90m | llla - J baked | 3" - 4" | D.Crampton / A.Cowley / D.Maturana | 14 03 78 | 251556 - 605 | ||||
2848 | 16 26 30 | -49 08 40 | 75m | llla - J baked | D.Crampton / A.Cowley / D.Maturana | 14 03 78 | 251624 - 490 | |||||
2849 | 17 04 18.9 | -36 23 35 | 70m | llla - J baked | D.Crampton / A.Cowley / D.Maturana | 14 03 78 | 251702 - 363 | |||||
2850 | 17 51 32.3 | -34 48 04 | 5m | llla - J baked | D.Crampton / A.Cowley / D.Maturana | 14 03 78 | NGC 6475 | |||||
2851 | 17 51 32.3 | -34 48 04 | 0.5m | llla - J baked | D.Crampton / A.Cowley / D.Maturana | 14 03 78 | NGC 6475 |
Last Updated on 8/27/99
By Guerra & Marin
May 1978 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
2852 | 10 44 43 | -64 12 52 | 40m | 103a - D | GG 14 | 4" - 10" | A.Twarog / Poblete | 07 05 78 | theta Car cluster, IC 2602 | |||
2853 | 10 44 43 | -64 12 52 | 45m | 103a - O | GG 385 | A.Twarog / Poblete | 07 05 78 | theta Car cluster, IC 2602 | ||||
2854 | 10 44 43 | -64 12 52 | 45m | 103a - O | GG 385 | A.Twarog / Poblete | 07 05 78 | theta Car cluster, IC 2602 | ||||
2855 | 17 38 39 | -32 11 55 | 120m | 103a - O | UG 2 | 2" -3" | A.Twarog / Poblete | 07 05 78 | NGC 6405 | |||
2856 | 17 52 21 | -34 46 30 | 120m | 103a - O | UG 2 | 1.5" | A.Twarog / Poblete | 07 05 78 | NGC 6475 | |||
2857 | 17 52 21 | -34 46 30 | 30m | 103a - O | GG 385 | 1.5" | A.Twarog / Poblete | 07 05 78 | NGC 6475 | |||
2858 | 10 44 43 | -64 12 52 | 60m | 103a - D | GG 495 | 1.5" | A.Twarog / Poblete | 08 05 78 | IC 2602 | |||
2859 | 10 44 43 | -64 12 52 | 120m | 103a - O | UG 2 | 4" | A.Twarog / Poblete | 08 05 78 | IC 2602 | |||
2860 | 10 44 43 | -64 12 52 | 120m | 103a - O | UG 2 | 3" - 4" | A.Twarog / Poblete | 08 05 78 | IC 2602 | |||
2861 | 17 38 39 | -32 11 55 | 60m | 103a - D | GG 495 | 3" - 4" | A.Twarog / Poblete | 08 05 78 | NGC 6405 | |||
2862 | 17 38 39 | -32 11 55 | 40m | 103a - O | GG 385 | 3" - 4" | A.Twarog / Poblete | 08 05 78 | NGC 6405 | |||
2863 | 17 52 21 | -34 46 30 | 75m | 103a - D | GG 495 | 3" - 4" | A.Twarog / Poblete | 08 05 78 | NGC 6475 | |||
2864 | 17 52 21 | -34 46 30 | 75m | 103a - D | GG 14 | 2.5" | A.Twarog / Poblete | 08 05 78 | NGC 6475 | |||
2865 | 10 35 15 | -64 17 34 | 60m | 103a - D | GG 14 | 2" | A.Twarog / Poblete | 09 05 78 | IC 2602 | |||
2866 | 10 35 21 | -64 17 30 | 120m | 103a - O | UG 2 | 2" | A.Twarog / Poblete | 09 05 78 | IC 2602 | |||
2867 | 17 38 39 | -32 11 55 | 40m | 103a - O | GG 385 | 2" | A.Twarog / Poblete | 09 05 78 | IC 2602 | |||
2868 | 17 38 39 | -32 11 55 | 40m | 103a - O | GG 385 | 3" | A.Twarog / Poblete | 09 05 78 | NGC 6405 | |||
2869 | 17 38 39 | -32 11 55 | 120m | 103a - O | UG 2 | A.Twarog / Poblete | 09 05 78 | NGC 6405 | ||||
2870 | 17 52 21 | -34 46 30 | 120m | 103a - O | UG 2 | 1.5" | A.Twarog / Poblete | 09 05 78 | NGC 6475 | |||
2871 | 17 52 21 | -34 46 30 | 30m | 103a - O | GG 385 | 1.5" | A.Twarog / Poblete | 09 05 78 | NGC 6475 | |||
2872 | 10 35 16 | -64 17 34 | 60m | 103a - D | GG 14 | 2" | A.Twarog / Poblete | 10 05 78 | IC 2602 | |||
2873 | 10 35 16 | -64 17 34 | 120m | 103a - O | UG 2 | 1.5" - 4" | A.Twarog / Poblete | 10 05 78 | IC 2602 | |||
2874 | 10 35 16 | -64 17 34 | 40m | 103a - O | GG 385 | A.Twarog / Poblete | 10 05 78 | IC 2602 | ||||
2875 | 17 38 39 | -32 11 55 | 60m | 103a - D | GG 14 | A.Twarog / Poblete | 10 05 78 | NGC 6405 |
Last Updated on 8/27/99
By Guerra & Marin
August 1978 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
2876 | 17 38 39 | -32 11 55 | 60m | lla - O | GG 385 | 1.5" | A.Twarog / Poblete | 02 08 78 | Sagitarius I | CTIO | ||
2877 | 17 52 21 | -34 46 30 | 120m | 103a - O | UG 2 | A.Twarog / Poblete | 10 05 78 | NGC 6475 | ||||
2878 | 17 57 31 | -29 08 47 | 30m | lla - O | GG 385 | 3" - 5" | J.Ríos | 03 08 78 | Sagitarius I | CTIO | ||
2879 | 17 57 31 | -29 08 47 | 20m | lla - D | GG 495 | 3" - 5" | J.Ríos | 03 08 78 | Sagitarius I | CTIO | ||
2880 | 17 57 31 | -29 08 47 | 30m | lla - O | GG 385 | 3" - 5" | J.Ríos | 03 08 78 | Sagitarius I | CTIO | ||
2881 | 17 57 31 | -29 08 47 | 20m | lla - D | GG 495 | 3" - 5" | J.Ríos | 03 08 78 | Sagitarius I | CTIO | ||
2882 | 17 57 31 | -29 08 47 | 30m | lla - O | GG 385 | 3" - 5" | J.Ríos | 03 08 78 | Sagitarius I | CTIO | ||
2883 | 17 57 31 | -29 08 47 | 20m | lla - D | GG 495 | 3" - 5" | J.Ríos | 03 08 78 | Sagitarius I | CTIO | ||
2884 | 17 57 31 | -29 08 47 | 30m | lla - O | GG 385 | 3" - 5" | J.Ríos | 03 08 78 | Sagitarius I | CTIO | ||
2885 | 17 57 31 | -29 08 47 | 20m | lla - D | GG 495 | 3" - 5" | J.Ríos | 03 08 78 | Sagitarius I | CTIO | ||
2886 | 22 56 12 | -41 09 40 | 90m | 103a - D | GG 495 | 3" | Elmegreen / R.Gonzalez | 31 08 78 | NGC 7424 | |||
2887 | 22 56 12 | -41 09 40 | 60m | 103a - O | GG 385 | 3" | Elmegreen / R.Gonzalez | 31 08 78 | NGC 7424 | |||
2888 | 22 56 12 | -41 09 40 | 180m | 103a - O | UG 2 | 3" | Elmegreen / R.Gonzalez | 31 08 78 | NGC 7424 | |||
2889 | 00 54 01 | -37 47 00 | 120m | 127 - 04 | RG 1 | 3" | Elmegreen / R.Gonzalez | 31 08 78 | NGC 300 |
Last Updated on 8/27/99
By Jorge Marin
September 1978 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
2890 | 22 56 12 | -41 09 40 | 119m | 127 - 04 | RG 1 | 1.5" - 2" | Elmegreen / R.Gonzalez | 01 09 78 | NGC 7424 | |||
2891 | 22 56 12 | -41 09 40 | 150m | 098 - 04 | RG 1 | 2" - 3" | Elmegreen / R.Gonzalez | 02 09 78 | NGC 7424 | |||
2892 | 22 56 12 | -41 09 40 | 150m | 103a - O | GG 385 | 2" - 3" | Elmegreen / R.Gonzalez | 02 09 78 | NGC 7424 | |||
2893 | 01 35 41 | +15 42 | 90m | 103a - O | GG 385 | 2" | Elmegreen / R.Gonzalez | 02 09 78 | NGC 628 | |||
2894 | 01 35 41 | +15 42 | 199m | 103a - O | UG 2 | 2" | Elmegreen / R.Gonzalez | 02 09 78 | NGC 628 | |||
2895 | 22 56 12 | -41 09 40 | 240m | 098 - 04 | RG 1 | 1.5" | Elmegreen / R.Gonzalez | 03 09 78 | NGC 7424 | |||
2896 | 01 35 48 | +15 43 36 | 240m | 098 - 04 | RG 1 | 1" | Elmegreen / R.Gonzalez | 03 09 78 | NGC 628 | |||
2897 | 01 35 48 | +15 43 36 | 60m | 103a - D | GG 495 | 2" | Elmegreen / R.Gonzalez | 03 09 78 | NGC 628 | |||
2898 | 23 55 18 | -32 51 | 150m | 098 - 04 | RG 1 | 2" - 3" | Elmegreen / Czuia | 11 09 78 | NGC 7793 | |||
2899 | 23 55 18 | -32 51 | 90m | lla - O | GG 385 | 3" | Elmegreen / Czuia | 11 09 78 | NGC 7793 |
Last Updated on 8/27/99
By Guerra & Marin
November 1978 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
2900 | 00 49 30 | -73 24 48 | 30m | 098 - 04 | RG 610 | 3" | Blanco / Ugarte | 12 11 78 | SMC - B48 | Broken bad cndtn | CTIO | |
2901 | 00 49 30 | -73 24 48 | 25m | 098 - 04 | RG 610 | 3" | Blanco / Ugarte | 12 11 78 | SMC - B48 | DESTROYED | CTIO | |
2902 | 00 49 30 | -73 24 48 | 90m | lN | RG 695 | 3" | Blanco / Ugarte | 12 11 78 | SMC - B48 | DESTROYED | CTIO |
Last Updated on 8/27/99
By Guerra & Marin
1979 Plate logs for 1.5-m telescope
July 1979 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
2903 | 18 02 17 | -30 01 08 | 20m | 103a - O | GG 385 | 2" - 4" | Graham / Ugarte | 02 07 79 | NGC 6522 | DESTROYED | CTIO | |
2904 | 20 04 30 | -44 48 02 | 13m | lla - O | GG 495 | 2" - 4" | Graham / Ugarte | 02 07 79 | E 8 Field | |||
2905 | 18 02 17 | -30 01 08 | 20m | 103a - O | GG 385 | 2" | Graham / Ugarte | 02 07 79 | NGC 6522 | DESTROYED | CTIO | |
2906 | 16 54 06 | -41 06 | 60m | 103a - O | 3" | Graham / Ugarte | 02 07 79 | TR 24/ NGC 6231 | ||||
2907 | 00 53 54 | -37 45 53 | 85m | lla - D | GG 495 | 1" | Graham / Ugarte | 02 07 79 | NGC 300 | |||
2908 | 00 53 54 | -37 45 53 | 75m | lla - O | GG 385 | 1" | Graham / Ugarte | 02 07 79 | NGC 300 | |||
2909 | 18 02 00 | -30 01 | 20m | 103a - O | GG 385 | 3" | Graham / Ugarte | 03 07 79 | NGC 6522 | Broken 3/4 plate | CTIO | |
2910 | 14 57 09 | -31 35 21 | 20m | 103a - O | GG 385 | 1" | Graham / Ugarte | 03 07 79 | Cen X - 4 | |||
2911 | 13 38 30 | -31 31 | 20m | 103a - O | GG 385 | 1" | Graham / Ugarte | 03 07 79 | NGC 5253 | |||
2912 | 18 02 00 | -30 01 | 20m | 103a - O | GG 385 | 1" | Graham / Ugarte | 03 07 79 | NGC 6522 | Broken Ok" | CTIO | |
2913 | 18 02 00 | -30 01 | 20m | 103a - O | GG 385 | 1" | Graham / Ugarte | 03 07 79 | NGC 6522 | Ok" | CTIO | |
2914 | 23 56 30 | -32 43 | 60m | 103a - O | GG 385 | 1" | Graham / Ugarte | 03 07 79 | NGC 7793 | |||
2915 | 00 53 54 | -37 45 53 | 10m | 103a - O | GG 385 | 1" | Graham / Ugarte | 03 07 79 | NGC 300 | |||
2916 | 00 53 54 | -37 45 53 | 60m | 103a - O | GG 385 | 1" | Graham / Ugarte | 03 07 79 | NGC 300 | |||
2917 | 00 53 54 | -37 45 53 | 90m | 103a - O | UG 2 | 2" | Graham / Ugarte | 03 07 79 | NGC 300 | |||
2918 | 00 53 54 | -37 45 53 | 20m | 103a - O | GG 385 | 2" | Graham / Ugarte | 03 07 79 | NGC 300 |
Last Updated on 8/27/99
By Guerra & Marin
August 1979 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
2919 | 18 02 24 | -30 01 | 20m | 103a - O | GG 385 | 2" | Blanco / Czuia | 02 08 79 | Baade´s Window | CTIO | ||
2920 | 18 02 24 | -30 01 | 30m | 103a - D | GG 495 | 2" | Blanco / Czuia | 02 08 79 | Baade´s Window | CTIO | ||
2921 | 18 02 24 | -30 01 | 20m | 103a - O | GG 385 | 2" | Blanco / Czuia | 02 08 79 | Baade´s Window | Broken bad cndtn | CTIO | |
2922 | 18 02 24 | -30 01 | 30m | 103a - D | GG 495 | 2" | Blanco / Czuia | 02 08 79 | Baade´s Window | CTIO | ||
2923 | 18 02 24 | -30 01 | 20m | 103a - O | GG 385 | 2" | Blanco / Czuia | 02 08 79 | Baade´s Window | CTIO | ||
2924 | 18 02 24 | -30 01 | 30m | 103a - D | GG 495 | 2" | Blanco / Czuia | 02 08 79 | Baade´s Window | CTIO | ||
2925 | 18 02 24 | -30 01 | 20m | 103a - O | GG 385 | 2" | Blanco / Czuia | 02 08 79 | Baade´s Window | CTIO | ||
2926 | 18 02 24 | -30 01 | 30m | 103a - D | GG 495 | 2" | Blanco / Czuia | 02 08 79 | Baade´s Window | CTIO | ||
2927 | 18 02 24 | -30 01 | 20m | 103a - O | GG 385 | 2" | Blanco / Czuia | 02 08 79 | Baade´s Window | Broken Ok" | CTIO | |
2928 | 18 02 24 | -30 01 | 30m | 103a - D | GG 495 | 2" | Blanco / Czuia | 02 08 79 | Baade´s Window | Broken Ok" | CTIO | |
2929 | 18 02 24 | -30 01 | 20m | 103a - O | GG 385 | 2" | Blanco / Czuia | 02 08 79 | Baade´s Window | CTIO | ||
2930 | 18 02 24 | -30 01 | 14m | 103a - D | GG 495 | 2" | Blanco / Czuia | 02 08 79 | ||||
2931 | 00 55 24 | -72 37 | 40m | 098 - 04 | RG 610 | 2" | Blanco / Czuia | 03 08 79 | NGC 330 | CTIO | ||
2932 | 00 55 24 | -72 37 | 40m | 098 - 04 | RG 610 | 2" - 3" | Blanco / Ugarte | 04 08 79 | NGC 330 | CTIO | ||
2933 | 18 02 24 | -30 01 | 20m | 103a - O | GG 385 | 2" | Blanco / Ugarte | 05 08 79 | Baade´s Window | CTIO | ||
2934 | 18 02 24 | -30 01 | 30m | 103a - D | GG 495 | 3" | Blanco / Ugarte | 05 08 79 | Baade´s Window | CTIO | ||
2935 | 18 02 24 | -30 01 | 20m | 103a - O | GG 385 | 3" - 4" | Blanco / Ugarte | 05 08 79 | Baade´s Window | Broken Ok" | CTIO | |
2936 | 18 02 24 | -30 01 | 30m | 103a - D | GG 495 | 3" - 4" | Blanco / Ugarte | 05 08 79 | Baade´s Window | CTIO | ||
2937 | 18 02 24 | -30 01 | 20m | 103a - O | GG 385 | 3" - 4" | Blanco / Ugarte | 05 08 79 | Baade´s Window | CTIO | ||
2938 | 18 02 24 | -30 01 | 30m | 103a - D | GG 495 | 1" - 2" | Blanco / Ugarte | 05 08 79 | Baade´s Window | CTIO | ||
2939 | 18 02 24 | -30 01 | 20m | 103a - O | GG 385 | 1" - 2" | Blanco / Ugarte | 05 08 79 | Baade´s Window | CTIO | ||
2940 | 18 02 24 | -30 01 | 30m | 103a - D | GG 495 | 1" - 2" | Blanco / Ugarte | 05 08 79 | Baade´s Window | CTIO | ||
2941 | 18 02 24 | -30 01 | 20m | 103a - O | GG 385 | 2" - 3" | Blanco / Ugarte | 05 08 79 | Baade´s Window | CTIO | ||
2942 | 18 02 24 | -30 01 | 30m | 103a - D | GG 495 | 2" - 3" | Blanco / Ugarte | 05 08 79 | Baade´s Window | CTIO | ||
2943 | 00 55 24 | -72 37 | 120m | lN | RG 695 | 2" - 3" | Blanco / Ugarte | 05 08 79 | NGC 330 | CTIO | ||
2944 | 01 02 36 | -72 25 | 40m | 098 - 04 | RG 610 | 2" - 3" | Blanco / Ugarte | 05 08 79 | NGC 371 | CTIO | ||
2945 | 18 01 48 | -29 53 18 | 20m | 103a - O | GG 385 | 3" | Blanco / Martin | 17 08 79 | Baade´s Window | CTIO | ||
2946 | 18 01 48 | -29 53 18 | 30m | 103a - D | GG 495 | 3" | Blanco / Martin | 17 08 79 | Baade´s Window | CTIO | ||
2947 | 18 01 48 | -29 53 18 | 20m | 103a - O | GG 385 | 3" | Blanco / Martin | 17 08 79 | Baade´s Window | CTIO | ||
2948 | 18 01 48 | -29 53 18 | 30m | 103a - D | GG 495 | 2" - 3" | Blanco / Martin | 18 08 79 | ||||
2949 | 18 01 48 | -29 53 18 | 20m | 103a - O | GG 385 | 2" - 3" | Blanco / Martin | 17 08 79 | Baade´s Window | CTIO | ||
2950 | 18 01 48 | -29 53 18 | 30m | 103a - D | GG 495 | 2" - 3" | Blanco / Martin | 18 08 79 | Baade´s Window | CTIO | ||
2951 | 01 15 06 | -73 27 | 60m | 098 - 04 | RG 610 | 2" - 3" | Blanco / Martin | 18 08 79 | NGC 465 | CTIO | ||
2952 | 01 07 12 | -73 05 | 60m | 098 - 04 | RG 610 | 2" - 3" | Blanco / Martin | 18 08 79 | NGC 419 | CTIO |
Last Updated on 8/27/99
By Jorge Marin
October 1979 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
2953 | 01 17 52 | -28 44 45.6 | 15m | lla - O baked | RG 610 | 1.5" - 2" | Dufour et al / Cosgrove | 16 10 79 | Nov 19 event | |||
2954 | 01 17 52 | -28 44 45.6 | 30m | lla - O baked | UG 2 | 1.5" - 2" | Dufour et al / Cosgrove | 16 10 79 | Nov 19 event | |||
2955 | 01 17 52 | -28 44 45.6 | 30m | lla - O baked | GG 495 | 1.5" - 2" | Dufour et al / Cosgrove | 16 10 79 | Nov 19 event | |||
2956 | 01 17 52 | -28 44 45.6 | 10m | lla - O baked | GG 495 | 1.5" - 2" | Dufour et al / Cosgrove | 16 10 79 | Nov 19 event | |||
2957 | 01 17 52 | -28 44 45.6 | 60m | lla - O baked | 7 - 83 | 1.5" - 2" | Dufour et al / Cosgrove | 16 10 79 | Nov 19 event | |||
2958 | 01 17 52 | -28 44 45.6 | 10m | lla - O baked | 7 - 83 | 1.5" - 2" | Dufour et al / Cosgrove | 16 10 79 | Nov 19 event | |||
2959 | 05 26 08 | -66 06 03 | 2m | lla - O baked | RG 610 | 1.5" | Dufour et al / Cosgrove | 16 10 79 | N 49 | |||
2960 | 05 26 08 | -66 06 03 | 20m | lla - O baked | RG 610 | 1.5" | Dufour et al / Cosgrove | 16 10 79 | N 49 | |||
2961 | 05 26 08 | -66 06 03 | 1m | lla - O baked | GG 495 | 1.5" | Dufour et al / Cosgrove | 16 10 79 | N 49 | |||
2962 | 05 26 08 | -66 06 03 | 15m | lla - O baked | GG 495 | 1.5" | Dufour et al / Cosgrove | 16 10 79 | N 49 | |||
2963 | 05 26 08 | -66 06 03 | 45m | lla - O baked | 7 - 83 | 1.5" | Dufour et al / Cosgrove | 16 10 79 | N 49 | |||
2964 | 05 26 08 | -66 06 03 | 5m | lla - O baked | 7 - 83 | 1.5" | Dufour et al / Cosgrove | 16 10 79 | N 49 | |||
2965 | 01 17 52 | -28 44 45.6 | 25m | lla - O baked | 7 - 83 | 1.5" | Dufour et al / Cosgrove | 16 10 79 | Nov 19 event | |||
2966 | 01 17 52 | -28 44 45.6 | 5m | lla - O baked | GG 495 | 1.5" | Dufour et al / Cosgrove | 16 10 79 | Nov 19 event |
Last Updated on 8/27/99
By Guerra & Marin
December 1979 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
2967 | 05 09 00 | -69 00 | 40m | 103a - O | GG 385 | 2" | Graham / Czuia | 20 12 79 | Bok - Tifft | |||
2968 | 04 59 02 | -66 01 17 | 40m | 103a - O | GG 385 | 2" | Graham / Czuia | 20 12 79 | NGC 1783 | |||
2969 | 04 03 04 | -44 46 54 | 3m | lla - O | GG 385 | 2" | Graham / Czuia | 20 12 79 | E 2 | |||
2970 | 06 41 53 | -45 07 31 | 3m | lla - O | GG 385 | 2" | Graham / Czuia | 20 12 79 | E 3 | |||
2971 | 05 08 58 | -69 00 19 | 40m | 103a - O | GG 385 | 2" - 3" | Graham / Czuia | 20 12 79 | Bok - Tifft | |||
2972 | 04 59 02 | -66 01 17 | 40m | 103a - O | GG 385 | 2" - 3" | Graham / Czuia | 20 12 79 | NGC 1783 | |||
2973 | 05 08 58 | -69 00 19 | 40m | 103a - O | GG 385 | 2" | Graham / Czuia | 20 12 79 | Bok - Tifft | |||
2974 | 04 59 02 | -66 01 17 | 40m | 103a - O | GG 385 | 2" | Graham / Czuia | 20 12 79 | NGC 1783 | |||
2975 | 05 08 58 | -69 00 19 | 60m | 103a - O | GG 385 | 2" | Graham / Czuia | 20 12 79 | Bok - Tifft | |||
2976 | 04 59 02 | -66 01 17 | 40m | 103a - O | GG 385 | 1" - 1.5" | Graham / Czuia | 21 12 79 | NGC 1783 | |||
2977 | 05 08 58 | -69 00 19 | 40m | 103a - O | GG 385 | 1" - 1.5" | Graham / Czuia | 21 12 79 | Bok - Tifft | |||
2978 | 04 03 04 | -44 46 54 | 6m | lla - D | GG 495 | 1" - 1.5" | Graham / Czuia | 21 12 79 | E 2 | |||
2979 | 05 08 58 | -69 00 19 | 40m | lla - D | GG 495 | 1" | Graham / Czuia | 21 12 79 | Bok - Tifft | |||
2980 | 05 08 58 | -69 00 19 | 40m | 103a - O | GG 385 | 1" | Graham / Czuia | 21 12 79 | Bok - Tifft | |||
2981 | 04 59 02 | -66 01 17 | 40m | 103a - O | GG 385 | 1" | Graham / Czuia | 21 12 79 | NGC 1783 | |||
2982 | 05 08 58 | -69 00 19 | 40m | 103a - O | GG 385 | 1.5" | Graham / Czuia | 21 12 79 | Bok - Tifft | |||
2983 | 04 59 02 | -66 01 17 | 40m | 103a - O | GG 385 | 1.5" | Graham / Czuia | 21 12 79 | NGC 1783 | |||
2984 | 05 08 58 | -69 00 19 | 40m | 103a - O | GG 385 | 1.5" | Graham / Czuia | 21 12 79 | Bok - Tifft |
Last Updated on 8/27/99
By Jorge Marin
1980 Plate logs for 1.5-m telescope
April 1980 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
2985 | 10 44 24 | -59 36 | 20m | 103a - O | GG 385 | 3" | Blanco / Martin | 15 04 80 | Trio Eta Carina | CTIO | ||
2986 | 08 39 42 | -52 59 | 5m | 103a - O | GG 385 | 3" | Blanco / Martin | 15 04 80 | IC 2391 | CTIO | ||
2987 | 12 38 48 | -11 31 | 30m | lla - O | 4" | Blanco / Martin | 15 04 80 | M 104 | ||||
2988 | 13 25 36 | -47 12 | 30m | lla - O | 3" - 4" | Blanco / Martin | 15 04 80 | Omega Cen. | ||||
2989 | 13 25 36 | -47 12 | 5m | lla - O | 3" | Blanco / Martin | 15 04 80 | Omega Cen. | ||||
2990 | 13 25 36 | -47 12 | 1m | lla - O | GG 385 | 3" | Blanco / Martin | 15 04 80 | Omega Cen. | CTIO | ||
2991 | 13 25 36 | -47 12 | 12s | lla - O | GG 385 | 3" | Blanco / Martin | 15 04 80 | Omega Cen. | CTIO | ||
2992 | 13 25 36 | -47 12 | 2s | lla - O | GG 385 | 3" | Blanco / Martin | 15 04 80 | Omega Cen. | CTIO | ||
2993a | 18 01 48 | -29 55 12 | 20m | 103a - O | GG 385 | 3" - 4" | Blanco / Martin | 15 04 80 | Baade´s Window | CTIO | ||
2993b | 13 19 30 | -46 56 54 | 8m - 4 - 2 - 1 | 103a - D | GG 385 | 2" | Blanco / Maturana | 16 06 80 | Flyspanker | |||
2994 | 13 19 30 | -46 56 54 | 8m - 4 - 2 - 1 | 103a - O | GG 385 | 2" | Blanco / Maturana | 15 04 80 | Flyspanker | CTIO | ||
2995 | 18 01 54.6 | -29 55 13 | 30m | 103a - O | GG 385 | 2" | Blanco / Maturana | 16 04 80 | Baade´s Window | CTIO | ||
2996 | 18 01 54.6 | -29 55 13 | 30m | 103a - O | GG 385 | 2" | Blanco / Maturana | 16 04 80 | Baade´s Window | CTIO | ||
2997 | 18 01 54.6 | -29 55 13 | 30m | 103a - O | GG 385 | 2" | Blanco / Maturana | 16 04 80 | Baade´s Window | CTIO | ||
2998 | 18 01 54.6 | -29 55 13 | 25m | 103a - D | GG 495 | 2" | Blanco / Maturana | 16 04 80 | Baade´s Window | CTIO | ||
2999 | 18 01 54.6 | -29 55 13 | 30m | 103a - O | GG 385 | 2" | Blanco / Maturana | 16 04 80 | Baade´s Window | Broken Ok" | CTIO | |
3000 | 18 01 54.6 | -29 55 13 | 25m | 103a - D | GG 495 | 2" | Blanco / Maturana | 16 04 80 | Baade´s Window | CTIO | ||
3001 | 18 01 54.6 | -29 55 13 | 30m | 103a - O | GG 385 | 2" | Blanco / Maturana | 16 04 80 | Baade´s Window | CTIO | ||
3002 | 18 01 54.6 | -29 55 13 | 30m | 103a - O | GG 385 | 2" | Blanco / Maturana | 16 04 80 | Baade´s Window | CTIO | ||
3003 | 18 01 54.6 | -29 55 13 | 25m | 103a - D | GG 495 | 2" | Blanco / Maturana | 16 04 80 | Baade´s Window | CTIO | ||
3004 | 18 01 54.6 | -29 55 13 | 30m | 103a - O | GG 385 | 2" | Blanco / Maturana | 16 04 80 | Baade´s Window | CTIO | ||
3005 | 18 01 54.6 | -29 55 13 | 25m | 103a - D | GG 495 | 2" | Blanco / Maturana | 16 04 80 | Baade´s Window | CTIO | ||
3006 | 18 01 54.6 | -29 55 13 | 25m | 103a - O | GG 385 | 2" | Blanco / Maturana | 16 04 80 | Baade´s Window | CTIO | ||
3007 | 18 01 54.6 | -29 55 13 | 30m | 103a - O | GG 385 | 2" - 3" | Blanco / Alday | 17 04 80 | Baade´s Window | CTIO | ||
3008 | 18 01 54.6 | -29 55 13 | 25m | 103a - D | GG 495 | 2" - 3" | Blanco / Alday | 17 04 80 | Baade´s Window | CTIO | ||
3009 | 18 01 54.6 | -29 55 13 | 30m | 103a - O | GG 385 | 2" - 3" | Blanco / Alday | 17 04 80 | Baade´s Window | CTIO | ||
3010 | 16 22 56 | -25 14 57 | lla - O | GG 385 | 1" - 1.5" | Blanco / Alday | 17 04 80 | Hyperher | Bad plate broken | CTIO | ||
3011 | 18 01 54.6 | -29 55 13 | 15m | 103a - D | GG 495 | Blanco / Alday | 17 04 80 | Baade´s Window | CTIO | |||
3012 | 18 01 54.6 | -29 55 13 | 20m | 103a - O | GG 385 | 1" | Blanco / Alday | 17 04 80 | Baade´s Window | CTIO | ||
3013 | 18 01 54.6 | -29 55 13 | 15m | 103a - D | GG 495 | 1" | Blanco / Alday | 17 04 80 | Baade´s Window | CTIO | ||
3014 | 18 01 54.6 | -29 55 13 | 20m | 103a - O | GG 385 | 1" | Blanco / Alday | 17 04 80 | Baade´s Window | CTIO | ||
3015 | 18 01 54.6 | -29 55 13 | 25m | 103a - D | 1" | Blanco / Alday | 17 06 80 | Baade´s Window | ||||
3016 | 18 01 54.6 | -29 55 13 | 30m | 103a - O | GG 385 | 1" | Blanco / Alday | 17 04 80 | Baade´s Window | CTIO | ||
3017 | 18 01 54.6 | -29 55 13 | 25m | 103a - D | GG 495 | 1" | Blanco / Alday | 17 04 80 | Baade´s Window | CTIO | ||
3018 | 18 01 54.6 | -29 55 13 | 30m | 103a - O | GG 385 | 1" | Blanco / Alday | 17 04 80 | Baade´s Window | CTIO | ||
3019 | 18 01 54.6 | -29 55 13 | 30m | 103a - D | GG 495 | 1" | Blanco / Alday | 17 04 80 | Baade´s Window | CTIO |
Last Updated on 8/27/99
By Jorge Marin
September 1980 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
3020 | 19 43 48 | -14 49 | 60m | 103a - O | GG 385 | 2" | Graham / Cosgrove | 10 09 80 | NGC 6822 | |||
3021 | 00 25 42 | -71 41 | 60m | 103a - O | GG 385 | Graham / Cosgrove | 10 09 80 | NGC 121 | ||||
3022 | 00 25 42 | -71 41 | 60m | 103a - O | GG 385 | 2" | Graham / Cosgrove | 10 09 80 | NGC 121 | |||
3023 | 00 25 42 | -71 41 | 60m | 103a - O | GG 385 | 2" - 3" | Graham / Cosgrove | 10 09 80 | NGC 121 | |||
3024 | 00 25 42 | -71 41 | 60m | 103a - O | GG 385 | 2" - 4" | Graham / Cosgrove | 10 09 80 | NGC 121 | |||
3025 | 00 25 42 | -71 41 | 60m | 103a - O | GG 385 | 2" - 4" | Graham / Cosgrove | 10 09 80 | NGC 121 | |||
3026 | 00 25 42 | -71 41 | 60m | 103a - O | GG 385 | 2" - 3" | Graham / Cosgrove | 10 09 80 | NGC 121 | |||
3027 | 00 25 42 | -71 41 | 60m | 103a - O | GG 385 | 2" - 4" | Graham / Cosgrove | 10 09 80 | NGC 121 | |||
3028 | 17 38 48 | -53 40 | 60m | 103a - O | GG 385 | 1" - 2" | Graham / Cosgrove | 11 09 80 | NGC 6397 | |||
3029 | 00 25 42 | -71 41 | 60m | 103a - O | GG 385 | 1" - 2" | Graham / Cosgrove | 11 09 80 | NGC 121 | |||
3030 | 00 25 42 | -71 41 | 60m | 103a - O | GG 385 | 1.5" | Graham / Cosgrove | 11 09 80 | NGC 121 | |||
3031 | 00 25 42 | -71 41 | 60m | 103a - O | GG 385 | 1" | Graham / Cosgrove | 11 09 80 | NGC 121 | |||
3032 | 00 25 42 | -71 41 | 60m | 103a - O | GG 385 | 1" | Graham / Cosgrove | 11 09 80 | NGC 121 | |||
3033 | 00 25 42 | -71 41 | 40m | 103a - O | GG 385 | 1" | Graham / Cosgrove | 11 09 80 | NGC 121 | |||
3034 | 00 25 42 | -71 41 | 60m | 103a - O | GG 385 | 1.5" | Graham / Cosgrove | 11 09 80 | NGC 121 | |||
3035 | 00 25 42 | -71 41 | 50m | 103a - O | GG 385 | 2" | Graham / Cosgrove | 11 09 80 | NGC 121 | |||
3036 | 00 25 42 | -71 41 | 50m | 103a - O | GG 385 | 1" | Graham / Cosgrove | 11 09 80 | NGC 121 |
Last Updated on 8/27/99
By Guerra & Marin
October 1980 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
3037 | 00 25 59 | -71 41 09 | 60m | 103a - O | GG 385 | 5" - 10" | Graham / Alday | 11 10 80 | NGC 121 | |||
3038 | 00 25 59 | -71 41 09 | 60m | 103a - O | GG 385 | 5" | Graham / Alday | 11 10 80 | NGC 121 | |||
3039 | 00 26 00 | -71 41 06 | 60m | 103a - O | GG 385 | 5" | Graham / Alday | 11 10 80 | NGC 121 | |||
3040 | 00 26 00 | -71 41 06 | 60m | 103a - O | GG 385 | 5" | Graham / Alday | 11 10 80 | NGC 121 | |||
3041 | 00 26 00 | -71 41 06 | 60m | 103a - O | GG 385 | 3" - 5" | Graham / Alday | 11 10 80 | NGC 121 | |||
3042 | 00 26 00 | -71 41 06 | 60m | 103a - O | GG 385 | 3" - 5" | Graham / Alday | 11 10 80 | NGC 121 | |||
3043 | 00 26 00 | -71 41 06 | 60m | 103a - O | GG 385 | 5" | Graham / Alday | 11 10 80 | NGC 121 |
Last Updated on 8/27/99
By Guerra & Marin
1981 Plate logs for 1.5-m telescope
March 1981 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
3044 | 06 11 36 | -69 07 | 40m | 103a - O | GG 385 | 3" | Graham / Martin | 01 03 81 | NGC 2210 | |||
3045 | 06 11 29.6 | -69 07 22 | 60m | 103a - D | GG 495 | 3" | Graham / Martin | 01 03 81 | NGC 2210 | |||
3046 | 06 11 29.6 | -69 07 22 | 60m | 103a - O | GG 385 | 3" | Graham / Martin | 01 03 81 | NGC 2210 | |||
3047 | 06 11 29.6 | -69 07 22 | 60m | 103a - O | GG 385 | 3" | Graham / Martin | 01 03 81 | NGC 2210 | |||
3048 | 13 24 52 | -42 49 47 | 30m | 103a - D | GG 495 | 3" | Graham / Martin | 01 03 81 | NGC 5128 | |||
3049 | 13 24 50 | -42 49 39 | 30m | 103a - D | GG 495 | 3" | Graham / Martin | 01 03 81 | NGC 5128 | |||
3050 | 06 11 33.6 | -69 06 22 | 60m | 103a - O | GG 385 | 1" - 3" | Graham / Martin | 02 03 81 | NGC 2210 | |||
3051 | 06 11 33.6 | -69 06 22 | 60m | 103a - O | GG 385 | 1" - 3" | Graham / Martin | 02 03 81 | NGC 2210 | |||
3052 | 06 11 33.6 | -69 06 22 | 60m | 103a - O | GG 385 | 1" - 3" | Graham / Martin | 02 03 81 | NGC 2210 | |||
3053 | 06 11 33.6 | -69 06 22 | 60m | 103a - O | GG 385 | 1" - 3" | Graham / Martin | 02 03 81 | NGC 2210 | |||
3054 | 06 11 33.6 | -69 06 22 | 40m | 103a - O | GG 385 | 1" - 3" | Graham / Martin | 02 03 81 | NGC 2210 | |||
3055 | 13 24 30 | -42 49 30 | 80m | llla - J | 1" | Graham / Martin | 02 03 81 | NGC 5128 | ||||
3056 | 13 04 06 | -49 22 | 60m | 103a - D | GG 495 | 2" - 3" | Graham / Martin | 02 03 81 | NGC 4945 | |||
3057 | focus plate | 103a - O | GG 385 | 2" - 3" | Blanco / Martin | 03 03 81 | focus plate | |||||
3058 | focus plate | 103a - O | GG 385 | 2" | Blanco / Martin | 03 03 81 | focus plate | |||||
3059 | focus plate | 103a - O | GG 385 | 2" | Blanco / Martin | 03 03 81 | focus plate | |||||
3060 | focus plate | 103a - O | GG 385 | 2" | Blanco / Martin | 03 03 81 | focus plate | |||||
3061 | focus plate | 103a - O | GG 385 | 2" | Blanco / Martin | 03 03 81 | focus plate | |||||
3062 | focus plate | 103a - O | GG 385 | 2" | Blanco / Martin | 03 03 81 | focus plate | |||||
3063 | 18 00 23 | -30 04 46 | 15m | 103a - O | GG 385 | 2" | Blanco / Martin | 03 03 81 | NGC 6522 | CTIO | ||
3064 | 18 00 23 | -30 04 46 | 15m | 103a - O | GG 385 | 3" | Blanco / Martin | 03 03 81 | NGC 6522 | CTIO | ||
3065 | 13 25 12.5 | -42 42 06 | 5m | lla - O | GG 385 | 2" | Graham / Maturana | 25 03 81 | N 5128 | |||
3066 | 13 25 12.5 | -42 42 06 | 30m | lla - O | GG 385 | 2" - 3" | Graham / Maturana | 25 03 81 | N 5128 | |||
3067 | 13 25 12.5 | -42 42 06 | 10m | lla - D | GG 495 | 2" - 3" | Graham / Maturana | 25 03 81 | N 5128 | |||
3068 | 13 25 12.5 | -42 42 06 | 45m | lla - D | GG 495 | 2" | Graham / Maturana | 25 03 81 | N 5128 | |||
3069 | 13 25 12.5 | -42 42 06 | 60m | lla - O | UG 2 | 3" | Graham / Maturana | 25 03 81 | N 5128 | |||
3070 | 13 25 12.5 | -42 42 06 | GG 385 | Graham / Maturana | 25 03 81 | N 5128 |
Last Updated on 8/27/99
By Guerra & Marin
August 1981 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
3071 | 15 35 48 | -28 04 | 10s each | 103a - D | 2" | Blanco / Martin | 03 08 81 | focus plate | ||||
3072 | 18 01 54 | -29 57 | 40m | 103a - O | GG 385 | 2" | Blanco / Martin | 03 08 81 | Baade's Window | CTIO |
Last Updated on 8/27/99
By Jorge Marin
October 1981 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
3073 | 21 31 30 | -67 47 42 | 15s each | 103a - O | GG 385 | 1.5" | Klemola / Martin | 27 10 81 | focus plate | |||
3074 | 01 22 23 | -42 24 18 | 10m | 103a - J | GG 385 | 3" | Klemola / Martin | 27 10 81 | U Y Phe | |||
3075 | 00 26 03 | -71 38 15 | 60m | 103a - O | GG 385 | 1.5" | Klemola / Martin | 28 10 81 | NGC 121 | |||
3076 | 00 26 03 | -71 38 15 | 60m | 103a - O | GG 385 | 1.5" | Klemola / Martin | 28 10 81 | NGC 121 | |||
3077 | 00 26 03 | -71 38 15 | 60m | 103a - O | GG 385 | 1" | Klemola / Martin | 28 10 81 | NGC 121 | |||
3078 | 00 26 03 | -71 38 15 | 60m | 103a - O | GG 385 | 1.5" | Klemola / Martin | 28 10 81 | NGC 121 | |||
3079 | 00 26 03 | -71 38 15 | 60m | 103a - O | GG 385 | 1" | Klemola / Martin | 28 10 81 | NGC 121 | |||
3080 | 04 19 58 | -69 00 52 | 50m | llla - J | GG 385 | 1" | Klemola / Martin | 28 10 81 | LMC 0421 - 69 | |||
3081 | 04 19 58 | -69 00 52 | 50m | llla - J | GG 385 | 1" | Klemola / Martin | 28 10 81 | LMC 0421 - 69 | |||
3082 | 00 25 36 | -71 39 54 | 60m | 103a - O | GG 385 | 1.5 - 3" | Klemola / Ugarte | 29 10 81 | NGC 121 | |||
3083 | 00 25 36 | -71 39 54 | 60m | 103a - O | GG 385 | 1.5 3" | Klemola / Ugarte | 29 10 81 | NGC 121 | |||
3084 | 00 25 36 | -71 39 54 | 60m | 103a - O | GG 385 | 2" - 3" | Klemola / Ugarte | 29 10 81 | NGC 121 | |||
3085 | 00 25 36 | -71 39 54 | 60m | 103a - O | GG 385 | 2" - 3" | Klemola / Ugarte | 29 10 81 | NGC 121 | |||
3086 | 00 25 36 | -71 39 54 | 60m | 103a - O | GG 385 | 1.5" - 2" | Klemola / Ugarte | 29 10 81 | NGC 121 | |||
3087 | 04 19 56 | -69 00 58 | 60m | llla - J | GG 385 | 1.5" - 2" | Klemola / Ugarte | 29 10 81 | LMC 0421 - 69 | |||
3088 | 04 19 56 | -69 00 58 | 60m | llla - J | GG 385 | 1.5" - 2" | Klemola / Ugarte | 29 10 81 | LMC 0421 - 69 | |||
3089 | 05 18 06 | -68 22 31 | 5m | llla - J | GG 385 | 1.5" - 2" | Klemola / Ugarte | 29 10 81 | Stellar group | |||
3090 | 00 25 48 | -71 39 12 | 60m | 103a - O | GG 385 | 1" - 1.5" | Klemola / Ugarte | 30 10 81 | NGC 121 | |||
3091 | 00 25 48 | -71 39 12 | 60m | 103a - O | GG 385 | 1" - 3" | Klemola / Ugarte | 30 10 81 | NGC 121 | |||
3092 | 00 25 48 | -71 39 12 | 60m | 103a - O | GG 385 | 1" -1.5" | Klemola / Ugarte | 30 10 81 | NGC 121 | |||
3093 | 00 25 48 | -71 39 12 | 60m | 103a - O | GG 385 | 1" -1.5" | Klemola / Ugarte | 30 10 81 | NGC 121 | |||
3094 | 00 25 48 | -71 39 12 | 60m | 103a - O | GG 385 | 1" -1.5" | Klemola / Ugarte | 30 10 81 | NGC 121 | |||
3095 | 04 19 57 | -69 00 45 | 60m | llla - J | GG 385 | 1" -1.5" | Klemola / Ugarte | 30 10 81 | LMC 0421 - 69 | |||
3096 | 04 19 57 | -69 00 45 | 60m | llla - J | GG 385 | 1" -1.5" | Klemola / Ugarte | 30 10 81 | LMC 0421 - 69 | |||
3097 | 05 18 04 | -68 22 28 | 5m | llla - J | GG 385 | 1" -1.5" | Klemola / Ugarte | 30 10 81 | Stellar group | |||
3098 | 05 18 04 | -68 22 28 | 5m | llla - J | GG 385 | 1" -1.5" | Klemola / Ugarte | 30 10 81 | Stellar group | |||
3099 | 00 25 50 | -71 38 11 | 60m | 103a - O | GG 385 | 1" -1.5" | Klemola / Ugarte | 31 10 81 | NGC 121 | |||
3100 | 00 25 50 | -71 38 11 | 60m | 103a - O | GG 385 | 0.5" - 1" | Klemola / Ugarte | 31 10 81 | NGC 121 | |||
3101 | 00 25 50 | -71 38 11 | 60m | 103a - O | GG 385 | 1" - 1.5" | Klemola / Ugarte | 31 10 81 | NGC 121 | |||
3102 | 00 25 50 | -71 38 11 | 60m | 103a - O | GG 385 | 1" - 1.5" | Klemola / Ugarte | 31 10 81 | NGC 121 | |||
3103 | 00 25 50 | -71 38 11 | 60m | 103a - O | GG 385 | 1" - 1.5" | Klemola / Ugarte | 31 10 81 | NGC 121 | |||
3104 | 04 19 53 | -69 00 56 | 60m | llla - J | GG 385 | 1" - 1.5" | Klemola / Ugarte | 31 10 81 | LMC 0421 - 69 | |||
3105 | 04 19 53 | -69 00 56 | 60m | 103a - D | GG 495 | 1" - 1.5" | Klemola / Ugarte | 31 10 81 | LMC 0421 - 69 | |||
3106 | 05 18 02 | -68 22 10 | 5m | 103a - D | GG 495 | 1" - 1.5" | Klemola / Ugarte | 31 10 81 | Stellar group |
Last Updated on 8/27/99
By Guerra & Marin
November 1981 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
3107 | 00 25 41 | -71 38 33 | 50m | 103a - O | GG 385 | 1" - 1.5" | Klemola / Ugarte | 01 11 81 | NGC 121 | |||
3108 | 00 25 41 | -71 38 33 | 50m | 103a - O | GG 385 | 1.5" | Klemola / Ugarte | 01 11 81 | NGC 121 | |||
3109 | 00 25 41 | -71 38 33 | 60m | 103a - O | GG 385 | 1.5" | Klemola / Ugarte | 01 11 81 | NGC 121 | |||
3110 | 00 25 41 | -71 38 33 | 60m | 103a - O | GG 385 | 1.5" | Klemola / Ugarte | 01 11 81 | NGC 121 | |||
3111 | 00 25 41 | -71 38 33 | 60m | 103a - O | GG 385 | 1.5" | Klemola / Ugarte | 01 11 81 | NGC 121 | |||
3112 | 04 19 47 | -69 00 57 | 55m | llla - J | GG 385 | 1.5" | Klemola / Ugarte | 01 11 81 | LMC 0421 - 69 | |||
3113 | 04 19 47 | -69 00 57 | 60m | llla - J | GG 385 | 1.5" | Klemola / Ugarte | 01 11 81 | LMC 0421 - 69 | |||
3114 | 04 19 47 | -69 00 57 | 60m | 103a - D | GG 495 | 1.5" | Klemola / Ugarte | 01 11 81 | LMC 0421 - 69 | |||
3115 | 04 54 24 | -69 51 | 25m | 098 - 04 | RG 610 | 2.5" | Blanco / Ugarte | 02 11 81 | NGC 1751 | CTIO | ||
3116 | 04 58 24 | -66 02 | 25m | 098 - 04 | RG 610 | 2.5" | Blanco / Ugarte | 02 11 81 | NGC 1783 | CTIO | ||
3117 | 05 07 36 | -67 30 | 25m | 098 - 04 | RG 610 | 2.5" | Blanco / Ugarte | 02 11 81 | NGC 1846 | CTIO | ||
3118 | 05 13 24 | -65 29 | 25m | 098 - 04 | RG 610 | 2.5" | Blanco / Ugarte | 02 11 81 | NGC 1866 | CTIO | ||
3119 | 05 57 30 | -67 15 | 25m | 098 - 04 | RG 610 | 2.5" | Blanco / Ugarte | 02 11 81 | NGC 2154 | CTIO | ||
3120 | 06 11 06 | -71 33 | 25m | 098 - 04 | RG 610 | 2.5" | Blanco / Ugarte | 02 11 81 | NGC 2213 | CTIO | ||
3121 | 06 29 48 | -64 09 | 25m | 098 - 04 | RG 610 | 2.5" | Blanco / Ugarte | 02 11 81 | NGC 2257 | CTIO |
Last Updated on 8/27/99
By Guerra & Marin
December 1981 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
3122 | 06 05 33.8 | -75 25 29 | 40m | lla - O | GG 385 | 2" - 3" | Graham / Martin | 24 12 81 | NGC 2203 | |||
3123 | 06 05 31 | -75 25 48 | 60m | 103a - D | GG 495 | 2" - 3" | Graham / Martin | 24 12 81 | NGC 2203 | |||
3124 | 06 05 31 | -75 25 48 | 40m | lla - O | GG 385 | 2" - 3" | Graham / Martin | 24 12 81 | NGC 2203 | |||
3125 | 06 05 31 | -75 25 48 | 45m | lla - O | GG 385 | 2" - 3" | Graham / Martin | 24 12 81 | NGC 2203 | |||
3126 | 06 05 31 | -75 25 48 | 60m | 103a - D | GG 495 | 2" | Graham / Martin | 24 12 81 | NGC 2203 | |||
3127 | 06 05 31 | -75 25 48 | 20m | lla - O | GG 385 | 2" | Graham / Martin | 24 12 81 | NGC 2203 | |||
3128 | 06 05 31 | -75 25 48 | 40m | lla - O | GG 385 | 2" | Graham / Martin | 24 12 81 | NGC 2203 | |||
3129 | 06 05 25 | -75 24 18 | 45m | lla - O | GG 385 | 2" | Graham / Ugarte | 27 12 81 | NGC 2203 | |||
3130 | 06 11 34.3 | -69 05 15 | 60m | 103a - O | GG 385 | 2" | Graham / Ugarte | 27 12 81 | NGC 2210 | |||
3131 | 06 05 18.7 | -75 25 07 | 40m | lla - O | GG 385 | 2" | Graham / Ugarte | 27 12 81 | NGC 2203 | |||
3132 | 06 05 18.7 | -75 25 07 | 40m | lla - O | GG 385 | 2" | Graham / Ugarte | 27 12 81 | NGC 2203 | |||
3133 | 06 05 18.7 | -75 25 07 | 40m | lla - O | GG 385 | 1" | Graham / Ugarte | 27 12 81 | NGC 2203 | |||
3134 | 06 11 26 | -69 05 33 | 60m | 103a - O | GG 385 | 1.5" | Graham / Ugarte | 27 12 81 | NGC 2210 | |||
3135 | 06 05 09 | -75 25 04 | 45m | lla - O | GG 385 | 1.5" | Graham / Ugarte | 27 12 81 | NGC 2203 |
Last Updated on 8/27/99
1982 Plate logs for 1.5-m telescope
February 1982 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
3136 | 05 01 00 | -69 40 | 15m | 098 - 04 | RG 610 | 1.5" | Blanco / Cosgrove / Hernandez | 04 02 82 | LMC 50-69.7 | CTIO | ||
3137 | 05 09 09.8 | -68 52 29 | 15m | 098 - 04 | RG 610 | 1.5" | Blanco / Cosgrove / Hernandez | 04 02 82 | NGC 1854 | CTIO | ||
3138 | 05 43 27.4 | -70 39 01 | 15m | 098 - 04 | RG 610 | 1.5" | Blanco / Cosgrove / Hernandez | 04 02 82 | NGC 2107 | CTIO | ||
3139 | 05 44 00 | -69 13 52 | 15m | 098 - 04 | RG 610 | 1.5" | Blanco / Cosgrove / Hernandez | 04 02 82 | NGC 2108 | CTIO | ||
3140 | 05 53 00 | -69 30 00 | 15m | 098 - 04 | RG 610 | 1.5" | Blanco / Cosgrove / Hernandez | 04 02 82 | NGC 2136 | CTIO | ||
3141 | 06 11 04.4 | -71 33 14 | 15m | 098 - 04 | RG 610 | 1.5" | Blanco / Cosgrove / Hernandez | 04 02 82 | NGC 2213 | CTIO | ||
3142 | 06 20 30 | -67 31 | 15m | 098 - 04 | RG 610 | 1.5" | Blanco / Cosgrove / Hernandez | 04 02 82 | NGC 2231 | CTIO | ||
3143 | 06 12 54 | -68 16 | 15m | 098 - 04 | RG 610 | 1.5" | Blanco / Cosgrove / Hernandez | 04 02 82 | NGC 2214 | CTIO | ||
3144 | 05 09 09.8 | -60 52 29 | 15m | 098 - 04 | RG 610 | 1.5" | Blanco / Cosgrove / Hernandez | 04 02 82 | NGC 1854 | CTIO | ||
3145 | 06 40 30 | -50 57 06 | 30m | 098 - 04 | RG 610 | 1.5" | Blanco / Cosgrove / Hernandez | 04 02 82 | Dwarf Car. Galaxy | CTIO | ||
3146 | 08 54 16 | -47 30 04 | lla - O | GG 385 | 1.5" | Blanco / Cosgrove / Hernandez | 04 02 82 | ?? | CTIO |
Last Updated on 8/27/99
By Guerra & Marin
April 1982 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
3147 | 08 18 00 | -30 00 | 10s | llla - J | 2" | Ugarte / R.Gonzalez | 15 04 82 | Focus plate | ||||
3148 | 08 49 00 | -30 00 | 10s | llla - J | Ugarte / R.Gonzalez | 15 04 82 | Focus plate | |||||
3149 | 09 10 00 | +30 00 | 10s | llla - J | Ugarte / R.Gonzalez | 15 04 82 | focus north | |||||
3150 | 09 20 00 | -90 00 | 10s | llla - J | Ugarte / R.Gonzalez | 15 04 82 | focus south | |||||
3151 | 13 28 00 | -30 00 | 10s | llla - J | Ugarte / R.Gonzalez | 15 04 82 | focus east | |||||
3152 | 05 45 00 | -30 00 | 10s | llla - J | Ugarte / R.Gonzalez | 15 04 82 | focus west | |||||
3153 | 07 55 00 | -30 00 | 10s | 103a - O | 1" - 2" | Graham / Ugarte | 16 04 82 | focus zenith | ||||
3154 | +30 00 | 10s | 103a - O | Graham / Ugarte | 16 04 82 | focus north | ||||||
3155 | 09 25 00 | -90 00 | 10s | 103a - O | 1" - 2" | Graham / Ugarte | 16 04 82 | focus south | ||||
3156 | 13 37 00 | -30 00 | 10s | 103a - O | 1" - 2" | Graham / Ugarte | 16 04 82 | focus east | ||||
3157 | 06 12 00 | -30 00 | 10s | 103a - O | 1" - 2" | Graham / Ugarte | 16 04 82 | focus west |
Last Updated on 8/27/99
By Jorge Marin
August 1982 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
3158 | zenith | 10s | lla - O | 1" - 2" | Bozyan / Opal / R.Gonzalez | 08 08 82 | focus | |||||
3159 | 16 47 00 | -56 46 | 2m / 10m | lla - O | 1" - 2" | Bozyan / Opal / R.Gonzalez | 08 08 82 | Nor 2645 | ||||
3160 | 16 51 00 | -57 12 | 10m | lla - O | 1" - 2" | Bozyan / Opal / R.Gonzalez | 08 08 82 | Nor 305 - 6 | ||||
3161 | 17 21 00 | -67 57 | 2m20s | lla - O | 1" - 2" | Bozyan / Opal / R.Gonzalez | 08 08 82 | Nor 600 - 1 | ||||
3162 | 18 13 00 | -66 55 | 2m20s | lla - O | 1" - 2" | Bozyan / Opal / R.Gonzalez | 08 08 82 | Nor 857 - 60 | ||||
3163 | 17 56 00 | -32 55 | 10m2s | lla - O | 1" - 2" | Bozyan / Opal / R.Gonzalez | 08 08 82 | Sgr W 79 - 81 | ||||
3164 | 17 56 00 | -34 27 | 10m | lla - O | 1" - 2" | Bozyan / Opal / R.Gonzalez | 08 08 82 | Sgr W 83 | ||||
3165 | 17 58 00 | -30 17 | 5m | lla - O | 1" - 2" | Bozyan / Opal / R.Gonzalez | 08 08 82 | Sgr W 149 | ||||
3166 | 18 02 00 | -29 59 | 5m | lla - O | 1" - 2" | Bozyan / Opal / R.Gonzalez | 08 08 82 | Sgr W 265 | ||||
3167 | 18 02 00 | -28 08 | 5m | lla - O | 1" - 2" | Bozyan / Opal / R.Gonzalez | 08 08 82 | Sgr W 268 | ||||
3168 | 18 03 00 | -34 23 | 5m+1m | lla - O | 1" - 2" | Bozyan / Opal / R.Gonzalez | 08 08 82 | Sgr W 330 | ||||
3169 | 18 04 00 | -27 52 | 5m+1m | lla - O | 1" - 2" | Bozyan / Opal / R.Gonzalez | 08 08 82 | Sgr W 361 - 2 | ||||
3170 | 18 04 00 | -27 55 | 5m | lla - O | 1" - 2" | Bozyan / Opal / R.Gonzalez | 08 08 82 | Sgr W 386 - 7 | ||||
3171 | 18 05 00 | -26 42 | 3m | lla - O | 1" - 2" | Bozyan / Opal / R.Gonzalez | 08 08 82 | Sgr W 455 | ||||
3172 | 18 06 00 | -31 51 | 7m | lla - O | 1" - 2" | Bozyan / Opal / R.Gonzalez | 08 08 82 | Sgr W 487 | ||||
3173 | 18 07 00 | -26 30 30 | 5m | lla - O | 1" - 2" | Bozyan / Opal / R.Gonzalez | 08 08 82 | Sgr W 552 | ||||
3174 | 18 09 00 | -28 06 | 5m | lla - O | 1" - 2" | Bozyan / Opal / R.Gonzalez | 08 08 82 | Sgr W 605 | ||||
3175 | 18 12 00 | -29 45 | 5m | lla - O | 1" - 2" | Bozyan / Opal / R.Gonzalez | 08 08 82 | Sgr W 805 | ||||
3176 | 18 17 00 | -34 27 | 3m20s | lla - O | 1" - 2" | Bozyan / Opal / R.Gonzalez | 08 08 82 | Sgr W 1138 | ||||
3177 | 18 21 00 | -39 40 | 2m20s | lla - O | 1" - 2" | Bozyan / Opal / R.Gonzalez | 08 08 82 | Sgr W 1326 | ||||
3178 | 18 23 00 | -27 02 | 5m | lla - O | 1" - 2" | Bozyan / Opal / R.Gonzalez | 08 08 82 | Sgr W 1403 | ||||
3179 | 18 15 00 | -23 29 | 3m | lla - O | 1" - 2" | Bozyan / Opal / R.Gonzalez | 08 08 82 | Sgr W 990 | ||||
3180 | 18 28 00 | -31 29 | 5m | lla - O | 1" - 2" | Bozyan / Opal / R.Gonzalez | 08 08 82 | Sgr E 179 | ||||
3181 | 20 56 00 | -14 28 30 | 5m | lla - O | 1" - 2" | Bozyan / Opal / R.Gonzalez | 08 08 82 | Cap 21 - 22 | ||||
3182 | 21 35 30 | -19 27 | 5m | lla - O | 1" - 2" | Bozyan / Opal / R.Gonzalez | 08 08 82 | Cap 123 - 4 | ||||
3183 | 22 34 00 | -45 04 | 7m | lla - O | 1" - 2" | Bozyan / Opal / R.Gonzalez | 08 08 82 | Par 84 - 85 | ||||
3184 | 20 57 00 | -49 21 | 10m | lla - O | 1" - 2" | Bozyan / Opal / R.Gonzalez | 08 08 82 | 2054 - 492 | ||||
3185 | 23 19 00 | -05 15 | 2.5m+30s | lla - O | 1" - 2" | Bozyan / Opal / R.Gonzalez | 08 08 82 | Feije 110 | ||||
3186 | 23 19 00 | -05 15 | 2.5m+30s | lla - O | 1" - 2" | Bozyan / Opal / R.Gonzalez | 08 08 82 | Feije 110 | ||||
3187 | 02 34 00 | -16 12 | 5m+20s | lla - O | 1" - 2" | Bozyan / Opal / R.Gonzalez | 08 08 82 | Cet 15 - 17 | ||||
3188 | 02 35 00 | -08 57 | 5m+1m | lla - O | 1" - 2" | Bozyan / Opal / R.Gonzalez | 08 08 82 | Cet 22 - 23 | ||||
3189 | 02 52 00 | -20 18 | 5m+1m | lla - O | 1" - 2" | Bozyan / Opal / R.Gonzalez | 08 08 82 | Cet 37 - 41 | ||||
3190 | 17 14 59 | -62 47 21 | 20m | lla - O | GG 385 | 1" - 2" | Bozyan / Opal / R.Gonzalez | 09 08 82 | NG 300 | |||
3191 | 17 14 59 | -62 47 21 | 90m | lla - O | UG 1 | 1" - 2" | Bozyan / Opal / R.Gonzalez | 09 08 82 | NG 300 | |||
3192 | 20 36 23 | -23 37 36 | 20m | lla - O | GG 385 | 1" - 2" | Bozyan / Opal / R.Gonzalez | 09 08 82 | 2034 - 274 | |||
3193 | 19 16 51 | -60 34 18 | 90m | llla - F | H alpha | 1" - 2" | Bozyan / Opal / R.Gonzalez | 09 08 82 | NG 769 / 70 | |||
3194 | 19 14 01 | -54 40 15 | 90m | llla - F | GG 50 H alpha | 1" - 2" | Bozyan / Opal / R.Gonzalez | 09 08 82 | 1911 - 544 | |||
3195 | 21 28 00 | -22 17 | 10s | llla - F | 1" - 2" | Bozyan / Opal / R.Gonzalez | 09 08 82 | Vesta | ||||
3196 | 00 45 40 | -52 08 | 60m | llla - F | RG 1 | 1" - 2" | Bozyan / Opal / R.Gonzalez | 09 08 82 | 0045 - 522 | |||
3197 | 01 12 24 | -00 36 42 | 3s 30s | lla - O | GG 385 | 1" - 2" | Bozyan / Opal / R.Gonzalez | 09 08 82 | 9 Metis | |||
3198 | 01 19 07 | -41 15 29 | 20m | lla - O | GG 385 | 1" - 2" | Bozyan / Opal / R.Gonzalez | 09 08 82 | VV 578 | |||
3199 | 00 53 42 | -32 06 45 | 72m | llla - F | RG 1 | 1" - 2" | Bozyan / Opal / R.Gonzalez | 09 08 82 | 00 52 - 3210 | |||
3200 | 17 14 59 | -62 46 26 | 60m | lla - D | GG 495 | 1" - 2" | Bozyan / Opal / R.Gonzalez | 10 08 82 | NG 300 | |||
3201 | 17 27 16 | -62 26 29 | 30m | lla - O | GG 385 | 1" - 2" | Bozyan / Opal / R.Gonzalez | 10 08 82 | 1724 - 621 | |||
3202 | 17 27 16 | -62 26 29 | 90m | lla - O | UG 1 | 1" - 2" | Bozyan / Opal / R.Gonzalez | 10 08 82 | 1724 - 621 | |||
3203 | 18 50 26 | 10 17 39 | 3m 1m 30s | 103a - D | GG 495 | 1" - 2" | Bozyan / Opal / R.Gonzalez | 10 08 82 | N 6709 | |||
3204 | 18 50 26 | 10 17 39 | 3m 1m 30s | lla - O | GG 385 | 1" - 2" | Bozyan / Opal / R.Gonzalez | 10 08 82 | N 6709 | |||
3205 | 18 50 26 | 10 17 39 | 6m 3m 1m | lla - O | UG 1 | 1" - 2" | Bozyan / Opal / R.Gonzalez | 10 08 82 | N 6709 | |||
3206 | 19 16 51 | -60 34 18 | 180m | llla - F | H alpha | 1" - 2" | Bozyan / Opal / R.Gonzalez | 10 08 82 | NG 769 / 70 | |||
3207 | 22 45 59 | -65 08 12 | 60m | llla - F | RG 1 | 1" - 2" | Bozyan / Opal / R.Gonzalez | 10 08 82 | 2244 - 651 | |||
3208 | 01 18 58 | -41 22 17 | 60m | llla - F | RG 1 | 1" - 2" | Bozyan / Opal / R.Gonzalez | 10 08 82 | VV 578 | |||
3209 | 16 22 30 | -26 28.4 | 60m | 103a - D | GG 495 | 1" - 2" | Bozyan / Opal / R.Gonzalez | 11 08 82 | M 4 | |||
3210 | 19 16 51 | -60 32 34 | 60m | 103a - D | GG 495 | 1" - 2" | Bozyan / Opal / R.Gonzalez | 11 08 82 | N 6769 - 70 | |||
3211 | 19 13 59 | -54 40 17 | 60m | 103a - D | GG 495 | 1" - 2" | Bozyan / Opal / R.Gonzalez | 11 08 82 | 1911 - 544 | |||
3212 | 22 45 56 | -65 08 18 | 30m | lla - O | GG 385 | 1" - 2" | Bozyan / Opal / R.Gonzalez | 11 08 82 | 2244 - 651 | |||
3213 | 22 27 37 | -24 56 40 | 30m | lla - O | GG 385 | 1" - 2" | Bozyan / Opal / R.Gonzalez | 2225 - 250 | ||||
3214 | 18 35 17 | -23 56 19 | 15m | 103a - D | GG 495 | 1" - 2" | Bozyan / Opal / R.Gonzalez | M 22 | ||||
3215 | 19 16 51 | -60 34 16 | 60m | llla - F | RG 1 | 1" - 2" | Bozyan / Opal / R.Gonzalez | M 6769 - 70 | ||||
3216 | 22 27 37 | -24 56 43 | 60m | llla - F | RG 1 | 1" - 2" | Bozyan / Opal / R.Gonzalez | 2225 - 25º | ||||
3217 | 00 14 00 | -39 19 27 | 130m | llla - F | H alpha | 1" - 2" | Bozyan / Opal / R.Gonzalez | N 55 |
Last Updated on 8/27/99
By Jorge Marin
1983 Plate logs for 1.5-m telescope
November 1983 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
3218 | 00 20 18 | -74 30 | 5m | 098 - 04 | RG 610 | 1.5" | Bravo | 21 11 83 | SMC. C -area A | CTIO | ||
3219 | 00 30 24 | -75 01 | 5m | 098 - 04 | RG 610 | 1" | Bravo | 22 11 83 | SMC. C -area B | CTIO | ||
3220 | 00 35 18 | -74 15 | 5m | 098 - 04 | RG 610 | 1" | Bravo | 22 11 83 | SMC. C -area C | CTIO |
Last Updated on 8/27/99
By Guerra & Marin
1984 Plate logs for 1.5-m telescope
January 1984 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
3221 | 05 20 49.6 | -68 37 37 | 40m | lla - O bkd | GG 385 | <1" | Blanco / Cosgrove | 04 01 84 | LMC. RR - A | CTIO | ||
3222 | 05 20 49.6 | -68 37 37 | 40m | lla - O | GG 385 | <1" | Blanco / Cosgrove | 04 01 84 | LMC. RR - A | CTIO | ||
3223 | 05 20 49.6 | -68 37 37 | 30m | lla - O bkd | GG 385 | 1" | Blanco / Cosgrove | 04 01 84 | LMC. RR - A | CTIO | ||
3224 | 05 20 49.8 | -68 37 35 | 31m10s | lla - O bkd | GG 385 | <1" | Blanco / Hernandez | 05 01 84 | LMC. RR - A | CTIO | ||
3225 | 05 20 48.8 | -68 37 37 | 45m | lla - O bkd | GG 385 | 1" | Blanco / Cosgrove | 30 01 84 | LMC. RR - A | CTIO | ||
3226 | 05 20 48.8 | -68 37 37 | 45m | lla - O bkd | GG 385 | <1" | Blanco / Cosgrove | 30 01 84 | LMC. RR - A | CTIO | ||
3227 | 05 20 48.8 | -68 37 37 | 45m | lla - O bkd | GG 385 | 1.5" | Blanco / Cosgrove | 30 01 84 | LMC. RR - A | CTIO | ||
3228 | 05 20 48.8 | -68 37 37 | 45m | lla - O bkd | GG 385 | 2.5" | Blanco / Cosgrove | 30 01 84 | LMC. RR - A | CTIO | ||
3229 | 05 20 48.8 | -68 37 37 | 45m | lla - O bkd | GG 385 | Blanco / Cosgrove | 30 01 84 | LMC. RR - A | CTIO | |||
3230 | 05 20 48.8 | -68 37 37 | 45m | 103a-O bkd | GG 385 | 1.5" | Blanco / Cosgrove | 01 02 84 | LMC. RR - A | CTIO | ||
3231 | 05 20 48.8 | -68 37 37 | 45m | 103a-O bkd | GG 385 | 1.5" | Blanco / Cosgrove | 01 02 84 | LMC. RR - A | CTIO | ||
3232 | 05 20 48.8 | -68 37 37 | 45m | 103a-O bkd | GG 385 | 1" | Blanco / Cosgrove | 01 02 84 | LMC. RR - A | DESTROYED | CTIO | |
3233 | 05 20 48.8 | -68 37 37 | 45m | 103a-O bkd | GG 385 | 1" | Blanco / Cosgrove | 01 02 84 | LMC. RR - A | CTIO | ||
3234 | 05 20 48.8 | -68 37 37 | 45m | 103a-O bkd | GG 385 | 1" | Blanco / Cosgrove | 01 02 84 | LMC. RR - A | CTIO | ||
3235 | 05 20 48.8 | -68 37 37 | 45m | 103a-O bkd | GG 385 | 1.5" | Blanco / Cosgrove | 01 02 84 | LMC. RR - A | CTIO | ||
3236 | -61 47 | 10s each | lla - O bkd | GG 385 | 2" | Martin / Cosgrove | 20 01 84 | Focus Plate | CTIO | |||
3237 | -33 00 | 10s | lla - O bkd | GG 385 | 2" | Martin / Cosgrove | 20 01 84 | Focus Plate Zenit | CTIO | |||
3238 | -24 00 | 10s | lla - O bkd | GG 385 | 2" | Martin / Cosgrove | 20 01 84 | Focus Plate East | CTIO | |||
3239 | -36 00 | 10s | lla - O bkd | GG 385 | 2" | Martin / Cosgrove | 20 01 84 | Focus Plate West | CTIO | |||
3240 | +14 00 | 10s | lla - O bkd | GG 385 | 2" | Martin / Cosgrove | 20 01 84 | Focus Plate North | CTIO | |||
3241 | -65 00 | 10s | lla - O bkd | GG 385 | 2" | Martin / Cosgrove | 20 01 84 | Focus Plate South | CTIO | |||
3242 | 14 44 40.8 | -65 27 13 | 25m | lla - O bkd | GG 385 | 2" | Martin / Cosgrove | 20 01 84 | Test Plate | CTIO |
Last Updated on 8/27/99
By Guerra & Marin
July 1984 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
3243 | 18 05 45 | -31 10 08 | 20m | 103a - O | GG 385 | 2" - 3" | Blanco / Ugarte | 19 07 84 | 0.6 - 5.5 | Broken Ok" | CTIO | |
3244 | 18 06 47 | -32 09 14 | 20m | 103a - O | GG 385 | 1.5" - 5" | Blanco / Ugarte | 19 07 84 | 0.0 - 5.8 | |||
3245 | 18 05 45 | -31 10 08 | 20m | 103a - O | GG 385 | 2" - 4" | Blanco / Ugarte | 19 07 84 | 0.6 - 5.5 | CTIO | ||
3246 | 18 06 47 | -32 09 14 | 20m | 103a - O | GG 385 | 2" - 4" | Blanco / Ugarte | 19 07 84 | 0.0 - 5.8 | |||
3247 | 18 05 45 | -31 10 08 | 20m | 103a - O | GG 385 | 2" | Blanco / Ugarte | 20 07 84 | 0.6 - 5.5 | CTIO | ||
3248 | 18 06 47 | -32 09 14 | 20m | 103a - O | GG 385 | 2" | Blanco / Ugarte | 20 07 84 | 0.0 - 5.8 | |||
3249 | 18 05 45 | -31 10 18 | 20m | 103a - O | GG 385 | 1" - 2" | Blanco / Ugarte | 20 07 84 | 0.6 - 5.5 | CTIO | ||
3250 | 18 06 47 | -32 09 14 | 20m | 103a - O | GG 385 | 1" - 2" | Blanco / Ugarte | 20 07 84 | 0.0 - 5.8 | |||
3251 | 18 05 45 | -31 10 08 | 20m | 103a - O | GG 385 | 1" - 2" | Blanco / Ugarte | 20 07 84 | 0.6 - 5.5 | CTIO | ||
3252 | 18 06 47 | -32 09 14 | 20m | 103a - O | GG 385 | 2" | Blanco / Ugarte | 20 07 84 | 0.0 - 5.8 | |||
3253 | 18 05 45 | -31 10 08 | 20m | 103a - O | GG 385 | 2" | Blanco / Ugarte | 20 07 84 | 0.6 - 5.5 | CTIO | ||
3254 | 18 06 47 | -32 09 14 | 20m | 103a - O | GG 385 | 2" | Blanco / Ugarte | 20 07 84 | 0.0 - 5.8 | |||
3255 | 18 05 45 | -31 10 08 | 20m | 103a - O | GG 385 | 2" | Blanco / Ugarte | 20 07 84 | 0.6 - 5.5 | CTIO | ||
3256 | 18 06 47 | -32 09 14 | 20m | 103a - O | GG 385 | 2" | Blanco / Ugarte | 20 07 84 | 0.0 - 5.8 | |||
3257 | 18 05 45 | -31 10 08 | 20m | 103a - O | GG 385 | 1.5" | Blanco / Ugarte | 20 07 84 | 0.6 - 5.5 | CTIO | ||
3258 | 18 06 47 | -32 09 14 | 20m | 103a - O | GG 385 | 1.5" | Blanco / Ugarte | 20 07 84 | 0.0 - 5.8 | |||
3259 | 18 05 45 | -31 10 08 | 20m | 103a - O | GG 385 | 1.5" | Blanco / Ugarte | 20 07 84 | 0.6 - 5.5 | CTIO | ||
3260 | 18 06 47 | -32 09 14 | 20m | 103a - O | GG 385 | 1.5" | Blanco / Ugarte | 20 07 84 | 0.0 - 5.8 | |||
3261 | 18 05 45 | -31 10 08 | 20m | 103a - O | GG 385 | 1.5" | Blanco / Ugarte | 20 07 84 | 0.6 - 5.5 | CTIO | ||
3262 | 18 06 47 | -32 09 14 | 20m | 103a - O | GG 385 | 1.5" | Blanco / Ugarte | 20 07 84 | 0.0 - 5.8 |
Last Updated on 8/27/99
By Guerra & Marin
August 1984 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
3263 | 18 05 45 | -31 10 08 | 20m | 103a - O | GG 385 | 1" - 2" | Blanco / Ugarte | 01 08 84 | 0.6 - 5.5 | CTIO | ||
3264 | 18 06 47 | -32 09 14 | 20m | 103a - O | GG 385 | 1" - 2" | Blanco / Ugarte | 01 08 84 | 0.0 - 5.8 | |||
3265 | 18 05 45 | -31 10 08 | 20m | 103a - O | GG 385 | 1" - 2" | Blanco / Ugarte | 01 08 84 | 0.6 - 5.5 | CTIO | ||
3266 | 18 06 47 | -32 09 14 | 20m | 103a - O | GG 385 | 1" - 2" | Blanco / Ugarte | 01 08 84 | 0.0 - 5.8 | |||
3267 | 18 05 45 | -31 10 08 | 20m | 103a - O | GG 385 | 1" - 2" | Blanco / Ugarte | 01 08 84 | 0.6 - 5.5 | CTIO | ||
3268 | 18 06 47 | -32 09 14 | 20m | 103a - O | GG 385 | 1" - 2" | Blanco / Ugarte | 01 08 84 | 0.0 - 5.8 | |||
3269 | 18 05 45 | -31 10 08 | 20m | 103a - O | GG 385 | 2" - 3" | Blanco / Ugarte | 01 08 84 | 0.6 - 5.5 | CTIO | ||
3270 | 18 06 47 | -32 09 14 | 20m | 103a - O | GG 385 | 2" - 3" | Blanco / Ugarte | 01 08 84 | #REF! | |||
3271 | 18 05 45 | -31 10 08 | 20m | 103a - O | GG 385 | 2" - 3" | Blanco / Ugarte | 01 08 84 | 0.6 - 5.5 | CTIO | ||
3272 | 18 06 47 | -32 09 14 | 20m | 103a - O | GG 385 | 2" - 3" | Blanco / Ugarte | 01 08 84 | 0.0 - 5.8 | |||
3273 | 18 05 45 | -31 10 08 | 20m | 103a - O | GG 385 | 3" - 4" | Blanco / Ugarte | 01 08 84 | 0.6 - 5.5 | CTIO | ||
3274 | 18 05 45 | -31 10 08 | 30m | 103a - O | GG 385 | 2" - 3" | Blanco / Ugarte | 02 08 84 | 0.6 - 5.5 | CTIO | ||
3275 | 18 06 47 | -32 09 14 | 30m | 103a - O | GG 385 | 2" - 3" | Blanco / Ugarte | 02 08 84 | 0.0 - 5.8 | |||
3276 | 17 59 04.6 | -46 50 04 | 20m | 103a - O | GG 385 | 2" - 3" | Blanco / Ugarte | 02 08 84 | comet Neujmin | |||
3277 | 18 05 45 | -31 10 08 | 30m | 103a - O | GG 385 | 1" - 2" | Blanco / Ugarte | 02 08 84 | 0.6 - 5.5 | CTIO | ||
3278 | 18 06 47 | -32 09 14 | 30m | 103a - O | GG 385 | 1" - 5" | Blanco / Ugarte | 02 08 84 | 0.0 - 5.8 | |||
3279 | 18 05 45 | -31 10 08 | 30m | 103a - O | GG 385 | 2" - 5" | Blanco / Ugarte | 02 08 84 | 0.6 - 5.5 | CTIO | ||
3280 | 17 59 04.6 | -46 50 04 | 15m | 103a - O | GG 385 | 1" - 2" | Blanco / Ugarte | 02 08 84 | comet Neujmin | |||
3281 | 18 05 45 | -31 10 08 | 30m | 103a - O | GG 385 | 2" | Blanco / Ugarte | 02 08 84 | 0.6 - 5.5 | CTIO | ||
3282 | 18 06 47 | -32 08 14 | 10m | 103a - O | GG 385 | Blanco / Ugarte | 02 08 84 | 0.0 - 5.5 |
Last Updated on 8/27/99
By Jorge Marin
September 1984 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
3283 | 16 31 27 | -44 52 44 | 30m | 103a - O | GG 495 | Graham / Klemola / Bravo | 21 09 84 | HH - 57 | ||||
3284 | 17 09 25.6 | -23 18 35 | 30m | 103a - O | GG 495 | Graham / Klemola / Bravo | 21 09 84 | Ophiuchus | ||||
3285 | 19 00 41 | -36 59 06 | 30m | 103a - O | GG 385 | Graham / Klemola / Bravo | 21 09 84 | R Cr A | ||||
3286 | 00 24 27 | -71 48 24 | 90m | 103a - O | GG 385 | Graham / Klemola / Bravo | 21 09 84 | NGC 121 | ||||
3287 | 00 24 27 | -71 48 24 | 90m | 103a - O | GG 385 | Graham / Klemola / Bravo | 21 09 84 | NGC 121 | ||||
3288 | 00 24 27 | -71 48 24 | 60m | 103a - O | GG 385 | Graham / Klemola / Bravo | 21 09 84 | NGC 121 | ||||
3289 | 00 24 27 | -71 48 24 | 3m | 103a - O | GG 385 | Graham / Klemola / Bravo | 21 09 84 | NGC 121 | ||||
3290 | 17 09 25.6 | -23 18 35 | 30m | 103a - O | GG 385 | 1" | Graham / Klemola / Rivera | 22 09 84 | Ophiuchus | |||
3291 | 19 00 41 | -36 59 06 | 30m | 103a - O | GG 385 | 1" | Graham / Klemola / Rivera | 22 09 84 | R Cr A | |||
3292 | 00 24 27 | -71 48 24 | 90m | 103a - O | GG 385 | 2" | Graham / Klemola / Rivera | 22 09 84 | NGC 121 | |||
3293 | 00 24 27 | -71 48 24 | 90m | 103a - O | GG 385 | 1" - 2" | Graham / Klemola / Rivera | 22 09 84 | NGC 121 | |||
3294 | 00 24 27 | -71 48 24 | 90m | 103a - O | GG 385 | 1" | Graham / Klemola / Rivera | 22 09 84 | NGC 121 | |||
3295 | 00 24 27 | -71 48 24 | 90m | 103a - O | GG 385 | 1" | Graham / Klemola / Rivera | 22 09 84 | NGC 121 | |||
3296 | 17 09 25.3 | -23 18 49 | 30m | 103a - D | GG 495 | 2" | Graham / Klemola / Rivera | 23 09 84 | Ophiuchus | |||
3297 | 19 00 41 | -36 59 06 | 40m | 103a - O | GG 385 | 1.5" | Graham / Klemola / Rivera | 23 09 84 | R Cr A | |||
3298 | 17 09 25.6 | -23 18 35 | 45m | 103a - O | UG 1 | 1" - 2" | Graham / Klemola / Rivera | 24 09 84 | Ophiuchus | |||
3299 | 19 00 41 | -36 59 06 | 30m | 103a - O | GG 385 | 1.5" | Graham / Klemola / Rivera | 24 09 84 | R Cr A | |||
3300 | 00 24 27 | -71 48 24 | 90m | 103a - O | GG 385 | 1" - 2" | Graham / Klemola / Rivera | 24 09 84 | NGC 121 | |||
3301 | 00 24 27 | -71 48 24 | 90m | 103a - O | GG 385 | 1" - 4" | Graham / Klemola / Rivera | 24 09 84 | NGC 121 | |||
3302 | 00 24 27 | -71 48 24 | 90m | 103a - O | GG 385 | 2" - 3" | Graham / Klemola / Rivera | 24 09 84 | NGC 121 | |||
3303 | 00 24 27 | -71 48 24 | 72m | 103a - O | GG 385 | 2" - 3" | Graham / Klemola / Rivera | 24 09 84 | NGC 121 |
Last Updated on 8/27/99
By Guerra & Marin
December 1984 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
3304 | llla - F | GG 385 | 1.5" | Bass / Hernandez | 19 12 84 | focus | ||||||
3305 | 04 19 35.2 | -54 58 09 | 155m | llla - J | GG 385 | 1.5" - 2" | Bass / Hernandez | 19 12 84 | NGC 1566 |
Last Updated on 8/27/99
By Jorge Marin
1985 Plate logs for 1.5-m telescope
May 1985 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
3306 | 17 29 51 | -37 21 47 | 10s each | lla - O bkd | GG 385 | Blanco / Elicer / R.Gonzalez | 24 05 85 | focus | ||||
3307 | 18 08 06 | -31 10 20 | 25m | lla - O bkd | GG 385 | 2" | Blanco / Elicer / R.Gonzalez | 24 05 85 | 0.6 - 5.5 | CTIO | ||
3308 | 18 08 57 | -32 07 37 | 25m | lla - O bkd | GG 385 | 2" | Blanco / Elicer / R.Gonzalez | 24 05 85 | 0.6 - 5.8 | |||
3309 | 18 08 07.7 | -31 10 18 | 25m | lla - O bkd | GG 495 | 2" | Blanco / Elicer / R.Gonzalez | 24 05 85 | 0.6 - 5.5 | CTIO | ||
3310 | 18 08 58.1 | -32 07 34 | 25m | lla - O bkd | GG 385 | 2" | Blanco / Elicer / R.Gonzalez | 24 05 85 | 0.6 - 5.8 | |||
3311 | 18 08 08 | -31 10 13 | 25m | lla - O bkd | GG 385 | Blanco / Elicer / R.Gonzalez | 24 05 85 | 0.6 - 5.5 | CTIO | |||
3312 | 18 08 58 | -32 07 34 | 25m | lla - O bkd | GG 385 | 1.5" | Blanco / Elicer / R.Gonzalez | 24 05 85 | 0.6 - 5.8 | |||
3313 | 18 08 09 | -31 10 14 | 25m | lla - O bkd | GG 385 | 1.5" | Blanco / Elicer / R.Gonzalez | 24 05 85 | 0.6 - 5.5 | CTIO | ||
3313 | 18 08 09 | -31 10 14 | 25m | lla - O bkd | GG 385 | 1.5" | Blanco / Elicer / R.Gonzalez | 24 05 85 | 0.6 - 5.5 | |||
3314 | 18 08 51.7 | -32 07 32 | 25m | lla - O bkd | GG 385 | 1.5" | Blanco / Elicer / R.Gonzalez | 24 05 85 | 0.6 - 5.8 | |||
3315 | 18 08 09 | -31 10 14 | 25m | lla - O bkd | GG 385 | 1.5" | Blanco / Elicer / R.Gonzalez | 24 05 85 | 0.6 - 5.5 | CTIO | ||
3316 | 18 08 59 | -32 07 32 | 25m | lla - O bkd | GG 385 | 1.5" | Blanco / Elicer / R.Gonzalez | 24 05 85 | 0.6 - 5.8 | |||
3317 | 18 08 10 | -31 10 15 | 25m | lla - O bkd | GG 385 | 1.5" | Blanco / Elicer / R.Gonzalez | 24 05 85 | 0.6 - 5.5 | CTIO | ||
3318 | 18 08 59 | -32 07 32 | 25m | lla - O bkd | GG 385 | Blanco / Elicer / R.Gonzalez | 24 05 85 | 0.6 - 5.8 | ||||
3319 | 18 08 10 | -31 10 15 | 25m | lla - O bkd | GG 385 | 2" | Blanco / Elicer / R.Gonzalez | 24 05 85 | 0.6 - 5.5 | CTIO | ||
3320 | 18 08 59 | -32 07 32 | 25m | lla - O bkd | GG 385 | 1.5" | Blanco / Elicer / R.Gonzalez | 25 05 85 | 0.6 - 5.8 | |||
3321 | 18 08 10 | -31 10 15 | 25m | lla - O bkd | GG 385 | 1.5" | Blanco / Elicer / R.Gonzalez | 25 05 85 | 0.6 - 5.5 | CTIO | ||
3322 | 18 08 57.5 | -32 06 49 | 25m | lla - O bkd | GG 385 | 1.5" | Blanco / Elicer / R.Gonzalez | 25 05 85 | 0.6 - 5.8 | |||
3323 | 18 08 10 | -31 10 15 | 25m | lla - O bkd | GG 385 | 1.5" | Blanco / Elicer / R.Gonzalez | 25 05 85 | 0.6 - 5.5 | CTIO | ||
3324 | 18 08 58.2 | -32 06 46 | 25m | lla - O bkd | GG 385 | 1.5" | Blanco / Elicer / R.Gonzalez | 25 05 85 | 0.6 - 5.8 | |||
3325 | 18 08 10 | -31 10 15 | 25m | lla - O bkd | GG 385 | seeing variable | Blanco / Elicer / R.Gonzalez | 25 05 85 | 0.6 - 5.5 | CTIO | ||
3326 | 18 08 58.2 | -32 06 46 | 25m | lla - O bkd | GG 385 | 2" | Blanco / Elicer / R.Gonzalez | 25 05 85 | 0.6 - 5.8 | |||
3327 | 18 08 10 | -31 10 15 | 25m | lla - O bkd | GG 385 | 2" | Blanco / Elicer / R.Gonzalez | 25 05 85 | 0.6 - 5.5 | CTIO | ||
3328 | 18 08 58 | -32 06 40 | 25m | lla - O bkd | GG 385 | 1" | Blanco / Elicer / R.Gonzalez | 25 05 85 | 0.6 - 5.8 | |||
3329 | 18 08 10 | -31 10 15 | 25m | lla - O bkd | GG 385 | 1" - 2" | Blanco / Elicer / R.Gonzalez | 26 05 85 | 0.6 - 5.5 | CTIO | ||
3330 | 18 09 00 | -32 06 40 | 25m | lla - O bkd | GG 385 | seeing variable | Blanco / Elicer / R.Gonzalez | 25 05 85 | 0.6 - 5.8 | |||
3331 | 18 08 10.7 | -31 10 13 | 25m | lla - O bkd | GG 385 | 2" - 4" | Blanco / Elicer | 26 05 85 | 0.6 - 5.5 | |||
3332 | 18 08 58.8 | -32 07 35 | 25m | lla - O bkd | GG 385 | 2" - 4" | Blanco / Elicer | 26 05 85 | 0.6 - 5.8 | |||
3333 | 18 08 10.7 | -31 10 13 | 25m | lla - O bkd | GG 385 | 2" - 4" | Blanco / Elicer | 26 05 85 | 0.6 - 5.5 | CTIO | ||
3334 | 18 08 58.5 | -32 07 35 | 25m | lla - O bkd | GG 385 | 2" - 3" | Blanco / Elicer | 26 05 85 | 0.6 - 5.8 | |||
3335 | 18 08 11 | -31 10 10 | 25m | lla - O bkd | GG 385 | 2" - 3" | Blanco / Elicer | 26 05 85 | 0.6 - 5.5 | CTIO | ||
3336 | 18 08 59 | -32 07 29 | 25m | lla - O bkd | GG 385 | 2" - 3" | Blanco / Elicer | 26 05 85 | 0.6 - 5.8 | |||
3337 | 18 08 11 | -31 10 09 | 25m | lla - O bkd | GG 385 | 2" - 3" | Blanco / Elicer | 26 05 85 | 0.6 - 5.5 | CTIO | ||
3338 | 18 09 00 | -32 07 30 | 25m | lla - O bkd | GG 385 | 1" - 1.5" | Blanco / Elicer | 26 05 85 | 0.6 - 5.8 | |||
3339 | 18 08 12 | -31 10 07 | 25m | lla - O bkd | GG 385 | 2" | Blanco / Elicer | 26 05 85 | 0.6 - 5.5 | CTIO | ||
3340 | 18 08 59 | -32 07 31 | 25m | lla - O bkd | GG 385 | 1.5" | Blanco / Elicer | 26 05 85 | 0.6 - 5.8 | |||
3341 | 18 08 10 | -31 10 07 | 25m | lla - O bkd | GG 385 | 2.5" | Blanco / Elicer | 26 05 85 | 0.6 - 5.5 | CTIO | ||
3342 | 18 08 58 | -32 07 48 | 25m | lla - O bkd | GG 385 | 2" - 4" | Blanco / Elicer | 26 05 85 | 0.6 - 5.8 | |||
3343 | 18 08 10 | -31 10 07 | 25m | lla - O bkd | GG 385 | 2" - 4" | Blanco / Elicer | 27 05 85 | 0.6 - 5.5 | CTIO | ||
3344 | 18 08 58 | -32 07 48 | 25m | lla - O bkd | GG 385 | 1" - 2" | Blanco / Elicer | 27 05 85 | 0.6 - 5.8 | |||
3345 | 18 08 10 | -31 10 07 | 25m | lla - O bkd | GG 385 | 2" | Blanco / Elicer | 27 05 85 | 0.6 - 5.5 | |||
3346 | 18 08 58 | -32 07 48 | 25m | lla - O bkd | GG 385 | 2" | Blanco / Elicer | 27 05 85 | 0.6 - 5.8 | |||
3347 | 18 08 10 | -31 10 07 | 25m | lla - O bkd | GG 385 | 2" | Blanco / Elicer | 27 05 85 | 0.6 - 5.5 | CTIO | ||
3348 | 18 08 58 | -32 07 48 | 25m | lla - O bkd | GG 385 | 1" | Blanco / Elicer | 27 05 85 | 0.6 - 5.8 | |||
3349 | 18 08 10 | -31 10 07 | 25m | lla - O bkd | GG 385 | 1" | Blanco / Elicer | 27 05 85 | 0.6 - 5.5 | CTIO | ||
3350 | 18 08 58 | -32 07 48 | 25m | lla - O bkd | GG 385 | 1" | Blanco / Elicer | 27 05 85 | 0.6 - 5.8 | |||
3351 | 18 08 10 | -31 10 07 | 25m | lla - O bkd | GG 385 | 1.5" | Blanco / Elicer | 27 05 85 | 0.6 - 5.5 | CTIO | ||
3352 | 18 08 58 | -32 07 48 | 25m | lla - O bkd | GG 385 | 1.5" | Blanco / Elicer | 27 05 85 | 0.6 - 5.8 | |||
3353 | 18 08 10 | -31 10 07 | 25m | lla - O bkd | GG 385 | 1.5" | Blanco / Elicer | 27 05 85 | 0.6 - 5.5 | CTIO | ||
3354 | 18 08 58 | -32 07 48 | 25m | lla - O bkd | GG 385 | 1.5" | Blanco / Elicer | 27 05 85 | 0.6 - 5.8 | |||
3355 | 18 08 10 | -31 10 07 | 25m | lla - O bkd | GG 385 | 1.5" | Blanco / Elicer | 27 05 85 | 0.6 - 5.5 | CTIO | ||
3356 | 18 08 58 | -32 07 48 | 25m | lla - O bkd | GG 385 | 1.5" | Blanco / Elicer | 27 05 85 | 0.6 - 5.8 |
Last Updated on 8/27/99
By Guerra & Marin
August 1985 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
3357 | 12 24 57.8 | -39 03 43 | 120m | lla - O bkd | GG 385 | Jarvis / Cosgrove | 10 08 85 | IC 3370 | ||||
3358 | 18 58 48 | -64 58 06 | 120m | lla - O bkd | GG 385 | 3" - 4" | Jarvis / Cosgrove | 10 08 85 | NGC 6722 | |||
3359 | 19 14 14 | -60 38 12 | 120m | lla - O bkd | GG 495 | 4" - 5" | Jarvis / Cosgrove | 10 08 85 | NGC 6771 | |||
3360 | 21 59 50.3 | -32 14 04 | 150m | lla - D | GG 495 | Jarvis / Cosgrove | 10 08 85 | 466 - 946 | ||||
3361 | 18 05 45.2 | -31 10 05 | lla - O bkd | GG 385 | 1" - 3" | Blanco / Cosgrove | 11 08 85 | Field l | CTIO | |||
3362 | 18 06 47 | -32 09 14 | lla - O bkd | GG 385 | 1" - 3" | Blanco / Cosgrove | 11 08 85 | Field ll | ||||
3363 | 18 10 24 | -29 33 | lla - O bkd | GG 385 | 1" - 3" | Blanco / Cosgrove | 11 08 85 | Field lll | CTIO | |||
3364 | 18 10 24 | -29 33 | lla - O bkd | GG 385 | 1" - 3" | Blanco / Cosgrove | 11 08 85 | Field ll | CTIO | |||
3365 | 18 10 24 | -29 33 | lla - O bkd | GG 385 | 1" - 3" | Blanco / Cosgrove | 11 08 85 | Field ll | ||||
3366 | 18 10 24 | -29 33 | lla - O bkd | GG 385 | 1" - 3" | Blanco / Cosgrove | 11 08 85 | Field lll | CTIO | |||
3367 | 18 10 24 | -29 33 | lla - O bkd | GG 385 | 1" - 3" | Blanco / Cosgrove | 11 08 85 | Field l | CTIO | |||
3368 | 18 10 24 | -29 33 | lla - O bkd | GG 385 | 1" - 3" | Blanco / Cosgrove | 11 08 85 | Field ll | ||||
3369 | 18 10 24 | -29 33 | lla - O bkd | GG 385 | 1" - 3" | Blanco / Cosgrove | 11 08 85 | Field lll | CTIO | |||
3370 | 18 10 24 | -29 33 | lla - O bkd | GG 385 | 4" | Blanco / Cosgrove | 11 08 85 | Field l | CTIO | |||
3371 | 18 10 24 | -29 33 | lla - O bkd | GG 385 | 4" | Blanco / Cosgrove | 11 08 85 | Field ll | ||||
3372 | 18 10 24 | -29 33 | lla - O bkd | GG 385 | 1" | Blanco / Cosgrove | 12 08 85 | Field l | CTIO | |||
3373 | 18 10 24 | -29 33 | lla - O bkd | GG 385 | 1" | Blanco / Cosgrove | 12 08 85 | Field ll | ||||
3374 | 18 10 24 | -29 33 | lla - O bkd | GG 385 | 1" | Blanco / Cosgrove | 12 08 85 | Field lll | CTIO | |||
3375 | 18 10 24 | -29 33 | lla - O bkd | GG 385 | 1" | Blanco / Cosgrove | 12 08 85 | Field l | CTIO | |||
3376 | 18 10 24 | -29 33 | lla - O bkd | GG 385 | 1" - 3" | Blanco / Cosgrove | 12 08 85 | Field ll | ||||
3377 | 18 10 24 | -29 33 | lla - O bkd | GG 385 | 1" - 3" | Blanco / Cosgrove | 12 08 85 | Field lll | CTIO | |||
3378 | 18 10 24 | -29 33 | lla - O bkd | GG 385 | 1" - 3" | Blanco / Cosgrove | 12 08 85 | Field l | CTIO | |||
3379 | 18 10 24 | -29 33 | lla - O bkd | GG 385 | 1" - 3" | Blanco / Cosgrove | 12 08 85 | Field ll | ||||
3380 | 18 10 24 | -29 33 | lla - O bkd | GG 385 | 1" - 3" | Blanco / Cosgrove | 12 08 85 | Field lll | CTIO | |||
3381 | 18 10 24 | -29 33 | lla - O bkd | GG 385 | 1" - 3" | Blanco / Cosgrove | 12 08 85 | Field l | CTIO | |||
3382 | 18 10 24 | -29 33 | lla - O bkd | GG 385 | 1" - 3" | Blanco / Cosgrove | 12 08 85 | Field ll | ||||
3383 | 18 10 24 | -29 33 | lla - O bkd | GG 385 | 2" - 3" | Blanco / Cosgrove | 12 08 85 | Field ll | ||||
3384 | 18 10 24 | -29 33 | lla - O bkd | GG 385 | 2" - 4" | Blanco / Cosgrove | 12 08 85 | Field l | CTIO | |||
3385 | 18 10 24 | -29 33 | lla - O bkd | GG 385 | 2" - 4" | Blanco / Cosgrove | 12 08 85 | Field ll | ||||
3386 | 18 05 45.2 | -31 10 05 | 20m | lla - O bkd | GG 385 | Blanco / Cosgrove | 13 08 85 | Field l | CTIO | |||
3387 | 18 06 47 | -32 09 14 | 20m | lla - O bkd | Blanco / Cosgrove | 13 08 85 | Field ll | |||||
3388 | 18 10 24 | -29 33 01 | 20m | lla - O bkd | GG 385 | Blanco / Cosgrove | 13 08 85 | Field lll | CTIO | |||
3389 | 18 10 24 | -29 33 01 | 20m | lla - O bkd | GG 385 | Blanco / Cosgrove | 13 08 85 | Field l | CTIO | |||
3390 | 18 10 24 | -29 33 01 | 20m | lla - O bkd | Blanco / Cosgrove | 13 08 85 | Field ll | |||||
3391 | 18 10 24 | -29 33 01 | 20m | lla - O bkd | GG 385 | Blanco / Cosgrove | 13 08 85 | Field lll | CTIO | |||
3392 | 18 10 24 | -29 33 01 | 20m | lla - O bkd | GG 385 | Blanco / Cosgrove | 13 08 85 | Field l | CTIO | |||
3393 | 18 10 24 | -29 33 01 | 20m | lla - O bkd | Blanco / Cosgrove | 13 08 85 | Field ll | |||||
3394 | 18 10 24 | -29 33 01 | 20m | lla - O bkd | GG 385 | Blanco / Cosgrove | 13 08 85 | Field l | CTIO | |||
3395 | 18 10 24 | -29 33 01 | 20m30s | lla - O bkd | Blanco / Cosgrove | 13 08 85 | Field ll | |||||
3396 | 18 10 24 | -29 33 01 | 20m | lla - O bkd | GG 385 | Blanco / Cosgrove | 13 08 85 | Field l | CTIO | |||
3397 | 18 10 24 | -29 33 01 | 20m | lla - O bkd | Blanco / Cosgrove | 13 08 85 | Field ll | |||||
3398 | 18 10 24 | -29 33 01 | 20m | lla - O bkd | GG 385 | Blanco / Cosgrove | 14 08 85 | Field l | CTIO | |||
3399 | 18 10 24 | -29 33 01 | 20m | lla - O bkd | GG 385 | Blanco / Cosgrove | 14 08 85 | Field lll | CTIO | |||
3400 | 18 10 24 | -29 33 01 | 20m | lla - O bkd | GG 385 | Blanco / Cosgrove | 15 08 85 | Field l | CTIO | |||
3401 | 18 10 24 | -29 33 01 | 20m | lla - O bkd | Blanco / Cosgrove | 15 08 85 | Field ll | |||||
3402 | 18 10 24 | -29 33 01 | 20m04s | lla - O bkd | GG 385 | Blanco / Cosgrove | 15 08 85 | Field lll | CTIO | |||
3403 | 18 10 24 | -29 33 01 | 20m | lla - O bkd | GG 385 | Blanco / Cosgrove | 15 08 85 | Field l | CTIO | |||
3404 | 18 10 24 | -29 33 01 | 20m | lla - O bkd | Blanco / Cosgrove | 15 08 85 | Field ll | |||||
3405 | 18 10 24 | -29 33 01 | 3m | lla - O bkd | GG 385 | Blanco / Cosgrove | 15 08 85 | Field lll | CTIO | |||
3406 | 18 10 24 | -29 33 01 | 20m | lla - O bkd | GG 385 | Blanco / Cosgrove | 15 08 85 | Field lll | CTIO | |||
3407 | 18 10 24 | -29 33 01 | 20m | lla - O bkd | GG 385 | Blanco / Cosgrove | 15 08 85 | Field l | CTIO | |||
3408 | 18 10 24 | -29 33 01 | 20m | lla - O bkd | Blanco / Cosgrove | 15 08 85 | Field ll | |||||
3409 | 18 10 24 | -29 33 01 | 20m | lla - D bkd | GG 395 | Blanco / Cosgrove | 15 08 85 | Field l | CTIO | |||
3410 | 18 10 24 | -29 33 01 | 20m | lla - D bkd | GG 395 | Blanco / Cosgrove | 15 08 85 | Field ll | CTIO | |||
3411 | 18 10 24 | -29 33 01 | 20m | lla - D bkd | GG 395 | Blanco / Cosgrove | 15 08 85 | Field lll | CTIO | |||
3412 | 18 10 24 | -29 33 01 | 20m | lla - O bkd | GG 385 | Blanco / Cosgrove | 15 08 85 | Field l | CTIO | |||
3413 | 18 10 24 | -29 33 01 | 20m | lla - O bkd | GG 385 | Blanco / Cosgrove | 15 08 85 | Field ll | ||||
3414 | 18 10 24 | -29 33 01 | 20m | lla - O bkd | GG 385 | 1.5" | Blanco / Cosgrove | 15 08 85 | Field lll | CTIO | ||
3415 | 18 05 45.5 | -31 10 07 | 20m | lla -- O | GG 385 | 2" - 3" | Blanco / Ugarte | 16 08 85 | Field l | CTIO | ||
3416 | 18 06 47 | -32 09 14 | 20m | lla -- O | GG 385 | 2" - 3" | Blanco / Ugarte | 16 08 85 | Field ll | |||
3417 | 18 10 24 | -29 33 01 | 20m | lla -- O | GG 385 | 2" - 3" | Blanco / Ugarte | 16 08 85 | Field lll | CTIO | ||
3418 | 18 10 24 | -29 33 01 | 20m | lla -- O | GG 385 | 2" - 3" | Blanco / Ugarte | 16 08 85 | Field l | CTIO | ||
3419 | 18 10 24 | -29 33 01 | 20m | lla -- O | GG 385 | 2" - 3" | Blanco / Ugarte | 16 08 85 | Field ll | |||
3420 | 18 10 24 | -29 33 01 | 20m | lla -- O | GG 385 | 1" | Blanco / Ugarte | 16 08 85 | Field lll | CTIO | ||
3421 | 18 10 24 | -29 33 01 | 20m | lla -- O | GG 385 | 1" | Blanco / Ugarte | 16 08 85 | Field l | CTIO | ||
3422 | 18 10 24 | -29 33 01 | 20m | lla -- O | GG 385 | 1" - 2" | Blanco / Ugarte | 16 08 85 | Field ll | |||
3423 | 18 10 24 | -29 33 01 | 20m | lla -- O | GG 385 | 1" - 2" | Blanco / Ugarte | 16 08 85 | Field lll | CTIO | ||
3424 | 18 10 24 | -29 33 01 | 20m | lla -- O | GG 385 | 2" - 4" | Blanco / Ugarte | 16 08 85 | Field l | CTIO | ||
3425 | 18 10 24 | -29 33 01 | 20m | lla -- O | GG 385 | 1" - 2" | Blanco / Ugarte | 16 08 85 | Field lll | CTIO | ||
3426 | 18 10 24 | -29 33 01 | 20m | lla -- O | GG 385 | 1" - 2" | Blanco / Ugarte | 16 08 85 | Field lll | |||
3427 | 18 10 24 | -29 33 01 | 20m | lla -- O | GG 385 | 1" - 2" | Blanco / Ugarte | 16 08 85 | Field l | CTIO | ||
3428 | 18 10 24 | -29 33 01 | 20m | lla -- O | GG 385 | 1" - 2" | Blanco / Ugarte | 16 08 85 | Field ll | |||
3429 | 18 10 24 | -29 33 01 | 20m | lla -- O | GG 385 | 1" - 2" | Blanco / Ugarte | 16 08 85 | Field ll | CTIO | ||
3430 | 18 10 24 | -29 33 01 | 15m | lla - D | GG 395 | 1" - 2" | Blanco / Ugarte | 16 08 85 | Field lll | CTIO | ||
3431 | 18 10 24 | -29 33 01 | 15m | lla - D | GG 395 | 3" | Blanco / Ugarte | 16 08 85 | Field l | CTIO | ||
3432 | 18 10 24 | -29 33 01 | 15m | lla - D | GG 395 | 3" | Blanco / Ugarte | 16 08 85 | Field ll | CTIO |
Last Updated on 8/27/99
By Jorge Marin
1986 Plate logs for 1.5-m telescope
May 1986 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
3433 | 18 10 24 | -29 33 02 | 25m | lla - O bkd | GG 385 | 1.4" | Blanco / Hernandez | 31 05 86 | Field lll | CTIO | ||
3434 | 18 06 47 | -32 09 14 | 25m | lla - O | GG 385 | 1.4" | Blanco / Hernandez | 31 05 86 | Field ll | |||
3435 | 18 10 24 | -29 33 01 | 25m | lla - O bkd | GG 385 | 1.4" | Blanco / Hernandez | 31 05 86 | Field lll | CTIO | ||
3436 | 18 05 36.8 | -31 10 49 | 25m | lla - O bkd | GG 385 | 1.4" | Blanco / Hernandez | 31 05 86 | Field l | CTIO | ||
3437 | 18 05 36.8 | -31 10 49 | 25m | lla - O bkd | GG 385 | 1.4" | Blanco / Hernandez | 31 05 86 | Field lll | CTIO | ||
3438 | 18 05 36.8 | -31 10 49 | 25m | lla - O | GG 385 | 1.4" | Blanco / Hernandez | 31 05 86 | Field ll | |||
3439 | 18 05 36.8 | -31 10 49 | 25m | lla - O bkd | GG 385 | 1.4" | Blanco / Hernandez | 31 05 86 | Field lll | CTIO | ||
3440 | 18 05 36.8 | -31 10 49 | 25m | lla - O bkd | GG 385 | 1.4" | Blanco / Hernandez | 31 05 86 | Field l | CTIO | ||
3441 | 18 05 36.8 | -31 10 49 | 25m | lla - O bkd | GG 385 | 1.4" | Blanco / Hernandez | 31 05 86 | Field lll | CTIO | ||
3442 | 18 05 36.8 | -31 10 49 | 25m | lla - D bkd | GG 395 | 1.4" | Blanco / Hernandez | 31 05 86 | Field lll | CTIO | ||
3443 | 18 06 45 | -32 09 14 | 25m | lla - D bkd | GG 395 | 1" - 3" | Blanco / Hernandez | 31 05 86 | Field ll | CTIO | ||
3444 | 18 06 45 | -32 09 14 | 25m | lla - O bkd | GG 385 | 1" - 3" | Blanco / Hernandez | 31 05 86 | Field lll | CTIO | ||
3445 | 18 06 45 | -32 09 14 | 25m | lla - D bkd | GG 395 | 1" - 3" | Blanco / Hernandez | 31 05 86 | Field l | CTIO |
Last Updated on 8/27/99
By Guerra & Marin
June 1986 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
3446 | 18:10:31.2 | -29 33 57 | 25m | lla - O bkd | GG 385 | 2" - 3" | Blanco / Hernandez | 01 06 86 | Field lll | CTIO | ||
3447 | 18 06 53 | -32 10 15 | 25m | lla - O | GG 385 | 2" - 3" | Blanco / Hernandez | 01 06 86 | Field ll | |||
3448 | 18 05 47.2 | -31 11 56 | 25m | lla - O bkd | GG 385 | 2" - 3" | Blanco / Hernandez | 01 06 86 | Field l | CTIO | ||
3449 | 18 10 32 | -29 33 53 | 25m | lla - O bkd | GG 385 | 2" - 3" | Blanco / Hernandez | 01 06 86 | Field lll | CTIO | ||
3450 | 18 10 32 | -29 33 53 | 25m | lla - O | GG 385 | 2" - 3" | Blanco / Hernandez | 01 06 86 | Field ll | |||
3451 | 18 10 32 | -29 33 53 | 25m | lla - O | GG 385 | 2" - 3" | Blanco / Hernandez | 01 06 86 | Field lll | CTIO | ||
3452 | 18 10 32 | -29 33 53 | 25m | lla - O | GG 385 | 2" - 3" | Blanco / Hernandez | 01 06 86 | Field l | CTIO | ||
3453 | 18 10 32 | -29 33 53 | 25m | lla - O | GG 385 | 2" - 3" | Blanco / Hernandez | 01 06 86 | Field lll | CTIO | ||
3454 | 18 10 32 | -29 33 53 | 25m | lla - D | GG 495 | 1" - 2" | Blanco / Hernandez | 01 06 86 | Field ll | |||
3455 | 18 10 32 | -29 33 53 | 25m | lla - D | GG 395 | 1" - 2" | Blanco / Hernandez | 01 06 86 | Field lll | CTIO | ||
3456 | 18 10 32 | -29 33 53 | 25m | lla - D | GG 395 | 1" - 2" | Blanco / Hernandez | 01 06 86 | Field l | CTIO | ||
3457 | 18 10 32 | -29 33 53 | 25m | lla - O | GG 385 | 1" - 2" | Blanco / Hernandez | 01 06 86 | Field lll | CTIO | ||
3458 | 18 10 32 | -29 33 53 | 25m | lla - O | GG 385 | 1" - 2" | Blanco / Hernandez | 01 06 86 | Field l | |||
3459 | 18 05 47.6 | -31 12 01 | 25m | lla - O bkd | GG 385 | 1.5" - 2" | Blanco / Hernandez | 02 06 86 | Field l | CTIO | ||
3460 | 18 05 47.6 | -31 12 01 | 25m | lla - O bkd | GG 385 | 1.5" - 2" | Blanco / Hernandez | 02 06 86 | Field lll | CTIO | ||
3461 | 18 05 47.6 | -31 12 01 | 25m | lla - O | GG 385 | 1.5" - 2" | Blanco / Hernandez | 02 06 86 | Field ll | |||
3462 | 18 05 47.6 | -31 12 01 | 25m | lla - O bkd | GG 385 | 1.5" - 2" | Blanco / Hernandez | 02 06 86 | Field lll | CTIO | ||
3463 | 18 24 11 | -33 54 58 | 30m | IV N | RG 2 | 1.5" | Blanco / Hernandez | 02 06 86 | M Dwarf | |||
3464 | 18 08 36 | -31 47 00 | 25m | lV N bkd | RG 610 | 1" - 1.5" | Blanco / Hernandez | 02 06 86 | NGC 6558 | CTIO | ||
3465 | 18 08 36 | -31 47 00 | 25m | lV N bkd | RG 610 | 1" - 1.5" | Blanco / Hernandez | 02 06 86 | Field ll | CTIO | ||
3466 | 18 08 36 | -31 47 00 | 25m | lla - O bkd | GG 385 | 1" - 1.5" | Blanco / Hernandez | 02 06 86 | Field lll | CTIO | ||
3467 | 18 08 36 | -31 47 00 | 25m | lla - O bkd | GG 385 | 1" - 1.5" | Blanco / Hernandez | 02 06 86 | Field l | CTIO | ||
3468 | 18 08 36 | -31 47 00 | 25m | lla - O bkd | GG 385 | 1" - 1.5" | Blanco / Hernandez | 02 06 86 | Field lll | CTIO | ||
3469 | 18 08 36 | -31 47 00 | 25m | lla - O | GG 385 | 1.5" - 2" | Blanco / Hernandez | 02 06 86 | Field ll | |||
3470 | 18 08 36 | -31 47 00 | 25m | lla - O bkd | GG 385 | 1.5" - 2" | Blanco / Hernandez | 02 06 86 | Field lll | CTIO | ||
3471 | 18 08 36 | -31 47 00 | 25m | lla - O bkd | GG 385 | 1.5" - 2" | Blanco / Hernandez | 02 06 86 | Field l | CTIO | ||
3472 | 18 08 36 | -31 47 00 | 25m | lla - O bkd | GG 385 | 2" - 3" | Blanco / Hernandez | 02 06 86 | Field ll | CTIO | ||
3473 | 18 08 36 | -31 47 00 | 25m | lla - O | GG 385 | 2" - 3" | Blanco / Hernandez | 02 06 86 | Field ll |
Last Updated on 8/27/99
By Guerra & Marin
December 1986 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
3474 | 01 02 22.3 | -71 26 25 | 60m | 103a - O | 2" | Baird / Bravo | 06 12 86 | SMC Field 0102 - 71.5 | ||||
3475 | 01 02 22.3 | -71 26 25 | 60m | HD3L9 batch | 2" | Baird / Bravo | 06 12 86 | SMC Field 0102 - 71.5 | ||||
3476 | 06 30 15.5 | -64 18 29 | 10m | lla - O baked | GG 385 | 1" | Suntzeff - Bravo | 06 12 86 | NGC 2257 | |||
3477 | 06 30 14.9 | -64 19 03 | 47m | lla - O baked | GG 385 | 1" | Suntzeff - Bravo | 06 12 86 | NGC 2257 | |||
3478 | 01 02 19.1 | -71 26 37 | 70m | 103a - D | GG 495 | 1" | Baird / Bravo | 07 12 86 | SMC Field 0102 - 71.5 | |||
3479 | 01 02 19.1 | -71 26 37 | 70m | 103a - D HDIKI batch | GG 495 | 1" | Baird / Bravo | 07 12 86 | SMC Field 0102 - 71.5 | |||
3480 | 01 02 19.1 | -71 26 37 | 70m | 103a - D | GG 495 | 1" | Baird / Bravo | 07 12 86 | SMC Field 0102 - 71.5 | |||
3481 | 06 29 58.7 | -64 17 50 | 90m | lla - O baked | GG 385 | 2" | Suntzeff - Bravo | 07 12 86 | NGC 2257 | |||
3482 | 06 29 58.7 | -64 17 50 | 40m | lla - O bkd | GG 385 | 2" | Suntzeff - Bravo | 07 12 86 | NGC 2257 | CTIO | ||
3483 | 01 02 17 | -71 26 24 | 60m | 103a - D | GG 495 | 2" | Baird / Bravo | 08 12 86 | SMC Field 0102 - 71.5 | |||
3484 | 01 02 17 | -71 26 24 | 60m | 103a - D HDIKI batch | GG 495 | 2" | Baird / Bravo | 08 12 86 | SMC Field 0102 - 71.5 | |||
3485 | 06 29 56.6 | -64 17 54 | 90m | lla - O baked | GG 385 | 1" | Suntzeff - Bravo | 08 12 86 | NGC 2257 | |||
3486 | 06 29 56.6 | -64 17 54 | 90m | lla - O baked | GG 385 | 2" | Suntzeff - Bravo | 08 12 86 | NGC 2257 | |||
3487 | 01 02 19.3 | -71 26 27 | 90m | lla - D bkd | GG 495 | 1.5" | Baird / Bravo | 09 12 86 | SMC Field 0102 - 71.5 | |||
3488 | 01 02 19.3 | -71 26 27 | 75m | lla - D IH4 batch | GG 495 | 1" | Baird / Bravo | 09 12 86 | SMC Field 0102 - 71.5 | |||
3489 | 06 29 59.7 | -64 17 46 | 90m | lla - O baked | GG 385 | 1.5" | Suntzeff - Bravo | 09 12 86 | NGC 2257 | |||
3490 | 06 29 59.7 | -64 17 46 | 90m | lla - O baked | GG 385 | 1.5" | Suntzeff - Bravo | 09 12 86 | NGC 2257 | |||
3491 | 01 02 20.9 | 71 26 29 | 70m | lla - D bkd | GG 495 | 2" | Baird / Bravo | 10 12 86 | SMC Field 0102 - 71.5 | |||
3492 | 01 02 20.9 | 71 26 29 | 60m | lla - D bkd | GG 495 | Baird / Bravo | 10 12 86 | SMC Field 0102 - 71.5 | ||||
3493 | 01 02 20.9 | 71 26 29 | 45m | 103a - O | Baird / Bravo | 10 12 86 | SMC Field 0102 - 71.5 | |||||
3494 | 05 13 27.4 | -65 28 21 | 5m | lla - D bkd | GG 495 | Baird / Bravo | 10 12 86 | LMC NGC 1866 | ||||
3495 | 05 13 27.4 | -65 28 21 | 15m | lla - D bkd | GG 495 | 2" | Baird / Bravo | 10 12 86 | LMC NGC 1866 | |||
3496 | 05 13 27.4 | -65 28 21 | 45m | lla - D bkd | GG 495 | 2" | Baird / Bravo | 10 12 86 | LMC NGC 1866 | |||
3497 | 01 02 19.5 | -71 26 25 | 60m | 103a - O / HD3L9 | 2.5" | Baird / Bravo | 11 12 86 | SMC Field 0102 - 71.5 | ||||
3498 | 01 02 19.5 | -71 26 25 | 60m | 103a - O / HD3L9 | 3" | Baird / Bravo | 11 12 86 | SMC Field 0102 - 71.5 | ||||
3499 | 01 02 19.5 | -71 26 25 | 60m | lla - D bkd | GG 495 | 1.5" | Baird / Bravo | 11 12 86 | SMC Field 0102 - 71.5 | |||
3500 | 05 13 28 | -65 28 27 | 45m | 103a - O | 2" | Baird / Bravo | 11 12 86 | LMC NGC 1866 | ||||
3501 | 05 13 28 | -65 28 27 | 15m | 103a - O | 2" | Baird / Bravo | 11 12 86 | LMC NGC 1866 | ||||
3502 | 05 13 28 | -65 28 27 | 5m | 103a - O | 1" | Baird / Bravo | 11 12 86 | LMC NGC 1866 | ||||
3503 | 02 36 18 | -30 03 | 13*20s | 103a - D | Blanco / Gonzalez / Ugarte | 23 12 86 | focus | |||||
3504 | 05 22 00 | -34 57 | Blanco / Gonzalez / Ugarte | 23 12 86 | focus | |||||||
3505 | 02 08 33 | -30 50 20 | 15*20s | Weller / Ugarte | 24 12 86 | focus | ||||||
3506 | 03 00 45 | -30 50 20 | 0.5m | Weller / Ugarte | 24 12 86 | out of focus images | ||||||
3507 | 05 25 00 | -35 29 | 5m | Weller / Ugarte / Saá | 24 12 86 | Hartnann plate | ||||||
3508 | Weller / Ugarte / Saá | 24 12 86 | Hartnann plate | |||||||||
3509 | Weller / Ugarte / Saá | 24 12 86 | out of focus zenith | |||||||||
3510 | Weller / Ugarte / Saá | 24 12 86 | out of focus zenith | |||||||||
3511 | 20s | Weller / Ugarte / Saá | 24 12 86 | out of focus zenith | ||||||||
3512 | Weller / Ugarte / Saá | 24 12 86 | Hartnann zenith | |||||||||
3513 | Weller / Saá / Bravo | 24 12 86 | Focus plate | |||||||||
3514 | Weller / Saá / Bravo | 24 12 86 | Focus plate | |||||||||
3515 | Weller / Saá / Bravo | 24 12 86 | focus plate way out of focus |
Last Updated on 8/27/99
By Jorge Marin
1987 Plate logs for 1.5-m telescope
February 1987 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
3516 | 10s | Weller / Saá / Tirado | 11 02 87 | focus plate | ||||||||
3517 | 10s | Weller / Saá / Tirado | 11 02 87 | focus plate | ||||||||
3518 | 15s | Weller / Saá / Tirado | 12 02 87 | focus plate | ||||||||
3519 | 15s | Weller / Saá / Tirado | 12 02 87 | focus plate | ||||||||
3520 | 15s | Weller / Saá / Tirado | 12 02 87 | focus plate | ||||||||
3521 | 15s | Weller / Saá / Tirado | 12 02 87 | focus plate | ||||||||
3522 | 10s | Weller / Saá / Tirado | 12 02 87 | focus plate | ||||||||
3523 | 10s | Weller / Saá / Tirado | 13 02 87 | focus plate | ||||||||
3524 | 10s | Weller / Saá / Tirado | 13 02 87 | focus plate | ||||||||
3525 | 10s | Weller / Saá / Tirado | 13 02 87 | focus plate | ||||||||
3526 | 10s | Weller / Saá / Tirado | 13 02 87 | focus plate | ||||||||
3527 | zenith | 10s | Weller / Saá / Tirado | 13 02 87 | focus plate | |||||||
3528 | zenith | 10s | Weller / Saá / Tirado | 13 02 87 | focus plate | |||||||
3529 | zenith | 10s | Weller / Saá / Tirado | 13 02 87 | focus plate | |||||||
3530 | zenith | 15s | Weller / Saá / Tirado | 13 02 87 | focus plate | |||||||
3531 | zenith | 10s | Weller / Saá / Tirado | 13 02 87 | focus plate | |||||||
3532 | zenith | 10s | Weller / Gonzalez / Tirado | 14 02 87 | focus plate | |||||||
3533 | zenith | 10s | Weller / Gonzalez / Tirado | 14 02 87 | focus plate | |||||||
3534 | zenith | 10s | Weller / Gonzalez / Tirado | 14 02 87 | focus plate | |||||||
3535 | zenith | 10s | Weller / Gonzalez / Tirado | 14 02 87 | focus plate | |||||||
3536 | zenith | 10s | Weller / Gonzalez / Tirado | 14 02 87 | focus plate | |||||||
3537 | zenith | 10s | Weller / Gonzalez / Tirado | 14 02 87 | focus plate | |||||||
3538 | zenith | 10s | Weller / Gonzalez / Tirado | 14 02 87 | focus plate | |||||||
3539 | zenith | 10s | Weller / Gonzalez / Tirado | 14 02 87 | focus plate | |||||||
3540 | zenith | 60s | Weller / Gonzalez / Tirado | 14 02 87 | test exposure | |||||||
3541 | zenith | 10s | Weller / Gonzalez / Tirado | 14 02 87 | focus plate | |||||||
3542 | zenith | 60s | Weller / Gonzalez / Tirado | 14 02 87 | test exposure | |||||||
3543 | zenith | 10s each | Weller / Gonzalez / Tirado | 14 02 87 | focus exposure | |||||||
3544 | zenith | 60s | Weller / Gonzalez / Tirado | 14 02 87 | test exposure | |||||||
3545 | zenith | 60s | Weller / Gonzalez / Tirado | 14 02 87 | test exposure |
Last Updated on 8/27/99
By Guerra & Marin
March 1987 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
3546 | 05 35 50 | -69 18 00 | 60s | lV N | RG 610 | Blanco / Cosgrove | 08 03 87 | Super Nova 1987-1 | CTIO | |||
3547 | 05 35 50 | -69 18 00 | 60s | lV N | RG 610 | Blanco / Cosgrove | 08 03 87 | Super Nova 1987-1 | CTIO | |||
3548 | 05 35 50 | -69 18 00 | 60s | lV N | RG 610 | Blanco / Cosgrove | 08 03 87 | Super Nova 1987-1 | CTIO | |||
3549 | 05 35 50 | -69 18 00 | 60s | lV N | RG 610 | Blanco / Cosgrove | 08 03 87 | Super Nova 1987-1 | CTIO | |||
3550 | 05 35 50 | -69 18 00 | 2m | lV N | RG 610 | Blanco / Cosgrove | 08 03 87 | Super Nova 1987-1 | CTIO | |||
3551 | 05 35 50 | -69 18 00 | 2m | lV N | RG 610 | Blanco / Cosgrove | 08 03 87 | Super Nova 1987-1 | CTIO | |||
3552 | 05 35 50 | -69 18 00 | 30s | lV N | RG 610 | Blanco / Cosgrove | 08 03 87 | Super Nova 1987-1 | CTIO | |||
3553 | 05 35 50 | -69 18 00 | 30s | lV N | RG 610 | Blanco / Cosgrove | 08 03 87 | Super Nova 1987-1 | CTIO | |||
3554 | 05 35 50 | -69 18 00 | 20s | lla - O | GG 385 | Blanco / Cosgrove | 08 03 87 | Super Nova 1987-1 | CTIO | |||
3555 | 05 35 50 | -69 18 00 | 20s | lla - O | GG 385 | Blanco / Cosgrove | 08 03 87 | Super Nova 1987-1 | CTIO | |||
3556 | 05 35 50 | -69 18 00 | 30m | lla - O | GG 495 | Blanco / Cosgrove | 08 03 87 | Super Nova 1987-1 | Broken Ok" | CTIO | ||
3557 | zenith | lla - O | Blanco / Cosgrove | 08 03 87 | focus plate | |||||||
3558 | zenith | lla - O | Blanco / Cosgrove | 08 03 87 | focus plate | |||||||
3559 | 06 16 38 | -32 24 | 5m | 103a - D | Weller / Saá / Ugarte | 17 03 87 | Optic test | |||||
3560 | 06 16 38 | -32 24 | 7m | 103a - D | Weller / Saá / Ugarte | 17 03 87 | Optic test | |||||
3561 | 08 14 50 | -33 02 | 7m | 103a - D | Weller / Saá / Ugarte | 17 03 87 | Optic test | |||||
3562 | 08 14 50 | -33 02 | 5m | 103a - D | Weller / Saá / Ugarte | 17 03 87 | Optic test | |||||
3563 | 09 22 20 | -35 58 | 5m | 103a - D | Weller / Saá / Ugarte | 17 03 87 | Optic test | |||||
3564 | 09 22 20 | -35 58 | 5m | 103a - D | Weller / Saá / Ugarte | 17 03 87 | Optic test | |||||
3565 | 10 20 04 | -31 06 | 5m | 103a - D | Weller / Saá / Ugarte | 17 03 87 | Optic test | |||||
3566 | 10 57 20 | -30 52 | 5m | 103a - D | Weller / Saá / Ugarte | 17 03 87 | Optic test | |||||
3567 | 10 57 20 | -30 52 | 5m | 103a - D | Weller / Saá / Ugarte | 17 03 87 | Optic test | |||||
3568 | 12 43 07 | -33 55 | 5m | 103a - D | Weller / Saá / Ugarte | 17 03 87 | Optic test | |||||
3569 | 12 43 07 | -33 55 | 20s each | 103a - D | Weller / Saá / Ugarte | 17 03 87 | focus plate | |||||
3570 | 13 28 30 | -33 00 | 5m | 103a - D | Weller / Saá / Ugarte | 17 03 87 | Optic test | |||||
3571 | 15 06 24 | -31 00 | 5m | 103a - D | Weller / Saá / Ugarte | 17 03 87 | test | |||||
3572 | 06 39 40 | -26 19 30 | 3m | 103a - D | Weller / Saá / Ugarte | 18 03 87 | Optic test | |||||
3573 | 06 39 40 | -26 19 30 | 3m | 103a - D | Weller / Saá / Ugarte | 18 03 87 | Optic test | |||||
3574 | 06 39 40 | -26 19 30 | 3m | 103a - O | Weller / Saá / Ugarte | 18 03 87 | Optic test | |||||
3575 | 11 03 33 | -31 44 20 | 5m | 103a - O | Weller / Saá / Ugarte | 18 03 87 | Optic test | |||||
3576 | 11 02 09 | -59 23 | 3m | 103a - O | Weller / Saá / Ugarte | 18 03 87 | Optic test | |||||
3577 | 11 02 09 | -59 23 | 3m | 103a - O | Weller / Saá / Ugarte | 18 03 87 | Optic test | |||||
3578 | 11 02 09 | -59 23 | 3m | 103a - O | Weller / Saá / Ugarte | 18 03 87 | Optic test | |||||
3579 | 15 59 13 | -26 22 00 | 1m40s | 103a - O | Weller / Saá / Ugarte | 18 03 87 | Optic test | |||||
3580 | 12 23 15 | -60 13 00 | 3m | 103a - O | Weller / Saá / Ugarte | 18 03 87 | Optic test | |||||
3581 | 12 23 15 | -60 13 00 | 3m | 103a - O | Weller / Saá / Ugarte | 18 03 87 | Optic test | |||||
3582 | 12 23 15 | -60 13 00 | 3m | 103a - O | Weller / Saá / Ugarte | 18 03 87 | Optic test | |||||
3583 | 06 21 35 | -33 24 37 | 3m | lla - O | Weller / Saá / Hernandez | 20 03 87 | Optic test | |||||
3584 | 07 31 00.2 | -29 10 01 | 5m | lla - O | Weller / Saá / Hernandez | 20 03 87 | Optic test | |||||
3585 | 08 16 33 | -29 16 46 | 3m | lla - O | Weller / Saá / Hernandez | 20 03 87 | Optic test | |||||
3586 | 09 23 04 | -28 58 18 | 3m | lla - O | Weller / Saá / Hernandez | 20 03 87 | Optic test | |||||
3587 | 10 06 38.9 | -28 45 07 | 3m | lla - O | Weller / Saá / Hernandez | 20 03 87 | Optic test | |||||
3588 | 10 29 00 | -29 33 04 | 3m | lla - O | Weller / Saá / Hernandez | 20 03 87 | Optic test | |||||
3589 | 11 20 57 | -29 30 23 | 3m | lla - O | Weller / Saá / Hernandez | 20 03 87 | Optic test | |||||
3590 | 11 34 34 | -29 56 24 | 3m | lla - O | Weller / Saá / Hernandez | 20 03 87 | Optic test | |||||
3591 | 12 58 24.7 | -29 53 06 | 3m | lla - O | Weller / Saá / Hernandez | 20 03 87 | Optic test | |||||
3592 | 14 03 51 | -28 57 29 | 2m | lla - O | Weller / Saá / Hernandez | 20 03 87 | Optic test | |||||
3593 | 14 26 30 | -30 01 32 | 15s each | lla - O | Weller / Saá / Hernandez | 20 03 87 | focus plate | |||||
3594 | 14 03 52 | -28 57 11 | 2m | lla - O | Weller / Saá / Hernandez | 20 03 87 | Optic test | |||||
3595 | 16 40 18 | -48 44 00 | 2m | lla - O | Weller / Saá / Hernandez | 20 03 87 | N 6193 |
Last Updated on 8/27/99
By Guerra & Marin
April 1987 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
3596 | 07 23 30 | -29 16 42 | 3m | lla - O | Blanco / Bravo / Saá | 02 04 87 | eta Canis major | |||||
3597 | 07 23 30 | -29 16 42 | 5*1m | lla - O | Blanco / Bravo / Saá | 02 04 87 | eta Canis major | |||||
3598 | 07 23 30 | -29 16 42 | 5*15s | lla - O | Blanco / Bravo / Saá | 02 04 87 | eta Canis major | |||||
3599 | 07 23 30 | -29 16 42 | 9*15s | lla - O | Blanco / Bravo / Saá | 02 04 87 | eta Canis major | |||||
3600 | 07 23 30 | -29 16 42 | 9*15s | lla - O | Blanco / Bravo / Saá | 02 04 87 | eta Canis major | |||||
3601 | 07 23 30 | -29 16 42 | 9*15s | lla - O | Blanco / Bravo / Saá | 02 04 87 | eta Canis major | |||||
3602 | 07 23 30 | -29 16 42 | 9*15s | lla - O | Blanco / Bravo / Saá | 02 04 87 | eta Canis major | |||||
3603 | 11 04 43 | -30 06 20 | lla - O | 1" -2" | Blanco / Bravo / Saá | 02 04 87 | focus | |||||
3604 | 18 05 45 | -31 10 08 | 20m | lla - O | GG 385 | 1.5" | Blanco / Bravo | 02 04 87 | Window l | CTIO | ||
3605 | 18 05 45 | -31 10 08 | 20m | lla - D | GG 495 | 1.5" | Blanco / Bravo | 02 04 87 | Window l | CTIO | ||
3606 | 18 10 24 | -29 33 01 | 20m | lla - D | GG 495 | 1.5" | Blanco / Bravo | 02 04 87 | Window lll | CTIO | ||
3607 | 18 10 24 | -29 33 01 | 20m | lla - O | GG 385 | 1.5" | Blanco / Bravo | 02 04 87 | Window lll | CTIO | ||
3608 | 18 06 47 | -32 09 14 | 20m | lla - O | 1.5" | Blanco / Bravo | 02 04 87 | Window ll | ||||
3609 | 18 06 47 | -32 09 14 | 20m | lla - D | 1" | Blanco / Bravo | 02 04 87 | Window ll | ||||
3610 | 05 38 44.3 | -69 05 59 | 20m | 103a - O | GG 385 | 1" | Blanco / Hernandez | 03 04 87 | 30 Dor. + S. N. 1987 | CTIO | ||
3611 | 05 38 44.3 | -69 05 59 | 20m | 103a - O | GG 385 | 1" | Blanco / Hernandez | 03 04 87 | 30 Dor. + S. N. 1987 | CTIO | ||
3612 | 08 48 10 | -30 10 15 | 103a - O | GG 385 | Blanco / Hernandez | 03 04 87 | Focus plate | CTIO | ||||
3613 | 08 48 10 | -30 10 15 | 103a - O | Blanco / Hernandez | 03 04 87 | focus |
Last Updated on 8/27/99
By Jorge Marin
May 1987 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
3614 | 18 10 24 | -29 33 01 | 25m | lla - O | GG 385 | 3" | Blanco / M.Fernandez | 20 05 87 | Field lll | CTIO | ||
3615 | 18 06 47 | -32 09 14 | 25m | lla - O | GG 385 | Blanco / M.Fernandez | 20 05 87 | Field ll | ||||
3616 | 18 05 45 | -31 10 08 | 20m | lla - O | GG 385 | 1.5" | Blanco / M.Fernandez | 20 05 87 | Field l | CTIO | ||
3617 | 18 05 45 | -31 10 08 | 20m | lla - D | GG 495 | 1.5" | Blanco / M.Fernandez | 20 05 87 | Field lll | CTIO | ||
3618 | 18 05 45 | -31 10 08 | 20m | lla - D | GG 495 | 2" - 3" | Blanco / M.Fernandez | 20 05 87 | Field ll | |||
3619 | 18 05 45 | -31 10 08 | 20m | lla - D | GG 495 | 2" - 3" | Blanco / M.Fernandez | 20 05 87 | Field l | CTIO | ||
3620 | 18 05 45 | -31 10 08 | 20m | lla - O | GG 385 | Blanco / M.Fernandez | 20 05 87 | Field lll | CTIO | |||
3621 | 18 05 45 | -31 10 08 | 20m | lla - O | GG 385 | Blanco / M.Fernandez | 20 05 87 | Field lll | CTIO | |||
3622 | 18 05 45 | -31 10 08 | 58m | lV - N sens | RG 610 | Blanco / M.Fernandez | 21 05 87 | Field lll | CTIO | |||
3623 | 18 05 45 | -31 10 08 | 20m | lla - O | GG 385 | 1" - 2" | Blanco / M.Fernandez | 21 05 87 | Field lll | CTIO | ||
3624 | 18 05 45 | -31 10 08 | 20m | lla - O | GG 385 | 1" - 2" | Blanco / M.Fernandez | 21 05 87 | Field l | CTIO | ||
3625 | 18 05 45 | -31 10 08 | 20m | lla - O | GG 385 | 1" - 2" | Blanco / M.Fernandez | 21 05 87 | Field lll | CTIO | ||
3626 | 18 05 45 | -31 10 08 | 20m | lla - O | GG 385 | 1" - 2" | Blanco / M.Fernandez | 21 05 87 | Field ll | |||
3627 | 18 05 45 | -31 10 08 | 20m | lla - O | GG 385 | 1" - 2" | Blanco / M.Fernandez | 21 05 87 | Field lll | CTIO | ||
3628 | 18 05 45 | -31 10 08 | 20m | lla - O | GG 385 | 1" - 2" | Blanco / M.Fernandez | 21 05 87 | Field l | CTIO | ||
3629 | 18 05 45 | -31 10 08 | 20m | lla - O | GG 385 | 1" - 2" | Blanco / M.Fernandez | 21 05 87 | Field lll | CTIO | ||
3630 | 18 05 45 | -31 10 08 | 20m | lla - O | GG 385 | 2" | Blanco / M.Fernandez | 21 05 87 | Field ll | |||
3631 | 18 05 45 | -31 10 08 | 20m | lla - O | GG 385 | 2" - 3" | Blanco / M.Fernandez | 21 05 87 | Field lll | CTIO | ||
3632 | 18 10 24 | -29 33 01 | 20m | lla - D | GG 495 | 3" - 4" | Blanco / Bravo | 22 05 87 | Field lll | CTIO | ||
3633 | 18 10 24 | -29 33 01 | 20m | lla - O | GG 385 | 2" | Blanco / Bravo | 22 05 87 | Field lll | CTIO | ||
3634 | 18 10 24 | -29 33 01 | 20m | lla - D | GG 495 | 2" | Blanco / Bravo | 22 05 87 | Field lll | CTIO | ||
3635 | 18 10 24 | -29 33 01 | 20m | lla - O | GG 385 | 3" - 6" | Blanco / Bravo | 22 05 87 | Field lll | CTIO | ||
3636 | 18 10 24 | -29 33 01 | 20m | lla - O | GG 385 | Blanco / Bravo | 22 05 87 | Field lll | CTIO |
Last Updated on 8/27/99
By Guerra & Marin
December 1987 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
3637 | 00 26 08 | -71 44 20 | 80m | lla - O | GG 385 | 1" - 2" | Graham / M.Fernandez | 12 12 87 | NGC 721 | |||
3638 | 06 30 12 | -64 17 30 | 70m | lla - O | GG 385 | 1" | Graham / M.Fernandez | 12 12 87 | NGC 2257 | |||
3639 | 00 26 08 | -71 44 20 | 75m | lla - O | GG 385 | 1" | Graham / M.Fernandez | 13 12 87 | NGC 121 | |||
3640 | 06 30 12 | -64 17 30 | 60m | lla - O | GG 385 | 1" | Graham / M.Fernandez | 13 12 87 | NGC 2257 | |||
3641 | 06 30 12 | -64 17 30 | 80m | lla - O | GG 385 | 1" | Graham / M.Fernandez | 13 12 87 | NGC 2257 | |||
3642 | 08 25 00 | -51 00 04 | 135m | llla - F | RG 610 | 1" | Graham / M.Fernandez | 13 12 87 | 4446 | |||
3643 | 00 26 08 | -71 44 20 | 75m | lla - O | GG 385 | 1" - 2" | Graham / M.Fernandez | 14 12 87 | NGC 121 | |||
3644 | 06 30 12 | -64 09 00 | 60m | lla - O | GG 385 | 2" - 3" | Graham / M.Fernandez | 14 12 87 | NGC 2257 | |||
3645 | 06 30 12 | -64 09 00 | 90m | lla - O | GG 385 | 1" - 2" | Graham / M.Fernandez | 14 12 87 | NGC 2257 | |||
3646 | 06 30 12 | -64 09 00 | 130m | llla - F | RG 610 | 1" - 2" | Graham / M.Fernandez | 14 12 87 | NGC 2257 | |||
3647 | 00 26 08 | -71 44 20 | 75m | lla - O | GG 385 | 1" | Graham / M.Fernandez | 15 12 87 | NGC 121 | |||
3648 | 06 30 12 | -64 17 30 | 60m | lla - O | GG 385 | 1" | Graham / M.Fernandez | 15 12 87 | NGC 2257 | |||
3649 | 06 30 12 | -64 17 30 | 75m | lla - O | GG 385 | 1" | Graham / M.Fernandez | 15 12 87 | NGC 2257 | |||
3650 | 06 30 12 | -64 17 30 | 75m | lla - O | GG 385 | 1" - 2" | Graham / M.Fernandez | 15 12 87 | NGC 2257 | |||
3651 | 00 26 08 | -71 44 20 | 90m | lla - O | GG 385 | 1" - 2" | Graham / M.Fernandez | 16 12 87 | NGC 121 | |||
3652 | 06 30 12 | -64 17 30 | 90m | lla - O | GG 385 | 2" | Graham / M.Fernandez | 16 12 87 | NGC 2257 | |||
3653 | 06 30 12 | -64 17 30 | 90m | lla - O | GG 385 | Graham / M.Fernandez | 16 12 87 | NGC 2257 | ||||
3654 | 05 35 31.5 | -69 16 27 | 1s 5s | UG 2 | Graham / M.Fernandez | 16 12 87 | SN 1987 | |||||
3655 | 05 35 31.5 | -69 16 27 | 60m | RG 2 | Graham / M.Fernandez | 16 12 87 | SN 1987 | |||||
3656 | (1) | 19 12 88 |
(1) NOTE: secondary f 7.5 comes back from Tucson, after refiguring
Last Updated on 8/27/99
By Jorge Marin
1989 Plate logs for 1.5-m telescope
March 1989 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
3657 | zenith | 10s | lla - D | Gonzalez / Saá / Tirado | 10 03 89 | focus | ||||||
3658 | 06 42 45 | -45 11 24 | 300s | lla - D | Gonzalez / Saá / Tirado | 10 03 89 | E 3 | |||||
3659 | 06 42 45 | -45 11 24 | 1800s | lla - D | Gonzalez / Saá / Tirado | 10 03 89 | E 3 | |||||
3660 | zenith | 10s | lla - D | Gonzalez / Saá / Tirado | 10 03 89 | focus | ||||||
3661 | 08 07 33 | -34 43 20 | 5m | lla - D | Gonzalez / Saá / Tirado | 10 03 89 | field | |||||
3662 | zenith | 10s | lla - D | Gonzalez / Saá / Tirado | 10 03 89 | focus | ||||||
3663 | 08 29 19 | -47 04 56 | 5m | lla - D | Gonzalez / Saá / Tirado | 10 03 89 | field E 4 | |||||
3664 | 08 29 19 | -47 04 56 | 1800s | lla - D | Gonzalez / Saá / Tirado | 10 03 89 | field E 4 | |||||
3665 | zenith | 10s | lla - D | Gonzalez / Saá / Tirado | 10 03 89 | focus | ||||||
3666 | 11 10 03 | -46 42 40 | 5m | lla - D | Gonzalez / Saá / Tirado | 10 03 89 | field E 5 | |||||
3667 | zenith | 10s | lla - D | Gonzalez / Saá / Tirado | 10 03 89 | focus | ||||||
3668 | 11 10 28 | -46 52 44 | 5m | lla - D | Gonzalez / Saá / Tirado | 10 03 89 | field E 5 | |||||
3669 | 11 10 28 | -46 52 44 | 1800s | lla - D | Gonzalez / Saá / Tirado | 10 03 89 | field E 5 | |||||
3670 | 11 10 28 | -46 52 44 | 10m | lla - D | Gonzalez / Saá / Tirado | 10 03 89 | field E 5 |
Last Updated on 8/27/99
By Guerra & Marin
June 1989 Plate logs for 1.5-m telescope
July 1989 Plate logs for 1.5-m telescope
Plate | N. N. | R. A. | Dec | Exp. Time | Emulsion | Filtro | Seeing | Observer | Date | Object | Remarks | CTIO |
3696 | 17 14 42 | -48 03 | 30m | 098 - 04 | RG 1 | 1" | Terndrup / Ugarte | 04 07 89 | Field #2 | |||
3697 | 17 41 30 | -40 40 | 30m | 098 - 04 | RG 1 | Terndrup / Ugarte | 04 07 89 | Field #4 | ||||
3698 | 17 45 24 | -39 25 | 30m | 098 - 04 | RG 1 | Terndrup / Ugarte | 04 07 89 | Field #5 | ||||
3699 | 17 58 12 | -35 00 | 30m | 098 - 04 | RG 1 | Terndrup / Ugarte | 04 07 89 | Field #7 | ||||
3700 | 17 59 00 | -34 50 | 30m | 098 - 04 | RG 1 | Terndrup / Ugarte | 04 07 89 | Field #8 | ||||
3701 | 17 51 30 | -37 33 | 30m | 098 - 04 | RG 1 | Terndrup / Ugarte | 04 07 89 | Field #6 | ||||
3702 | 18 03 00 | -33 30 | 30m | 098 - 04 | RG 1 | Terndrup / Ugarte | 04 07 89 | Field #10 | ||||
3703 | 18 48 36 | -13 22 | 30m | 098 - 04 | RG 1 | Terndrup / Ugarte | 04 07 89 | Field #20 | clear, valley fogged in | |||
3704 | 18 21 24 | -24 54 | 10m | lla - O baked | GG 385 | Terndrup / Ugarte | 04 07 89 | M 28 | ||||
3705 | 18 21 24 | -24 54 | 10m | lla - O baked | GG 385 | Terndrup / Ugarte | 04 07 89 | M 28 | ||||
3706 | 18 54 54 | -10 28 | 30m | 098 - 04 | RG 1 | Terndrup / Ugarte | 04 07 89 | Field #21 |
Last Updated on 8/27/99
By Guerra & Marin
1990 Plate logs for 1.5-m telescope
August 1990 Plate logs for 1.5-m telescope
The SMARTS Consortium operates four small telescopes (1.5-m [602], 1.3-m [563], 1.0-m [603] and 0.9-m [604]) on Cerro Tololo. Membership in SMARTS is open to individuals or institutions, including international partners.
Inquiries from potential new members of SMARTS at a variety of levels are always encouraged, as opportunities to join the consortium typically arise every year. Members can purchase time on the SMARTS telescopes at very reasonable rates for single use observing runs that span a few days or weeks, or for distributed observing over one or more semesters for time-domain science. Both user and service modes are available within the capabilities of the four SMARTS telescopes. Acceptance of a new member depends on the balance of resources and scientific programs associated with current members.
Current rates for SMARTS are $600 USD / night for the 0.9m (Classical user observing mode only) and $200 USD / hour [NOTE: this is per scheduled hour, not executed hour, and includes overheads from telescope pointing and exposure time] for the 1.3m and 1.5m (queue-scheduled service observing mode only).
Primary Members who contribute $25K USD or more are entitled to a seat on the SMARTS Management Council. Those who contribute less than $25K are considered Secondary Members and do not participate in the governance of SMARTS.
If you are interested in joining SMARTS, please contact Victoria Misenti [605] for more information.
AURA CONTRACT No. C77006A
SMARTS 2 AGREEMENT TO OPERATE SMALL TELESCOPES IN CHILE
Appendix D
Association of Universities for Research in Astronomy
Dr. William Smith, President
1200 New York Avenue NW
Suite 350
Washington DC, 20005
(202) 483-2101
wsmith@aura-astronomy.org [612]
Clark Enterline
Procurement Manager
NOAO
950 N. Cherry Avenue
PO Box 26732
Tucson, AZ 85726-6732
(520) 318-8277
centerline@noao.edu [613]
NOAO
SMARTS Program
R. Chris Smith
NOAO/CTIO
Casilla 603, La Serena, Chile
(56-51) 205200
csmith@noao.edu [614]
Charles Bailyn
Yale University, Department of Astronomy
PO Box 208101
New Haven, CT 06520-8101
(203) 432-3000
charles.bailyn@yale.edu [615]
Adopted by the SMARTS management council.
Amended by the SMARTS management council February 1, 2008 (to take effect as of October 1, 2007).
NOAO contact amended July 2011 due to change in personnel.
Proposal information
G. Schumacher
D. Geisler
Feb. 1991
some updates by A.R. Walker, Sept. 1998
Photo-electric Photometry is only offered on the 1.5-m telescope, at f/13/5 (10 arcsec/mm). Unfortunately, there is at present no CTIO staff member carrying out scientific programs with this equipment, and so we may be a little slow at finding the answers to your questions. Sorry!
We have several photomultiplier tubes (GaAs, S20, S11) normally operating in a dry-ice cooled cold-box. We also have the last working Varian InGaAsP photomultiplier in the world (purchased in 1978!!) which has high sensitivity to almost 1.2 microns, we restrict access to this tube due to its fragility and uniqueness. The photometers are simple devices containing an aperture wheel, filter wheel, and TV viewing of the aperture, all under computer control. The pulses from the photomultipliers are amplified by either SSR or EMI amplifier- discriminators and then counted on hardware contained in a PC, which also operates the instrument, and has various facilities for displaying the data, manipulating and storing it, and doing reductions. The remainder of this document describes the program. Note that this PC is on the mountain ethernet, so you can transfer your data files home with ease, or else write them to floppy disk.
The files utilized by the PC-ASCAP program are ordinary text files consisting of one line records, which can be produced using any text editor which does not leave any special control character in the file. The records themselves consists of various fields separated by any number of spaces. Free format number decoding is used throughout. Therefore, it is important not to use a space within a field, for example in a star identification. We recommend using the "_" (underbar) or "-" (dash) characters instead.
User file.
This file is mandatory and contains the basic information for observation. We recommend calling it by your name, e.g. Jastronomer. The examples illustrate a typical set-up: using the 1.5m telescope with the Hamamatsu tube in cold box 71 and the filters VBURI in positions 1-5. The following record types are used in this file:
Name: this record identifies the observer. For example:
Name: Joe Astronomer
Telescope: this record identifies the telescope. The telescopes with encoders are the 4.0m, 1.5m, 1.0m, and 0.9m. Any other name is accepted, e.g. 0.6m, but the position information is then taken from the right ascension and declination of the object, as given with the 'ident' command (see below), instead of from the telescope encoders. For example:
Telescope: 1.5m
Tube: this record identifies the photomultiplier in use. The last field in the record contains the maximum recommended count rate for the tube.
Tube: Hamamatsu 71 200000
In order to prevent damage to the phototube, there is a maximum recommended count rate for each tube that should not be exceeded. In general, this maximum count rate is 200,000 counts/sec. This is true of all of the GaAs tubes (RCA, Hamamatsu) - see page IV-28 of the Facilities Manual for the maximum recommended count rate if you are using a different tube. If the count exceeds the number given in the user file in the first second of observation, the program will insert the TV mirror, warn you that you have exceeded the maximum count rate and ask if you wish to continue. To be safe, answer "NO" and observe a fainter star. You can force the integration to continue by typing "YES" but PLEASE be careful as excessive exposure to extreme light levels can fry the tube. If you must observe this star, use the minimum integration time necessary.
Dead time: this record gives the dead time in nanoseconds, needed to correct for coincidence losses.
Dead time: 35
Filters: this record initiates the description of the filters in use. The description consists of the filter position in the filter wheel, an identification label and optional comments. The identification label should start with an alphabetic character, not a number.
Filters:
Precision: this record initiates the declaration of the precision value for each filter. You can omit this item if you are not using the automatic mode.
Precision:
Color equations: this record initiates the description of the color equations to be used in the quick look calculations. The equations are constructed utilizing the labels given in the filters record. You can omit this and following items if quick look is not desired.
Color equations:
U-B = 1.01*u - 1.01*b
B-V = 0.95*b - 0.95*v
V-R = 0.96*v - 0.96*r
R-I = 0.99*r - 0.99*i
V = 1.03*v - 0.03*b
NB - The order of these equations should be the same as that in the Standard file (see below).
Extinction coefficients: this record initiates the definition of the extinction coefficients.
Extinction coefficients:
v = 0.14
b = 0.23 - 0.024*b + 0.024*v
u = 0.50 - 0.024*b + 0.024*v
r = 0.085
i = 0.052 + 0.01*r - 0.01*i
Zero points: this record initiates the definition of zero point values.
Zero points:
U-B = 0.21
B-V = -0.38
V-R = -0.29
R-I = 1.20
V = 21.61
The next example shows a complete user file.
Name: Joe Astronomer
Telescope: 1.5m
Tube: Hamamatsu 71 200000
Dead time: 35
Filters:
Precision:
Color equations:
U-B = 1.01*u - 1.01*b
B-V = 0.95*b - 0.95*v
V-R = 0.96*v - 0.96*r
R-I = 0.99*r - 0.99*i
V = 1.03*v - 0.03*b
Extinction coefficients:
v = 0.14
b = 0.23 - 0.024*b + 0.024*v
u = 0.50 - 0.024*b + 0.024*v
r = 0.085
i = 0.052 + 0.01*r - 0.01*i
Zero points:
U-B = 0.21
B-V = -0.38
V-R = -0.29
R-I = 1.20
V = 21.61
Macros file
The macros file contains the definitions of the automated observing sequences. The macros have the same format as the old Tolnet version. In order to distinguish one macro from another they are separated by a record containing the word 'macro' followed by a number. This number is then used to invoke the macro with the 'X' command. The macro may be extended to several lines and can have an unlimited number of commands. The file must be called ' macros '. The number of macros is also unlimited (unlike the old version where there were only 10 available). Within a macro, the format is : * (star) or / (sky), followed by filter number, then a comma, followed by the desired number of observations, then a space, and another 4-character command. For example:
macro 1
*1,1 *2,1 *3,1 *4,1 *5,1
/5,1 /4,1 /3,1 /2,1 /1,1
macro 2
*1,2 *2,2 *3,2 *4,2 *5,2 /5,1 /4,1 /3,1 /2,1 /1,1
After observing the star and before observing sky, the program will halt, move the TV mirror to the field position, and wait until you locate a sky patch and press the space key before observing sky.
Objects file
The objects file contains the positions of the objects to be observed. Remember that spaces are used to separate fields and should not be used within a field.
Within the data records, the following order is used:
- Record Identifier: The exact content of this record is up to the user. This identifier should be given with the 'ident' command. It can be up to 8 characters.
- right ascension: 3 numbers: HH MM SS.SS, e.g. 12 34 45.123
- declination: 3 numbers: DD MM SS.SS, e.g. -30 41 32.3
- epoch: a number in years., e.g. 1990.0
The rest of the line may be used for comments, identifiers, etc. PC-ASCAP does not use this information.
The following is an example of an object file:
1 17 05 05.431 -64 59 56.12 2000.0 Center of field
2 17 03 32 -65 00 53 1950 V= 18.24, B-V= 0.35
Standard file
This file contains the star id, standard magnitude and the color values for the standard stars. The order of the indices should be the same as that given in the user file. Also, the star id should be identical to that used in the objects file and
Star U-B B-V V-R R-I V E101 0.091 0.087 0.038 0.084 7.704 E102 0.112 0.206 0.126 0.274 8.444 E103 0.098 0.086 0.037 0.085 9.657 E104 0.001 0.362 0.213 0.427 7.455
Data file
The data file is called 'ppdata.dat'. The data is normally written to the hard disk but you can also select the floppy drive as a backup medium. The format of the data is the same card image format as the old version of People's Photometry, so you don't have to change your reduction program! At the end of the night, you can write out your data to floppy using the command PPCOPY. For example:
PPCOPY ppdata.dat a:dec2590.dat
The format of the data is:
Column(s) Contents 1 0 if normal data record or 1 if a comment, in which case the comment appears in columns 6-80. 2-5 Record number. 6-13 Identification. 14 Standard flag: 1 if the star identification appears in your standard star (stand) file, 0 otherwise. 15 Object flag: 0 if star, 1 if sky. 16 Diaphram number (first diafram used =1, second =2, etc.). 17 Filter number. 20-21 Universal time hours. 22-23 Universal time minutes. 24-25 Universal time seconds. 26-28 Hour angle hours. 29-30 Hour angle minutes. 31-32 Hour angle seconds. 33-35 Declination degrees. 36-37 Declination minutes. 38-39 Declination seconds. 40 Reject flag: blank if not rejected, 1 if rejected. 41 Number of channels (=1). 42-45 Integration time (sec). 46-52 Counts. 67-68 Month. 69-70 Day. 71-72 Year. 73-74 Universal time tenths of seconds.
The $ level commands are those which accept parameters needed during data acquisition and logging. The commands are case insensitive and all responses require pressing the 'enter' key to be acted upon. A list of the available commands at any level appears on a window on the right-hand side of the screen. Following is a description of all implemented commands.
This command sets the clock to the Universal Time as given by the satellite receiver. In order to use this feature you need to be connected to the SUN computer named ctio1m (from the Sun, do "rlogin ctio1m"). Operation is as follows:
- Type the goes command at the PC terminal.
- Then type the goes command at the SUN terminal.
- On the PC screen you will see a time about 10 seconds ahead of the present time. When that time arrives the clock will be synchronized with the satellite time. There are ocassions when this command fails to terminate and the clock doesn't get synchronized at the shown time. In that case, strike any key at the PC terminal and repeat the operation again.
This command enables or disables backup of the data on a diskette. To enable backup type 'backup on'. To disable type 'backup off'. The backup status is permanently shown in the status window. For example:
backup on
It is a good idea to enable this feature, which will then cause the data to be written to floppy ~ every 10 records, naming the file something like a:dec2590.bck. However, since you may reject records during the night after they are written, you may also want to write the clean data to floppy at the end of the night using the PPCOPY feature (after you quit the program), naming the file a:dec2590.dat.
This command shows the present telescope coordinates on the screen. If printer logging is enabled they get typed on that medium too. The coordinates are presented in the order right ascension, declination and hour angle.
This command permits setting of the date. If no argument is given then the present date is shown on the screen. The format is month/day/year. For example:
date 09/18/90
With this command you give the program the size of the diafram (in mm) to be used. After given the command, the program positions the selected aperture inmediately. The acceptable arguments are: 0.7, 1.0, 1.4, 2.0, 2.8, 4.0, 5.6. See the Facilities Manual (Table IV-17) to determine the size of the apertures in arcseconds at your telescope. For example:
diaf 1.4
This command permits examining a directory content. After you type the command, you are requested for the name of the directory to be shown. To return to the command level, just press 'ESC'.
This command permits editing of a file content. If the file doesn't exist it is created. Otherwise the file content is presented in an edit panel.
The editor is a true screen editor (not a word processor) in that you use the arrows and pages keys to browse and insert text. To exit the editor press the ESC key. The following keys are supported:
ESC Quit editing DEL Delete character under cursor BACKSPACE Delete character to the left of cursor ALT-S Search for a string ALT-R Search for a string and replace it UP Moves the cursor up one character DOWN Moves the cursor down one character RIGHT Moves the cursor right one character LEFT Moves the cursor left one character HOME Moves to beginning of the current line END Moves to the end of the current line PGUP Moves up one page PGDN Moves down one page CTRL-PGUP Goes to the beginning of the text CTRL-PGDN Goes to the end of the text ALT-M Turns marking mode on or off. GRAY + Copies the marked block to the cut buffer. GRAY - Cuts the marked block to the cut buffer. INS Pastes the cut buffer at the current cursor location. DEL Deletes the marked block if there is one.
For example:
edit jastronomer
-Note. Be sure to use the "eq" command after editing your userfile to update the changes into the program, e.g. after changing the zero points at the beginning of the night.
This command is used to enter the limit of acceptable variability for the counts, C, according to:
|C - Mean| / Sigma < Eps.
If any count rate exceeds this criterion, integration will halt and an "Unstdy Counts" error message will appear. Check centering, etc. To continue, just press the space key. Be sure to reject the offending integration if appropriate.
To suppress this feature enter a value of 0. For example:
eps 10
This command permits rereading the equations for quick look contained in the user file. Normally you give this command after editing the user file, for example, after changing the zeropoints at the beginning of the night.
This command transfers control to the section of the program where data acquisition actually occurs. The runtime window is placed on the screen. For example:
go
The GO level commands for actual data acquisition are virtually identical to the old People's Photometry commands. They are largely single key instructions requiring no 'enter' key to perform its action. However, 'enter' must still be used with those commands requiring parameters, such as setting an integration time. Following is a list of GO level commands.
space continue integration after hold condition. 1-8 starts integration with selected filter. * group observations as star counts. / group observations as sky counts. - group observations as dark counts. ! force termination of present integration, and continue to next command if executing a macro. a selects automatic mode. (Integration terminates when the precision defined in the Precision Table is reached). b breaks integration or escapes from macro. Data is not recorded for the interrupted integration. c XXX enters the comment XXX (up to 72 characters). f shows the field on the TV screen. h holds an integration. Continue by striking the space bar. k kills the previous sky readings. m selects manual mode. n NN sets the number of integrations to NN per filter. r n-m sets the reject flag on records n-m. s stop and return to $ level commands. t n sets the integration time to n seconds. Allowed values are 1 to 30,000. v view the area of the diafram on the TV screen. x n starts macro n. z zap (terminate) present macro command. Can reinitiate present macro command with the Space bar.
This command transfers control to the section of the program where data acquisition actually occurs. The difference with the go command is that no data recording takes place.
This command is used to identify an object using up to 8 characters. The command groups the observations belonging to one object together, and failure to use it negates internal housekeeping functions. After receiving the command, the program checks the standard file to see if the object is a standard star or not. If it is, the program tells you so.
For telescopes lacking position encoders, or when the connection is disabled (see tcs command below) and if the id is not found in the objects file, then the program will ask for the coordinates of the object. The coordinates are requested in a formatted window. In order to escape from the window just press 'ESC'. For example:
i LMC-0635
This command allows editting of the macros file. After the command is given the file content is presented in an edit window (see edit command above). For example:
macros
This command selects the objects file. The file should be prepared according to the description given in the 'files' section. For example:
object obs24.coo
This command is used to change the precision values of any filter. After given the command you are presented with a window of precision values. To return to the command level press 'ESC'.
This command enables or disables logging of commands on the printer. To enable logging type 'printer on'. To disable logging type 'printer off'.
This command requests the calculation of quick look reductions. If no argument is given then the last object observed is used. Otherwise, the argument is taken as the first record number of the object to be calculated. For example:
q 274
This command terminates the program. After receiving the command, the program requests the user for confirmation. Respond 'yes' if you want to abandon the program. Use this command to terminate the program at the end of the night. If you quit the program during the night for whatever reason and then return, be sure to execute the "stand" command and set "backup" and "printer" on.
This command selects the standard stars file. The file should be prepared according to the description given in the 'files' section. Be sure to use this command again if, for whatever reason, you "Quit" the program and then return to it during the night. For example:
stand ubvrimag
This command enables or disables the connection to the telescope control system. Type 'tcs on' to enable. Type 'tcs off' to disable. For example:
tcs on
This command permits setting of the universal time into the computer. If no argument is given then the present time is shown on the screen. The format is hh:mm:ss. For example:
time 06:35:40
Figure 1 shows the run-time data display. It consists of a series of windows each showing specific pieces of information. Following is a description of each window.
Top left
This window displays the program name.
Top right
This window displays the date and universal time.
Middle left
This window displays the actual run-time information. Under 'object' it shows both '*' and '/', for star and sky respectively. Under 'filter' it shows the number of the actual filter being observed. Under 'time' it shows the total time of integration in seconds. Under 'counts/sec' it shows the rate for the present object being observed. Under 'counts' it shows the total counts already obtained for both star and sky for the selected filter. Under 'prec' it shows the present presicion obtained (in units of 0.1%), and finally under 'total (* - /)' is shown the total star counts minus the sky counts (=(Star count rate - Sky count rate)(both corrected for dead time) * ( total time observed on Star )). Thus, e.g., when this number reaches 10,000 you have achieved 1% accuracy from photon statistics.
Middle right
This window shows the status of the backup, printer and tcs options.
Bottom left
This is the actual command window.
Bottom right
This is the help window, where all possible commands available in the current task are shown. The window content changes as you select different levels of the program.
A full photometry reduction program is available on the SUN computers, both on the mountain and in La Serena, enabling you to obtain final transformed magnitudes and colors for program stars. After a little practice, one can reduce a night's worth of data in about an hour.
G. Schumacher
D. Geisler
Feb. 1991
Fiber echelle consists of the de-comissioned Blanco Echelle spectrograph [627] in fixed configuration connected by optical fiber to the CTIO 1.5-m telescope. The instrument was used in service mode in 2008-2010.
Spectral format: Fixed configuration covering wavelength range from 4010 to 7300 Angstroem without gaps. The order height is about 3 pixels FWHM.
Spectral resolution:
Efficiency: Estimated 1%. The star V=5 gives about 135 electrons/s in the extracted spectrum (standard slit setting 50 micron). Assuming 5-pixel height of the extracted spectrum and normal readout mode, the signal-to-noise ratio S/N near blaze maximum for exposure time t seconds and a star of magnitude V can be estimated as
S/N = Nph/sqrt(Nph + 18^2), Nph = 1.35 t 10^(-0.4V + 4)
See the plot below. Exposures longer than 20 min. are not recommended because of cosmic rays; take several exposures instead.
Detector: SITe, 2048x2048 pixels, 24-micron pixel size. Full readout in 27s (normal mode, gain 0.9 el/ADU) or 18s (fast mode, gain 3 el/ADU). Readout noise 8el (normal) and 9.5el (fast). Saturation level: 65536 counts in all modes (to be confirmed).
Comparison lamps: Thorium-Argon, Quartz (not simultaneous, light goes through the same fiber). Do not forget to take comparison exposures needed for your program!
Precise radial velocities: Iodine cell can be inserted in the beam before slit for precise radial-velolcity measurements. On bright stars, the precision can reach 3 m/s.
Entrance aperture: round, diameter 2.7 arcseconds.
Guiding: automatic, using light of the observed star falling outside entrance aperture.
Documentation: user's manual [628]
Time synchronization on the CTIO computers is done as follows:
Jim Hughes (jhughesATnoao.edu)
Current Schedules
Links
[1] http://www.ctio.noao.edu/noao/content/gu%C3%ADa-%C3%B3ptica
[2] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/through_focus_pf.gif
[3] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/coma_pf.gif
[4] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/astig_pf.gif
[5] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/tref_pf.gif
[6] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/coma_zeroed_pf.gif
[7] http://www.ctio.noao.edu/noao/content/ellipticity-measurements
[8] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/depth_focus_pf.gif
[9] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/noadc.gif
[10] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/ispijspot.jpg
[11] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/ispihspot.jpg
[12] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/ispikspot.jpg
[13] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/ispijee.jpg
[14] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/ispihee.jpg
[15] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/ispikee.jpg
[16] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/ispijfocus.jpg
[17] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/ispihfocus.jpg
[18] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/ispikfocus.jpg
[19] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/ispijeeold.jpg
[20] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/ispiheeold.jpg
[21] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/ispikeeold.jpg
[22] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/blancoiq-status-sumry_300509-1.xls
[23] http://www.ctio.noao.edu/noao/content/optical-status-2010
[24] https://www.ctio.noao.edu/cgi-bin/DocDB/ShowDocument?docid=1403
[25] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/f14stat1.gif
[26] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/f14stat2.gif
[27] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/mosaic_stat.gif
[28] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/baldwin1.jpg
[29] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/suntzeff1.jpg
[30] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/seeing-comparison.gif
[31] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/seeing-1996.gif
[32] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/seeing-1997.gif
[33] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/seeing-1998.gif
[34] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/seeing-1999.gif
[35] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/weirdtrend.gif
[36] http://www.ctio.noao.edu/noao/content/PFADC
[37] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/seqmscfocus.gif
[38] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/seqtweak1-0.jpg
[39] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/mosfoc01.gif
[40] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/mosfoc02.gif
[41] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/mosfoc03.gif
[42] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/binodal_astig.gif
[43] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/F8_IQ_historical.xls
[44] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/f8_list.in.030909.txt
[45] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/f8_list.in.280410.txt
[46] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/f8_list.in.300310.txt
[47] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/PF_IQ_historical.xls
[48] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/pf_shap.in.11Mar05.txt
[49] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/pf_shap.in.12feb02.txt
[50] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/pf_shap.in.130809.txt
[51] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/pf_shap.in.230410_lut-offset0deg.txt
[52] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/pf_shap.in.230410_lut-offset180deg.txt
[53] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/BlancoFlex_laser_mitutoyo-coma-skynap_summary2010.xls
[54] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/Blanco%20summary%20310510.pdf
[55] http://www.ctio.noao.edu/noao/content/optical-design#table1
[56] http://www.ctio.noao.edu/noao/content/measured-and-predicted-ofad#table2
[57] http://www.ctio.noao.edu/noao/content/estimation-most-probable-values-ofad#table3
[58] http://www.ctio.noao.edu/noao/content/effect-changing-back-focal-distance#table4
[59] http://www.ctio.noao.edu/noao/content/Short-instructions-normal-use
[60] http://www.ctio.noao.edu/noao/content/Users-Guide-Active-Optic-System
[61] http://www.ctio.noao.edu/noao/content/F8-Secondary-Mirror-Control-System
[62] http://www.ctio.noao.edu/noao/content/4m-Active-Primary-Mirror-Control-System
[63] http://www.ctio.noao.edu/noao/content/Calibrations-Positions-4MAP-lookup-tables
[64] http://www.ctio.noao.edu/noao/content/rcadc-and-atmospheric-refraction
[65] http://www.ctio.noao.edu/noao/content/Differential-Atmospheric-Refraction
[66] http://www.ctio.noao.edu/noao/content/Flux-captured-Hydra
[67] http://www.ctio.noao.edu/noao/content/short-instructions-normal-use
[68] http://www.ctio.noao.edu/noao/content/calibrations-positions-4map-lookup-tables
[69] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/chimney_layout.gif
[70] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/rcadc3.gif
[71] http://www.ctio.noao.edu/noao/content/differential-atmospheric-refraction
[72] http://www.ctio.noao.edu/noao/content/flux-captured-hydra
[73] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/lutz_s.gif
[74] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/guider.gif
[75] http://obs.carnegiescience.edu/
[76] http://archive.eso.org/gsc/gsc
[77] http://www.noao.edu/gateway/ccdtime/
[78] http://www.ctio.noao.edu/instruments/ir_instruments/image_cal.html
[79] http://www1.ctio.noao.edu/noao/content/smarts-imager-exposure-calculator
[80] http://catserver.ing.iac.es/staralt/index.php
[81] http://www.ctio.noao.edu/misc/astro-links-new.html
[82] http://www.ctio.noao.edu/noao/content/active-optics-system
[83] http://www.ctio.noao.edu/noao/content/CO2-snow-cleaning-procedure
[84] http://www.ctio.noao.edu/noao/content/Optical-Engineering
[85] http://www.ctio.noao.edu/noao/content/CTIO-Staff-Responsibilities
[86] http://www.ctio.noao.edu/noao/content/victor-blanco-4-m-telescope
[87] mailto:tabbott@ctio.noao.edu
[88] http://www.ctio.noao.edu/soar/
[89] mailto:cbriceno@ctio.noao.edu
[90] http://www.ctio.noao.edu/noao/content/smarts-consortium
[91] mailto:thenry@chara.gsu.edu
[92] http://www.ctio.noao.edu/soar/content/goodman-high-throughput-spectrograph
[93] mailto:spoints@ctio.noao.edu
[94] http://www.ctio.noao.edu/soar/content/soar-optical-imager-soi
[95] http://www.ctio.noao.edu/soar/content/soar-adaptive-optics-module-sam
[96] http://www.ctio.noao.edu/soar/content/spartan-near-ir-camera
[97] mailto:jelias@noao.edu
[98] http://www.ctio.noao.edu/soar/content/triplespec41-nir-imaging-spectrograph
[99] http://www.ctio.noao.edu/noao/content/COSMOS
[100] http://www.ctio.noao.edu/noao/content/dark-energy-camera-decam
[101] mailto:awalker@ctio.noao.edu
[102] http://www.ctio.noao.edu/noao/content/mosaic-filters
[103] http://www.ctio.noao.edu/noao/content/ctio-3x3-inch-and-4x4-inch-filters
[104] http://www.noao.edu/kpno/mosaic/filters/index.html
[105] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/filter_names.txt
[106] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/vrsupermacho_0.jpg
[107] http://www.ctio.noao.edu/noao/content/u-leak
[108] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/ctiosdssu_leak.gif
[109] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/ctiosdssu.gif
[110] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/ctiosdssu.dat
[111] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/ctiosdssuleak.dat
[112] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/OCIW_1.TXT
[113] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/y1.png
[114] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/OCIW_2.TXT
[115] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/y2.png
[116] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/OCIW_3.TXT
[117] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/y3.png
[118] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/OCIW_7.TXT
[119] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/y7.png
[120] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/iband.txt
[121] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/iband.gif
[122] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/j_40.txt
[123] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/j_401.gif
[124] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/j_82a.txt
[125] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/j_82a1.gif
[126] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/J_183.txt
[127] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/J_183.gif
[128] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/geminiJ.dat
[129] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/geminiJ.png
[130] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/ispiJ.dat
[131] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/ispiJ.png
[132] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/ja.gif
[133] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/h_44.txt
[134] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/h_441.gif
[135] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/H_184.txt
[136] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/H_184.gif
[137] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/geminiH.dat
[138] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/geminiH.png
[139] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/ha.png
[140] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/k_50.txt
[141] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/k_501.gif
[142] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/K_185.txt
[143] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/K_185.gif
[144] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/ks_129.txt
[145] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/ks_1291.gif
[146] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/ka.png
[147] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/2248.txt
[148] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/2248.jpg
[149] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/219.txt
[150] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/219.jpg
[151] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/216w.txt
[152] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/216w.jpg
[153] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/216micron.dat
[154] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/216.jpg
[155] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/214w.txt
[156] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/214w.jpg
[157] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/2.14micron.dat
[158] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/2.14micron.gif
[159] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/212w.txt
[160] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/212w.jpg
[161] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/2.12.txt
[162] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/212.jpg
[163] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/212micron.dat
[164] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/212micron.gif
[165] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/208.txt
[166] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/208.jpg
[167] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/206.txt
[168] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/206.jpg
[169] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/203.txt
[170] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/203.jpg
[171] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/1.644.gif
[172] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/1.28.txt
[173] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/1.28.jpg
[174] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/1.257.txt
[175] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/1.257.jpg
[176] http://www.ctio.noao.edu/noao/content/ispi
[177] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/y4kcam_b.pdf
[178] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/y4kcam_B.txt
[179] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/y4kcam_v.pdf
[180] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/y4kcam_V.txt
[181] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/y4kcam_r.pdf
[182] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/y4kcam_Rc.txt
[183] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/y4kcam_i.pdf
[184] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/y4kcam_Ic.txt
[185] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/y4kcam_sdss_u.pdf
[186] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/sdss_u.txt
[187] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/y4kcam_sdss_g.pdf
[188] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/sdss_g.txt
[189] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/y4kcam_sdss_r.pdf
[190] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/sdss_r.txt
[191] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/y4kcam_sdss_i.pdf
[192] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/sdss_i.txt
[193] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/y4kcam_sdss_z.pdf
[194] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/sdss_z.txt
[195] http://www.ctio.noao.edu/noao/content/ctio-various-filters-transmission-curves
[196] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3085-75.gif
[197] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3085-75.txt
[198] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3510-300.gif
[199] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3510-300.txt
[200] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3515-290.gif
[201] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3515-290.txt
[202] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3520-300.gif
[203] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3520-300.txt
[204] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3530-280.gif
[205] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3530-280.txt
[206] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3530-400.gif
[207] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3530-400.txt
[208] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3575-600.gif
[209] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3575-600.txt
[210] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3580-610.gif
[211] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3580-610.txt
[212] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3623-605.gif
[213] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3623-605.txt
[214] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3650-100.gif
[215] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3650-100.txt
[216] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3650-600.gif
[217] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3650-600.txt
[218] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3700-110.gif
[219] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3700-110.txt
[220] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3727-21.gif
[221] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3727-21.txt
[222] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3727-44.gif
[223] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3727-44.txt
[224] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3727-45.gif
[225] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3727-45.txt
[226] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3765-45.gif
[227] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3765-45.txt
[228] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3767-44.gif
[229] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3767-44.txt
[230] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3800-110.gif
[231] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3800-110.txt
[232] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3870-50.gif
[233] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3870-50.txt
[234] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3980-400.gif
[235] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3980-400.txt
[236] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/39861047.gif
[237] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/39961042.gif
[238] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/40001030.gif
[239] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4060-70.gif
[240] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4060-70.txt
[241] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4110-190.gif
[242] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4110-190.txt
[243] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4118-146.gif
[244] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4118-146.txt
[245] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4120-160.gif
[246] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4120-160.txt
[247] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/41851030.gif
[248] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/42011050.gif
[249] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/42021050.gif
[250] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/42031050.gif
[251] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4260-65.gif
[252] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4260-65.txt
[253] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/43241050.gif
[254] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/43241056.gif
[255] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/43241156.gif
[256] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4340-980.gif
[257] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4340-980.txt
[258] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/43501680.gif
[259] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/43571665.gif
[260] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4363-20.gif
[261] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4363-20.txt
[262] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4650-190.gif
[263] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4685-44.gif
[264] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4685-44.txt
[265] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4686-15.gif
[266] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4686-15.txt
[267] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4695-15.gif
[268] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4695-15.txt
[269] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4697-196.gif
[270] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4697-196.txt
[271] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4700-190.gif
[272] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4700-190.txt
[273] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4845-65.gif
[274] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4845-65.txt
[275] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4857-12.gif
[276] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4857-12.txt
[277] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4861-26.gif
[278] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4861-26.txt
[279] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4861-44.gif
[280] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4861-44.txt
[281] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4861-50.gif
[282] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4861-50.txt
[283] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4862-14.gif
[284] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4862-14.txt
[285] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4866-12.gif
[286] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4866-12.txt
[287] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4880-70.gif
[288] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4880-70.txt
[289] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4905-44.gif
[290] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4905-44.txt
[291] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4940-700.gif
[292] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4940-700.txt
[293] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4949-44.gif
[294] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4949-44.txt
[295] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4993-44.gif
[296] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4993-44.txt
[297] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5000-70.gif
[298] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5000-70.txt
[299] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5007-44.gif
[300] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5007-44.txt
[301] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5013-14.gif
[302] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5013-14.txt
[303] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5019-50.gif
[304] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5019-50.txt
[305] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5024-15.gif
[306] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5024-15.txt
[307] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/50251020.gif
[308] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/50251023.gif
[309] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5029-43.gif
[310] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5029-43.txt
[311] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5032-15.gif
[312] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5032-15.txt
[313] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5037-44.gif
[314] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5037-44.txt
[315] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5040-15.gif
[316] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5040-15.txt
[317] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5040-990.gif
[318] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5040-990.txt
[319] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5049-15.gif
[320] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5049-15.txt
[321] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5057-15.gif
[322] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5057-15.txt
[323] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5081-44.gif
[324] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5081-44.txt
[325] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5100-100.gif
[326] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5100-100.txt
[327] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5117-895.gif
[328] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5117-895.txt
[329] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5118-900.gif
[330] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5118-900.txt
[331] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5125-44.gif
[332] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5125-44.txt
[333] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5130-155.gif
[334] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5140-90.gif
[335] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5140-153.gif
[336] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5145-30.gif
[337] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5145-80.gif
[338] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5169-44.gif
[339] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5182-10.gif
[340] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5213-44.gif
[341] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5257-44.gif
[342] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/52951590.gif
[343] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/53781018.gif
[344] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/53801000.gif
[345] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5400-100.gif
[346] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5409-948.gif
[347] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/54351081.gif
[348] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/54381026.gif
[349] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/54431060.gif
[350] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5461-100.gif
[351] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/54751000.gif
[352] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5497-241.gif
[353] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5500-200.gif
[354] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5500a240.gif
[355] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5755-20.gif
[356] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5800-100.gif
[357] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5877-14.gif
[358] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5890-40.gif
[359] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5894-14.gif
[360] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5900-350.gif
[361] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5915-40.gif
[362] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5950-40.gif
[363] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/5997-40.gif
[364] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6087-40.gif
[365] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6100-100.gif
[366] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6120-140.gif
[367] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6130-590.gif
[368] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6152-625.gif
[369] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6170-590.gif
[370] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6301-10.gif
[371] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6330-100.gif
[372] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/64001450.gif
[373] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/64101470.gif
[374] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/64251500.gif
[375] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/64371525.gif
[376] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/64401520.gif
[377] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/64541451.gif
[378] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6477-75.gif
[379] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/64841532.gif
[380] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6520-76.gif
[381] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6552-40.gif
[382] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6559-5.gif
[383] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6560-110.gif
[384] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6560-900.gif
[385] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6563-12.gif
[386] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6563-17.gif
[387] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/656375-3.gif
[388] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/656375-4.gif
[389] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6563-78.gif
[390] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6568-20.gif
[391] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6571-15.gif
[392] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6575-14.gif
[393] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6584-15.gif
[394] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6586-20.gif
[395] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6586-40.gif
[396] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6600-100.gif
[397] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6600b110.gif
[398] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/660075-3.gif
[399] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/660075-4.gif
[400] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6602-20.gif
[401] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6606-75.gif
[402] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6618-20.gif
[403] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6636-20.gif
[404] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6649-76.gif
[405] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6654-20.gif
[406] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6672-20.gif
[407] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6680-100.gif
[408] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6693-76.gif
[409] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6700-350.gif
[410] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6718-20.gif
[411] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6718-5.gif
[412] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6724-7.gif
[413] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/67271015.gif
[414] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/67281000.gif
[415] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6731-6.gif
[416] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6732-20.gif
[417] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6737-76.gif
[418] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6738-50.gif
[419] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6781-78.gif
[420] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6820-100.gif
[421] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6826-78.gif
[422] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6840-90.gif
[423] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6871-78.gif
[424] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6890-100.gif
[425] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6916-78.gif
[426] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/6961-79.gif
[427] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/7000-175.gif
[428] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/7007-79.gif
[429] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/7053-79.gif
[430] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/7080-100.gif
[431] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/7099-80.gif
[432] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/7146-80.gif
[433] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/7193-80.gif
[434] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/7240-75.gif
[435] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/7288-82.gif
[436] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/7336-82.gif
[437] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/7384-84.gif
[438] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/7433-84.gif
[439] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/7482-84.gif
[440] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/7500-100.gif
[441] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/7531-84.gif
[442] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/7580-85.gif
[443] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/7630-85.gif
[444] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/7680-84.gif
[445] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/7700-110.gif
[446] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/7730-85.gif
[447] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/7781-86.gif
[448] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/7832-86.gif
[449] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/7883-86.gif
[450] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/7935-88.gif
[451] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/80671485.gif
[452] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/80751500.gif
[453] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/8100-110.gif
[454] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/81001500.gif
[455] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/81021505.gif
[456] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/81181415.gif
[457] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/81201500.gif
[458] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/81231313.gif
[459] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/8300-110.gif
[460] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/83002500.gif
[461] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/8542-18.gif
[462] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/8549-25.gif
[463] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/8585-100.gif
[464] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/8632-100.gif
[465] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/9532-20.gif
[466] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/9900z2x2.gif
[467] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/9900z3x3.gif
[468] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3615-570.txt
[469] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3656-167.txt
[470] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3780-181.txt
[471] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/3912-196.txt
[472] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4054-214.txt
[473] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4207-233.txt
[474] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4372-255.txt
[475] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4551-280.txt
[476] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4650-190.txt
[477] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4745-309.txt
[478] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4900-650.txt
[479] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/4955-341.txt
[480] http://www.ctio.noao.edu/noao/content/CTIO-Various-Filters
[481] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/wg345.gif
[482] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/wg360.gif
[483] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/gg385.gif
[484] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/gg420.gif
[485] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/gg455.gif
[486] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/gg495.gif
[487] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/og570.gif
[488] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/rg610.gif
[489] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/rg695.gif
[490] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/bg38.gif
[491] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/bg39.gif
[492] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/cuso4.gif
[493] http://www.astro.yale.edu/smarts/1.3m.html
[494] http://www.astro.yale.edu/smarts/ANDICAM/data.html
[495] http://www.astronomy.ohio-state.edu/ANDICAM/detectors.html
[496] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/kpno_b.pdf
[497] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/KPNO_B.txt
[498] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/kpno_v.pdf
[499] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/KPNO_V.txt
[500] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/kpno_i.pdf
[501] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/KPNO_I.txt
[502] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/andi_j.pdf
[503] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/J_andi.txt
[504] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/andi_h.pdf
[505] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/H_andi.txt
[506] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/andi_k.pdf
[507] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/K_andi.txt
[508] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/yalo_b.pdf
[509] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/B_YALO.txt
[510] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/yalo_r.pdf
[511] http://www.ctio.noao.edu/noao/sites/default/files/instruments/filters/R_YALO.txt
[512] http://www.astro.yale.edu/smarts/ANDICAM/mail.html
[513] http://www.astro.yale.edu/smarts/smarts13m/observer.html
[514] http://www.astro.yale.edu/smarts/smarts13m/optprocessing.html
[515] http://www.astro.yale.edu/smarts/ANDICAM/ObsLogs/
[516] http://www.astro.yale.edu/smarts/ANDICAM/Reports/Nightly/
[517] http://www.astro.yale.edu/smarts/smarts13m/procreps.html
[518] http://www.ctio.noao.edu/noao/content/13-m-photometric-standards
[519] http://www.astro.yale.edu/smarts/smarts13m/pg1323.html
[520] http://www.astro.yale.edu/smarts/smarts13m/ndfilters.html
[521] http://www.astro.yale.edu/smarts/smarts13m/queue.html
[522] http://www.astro.yale.edu/smarts/usage/usage13m2004b.dat
[523] http://www.astro.yale.edu/smarts/usage/usage13m2005a.dat
[524] http://www.astro.yale.edu/smarts/usage/usage13m2005b.dat
[525] http://www.astro.yale.edu/smarts/usage/usage13m2006a.dat
[526] http://www.astro.yale.edu/smarts/usage/usage13m2006b.dat
[527] http://www.ctio.noao.edu/noao/content/optical-processing-procedure
[528] http://www.astro.yale.edu/smarts/ANDICAM/Reports/Trouble/
[529] http://www.astro.yale.edu/smarts/ANDICAM/Reports/
[530] http://www.ctio.noao.edu/noao/content/SMARTS-Logs
[531] http://www.astronomy.ohio-state.edu/ANDICAM/detectors.html#sens
[532] http://www.ctio.noao.edu/noao/content/13-m-telescope
[533] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/smarts/tele13/optprocessing.txt
[534] http://www.ctio.noao.edu/noao/content/smarts-contacts
[535] http://www.astro.yale.edu/smarts/smarts13m/photrepsCCD.html
[536] http://www.astro.yale.edu/smarts/smarts13m/photrepsIR.html
[537] http://www.astro.yale.edu/smarts/smarts13m/ext.coeffsCCD
[538] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/smarts/tele13/ext.coeffsIR
[539] http://www.ctio.noao.edu/noao/content/13-m-smarts-photometric-calibrations-bvri
[540] http://www.ctio.noao.edu/noao/content/13-m-SMARTS-Photometric-Calibrations-JHK
[541] mailto:charles.bailyn@yale.edu
[542] mailto:victoria.gardner@yale.edu?subject=SMARTS%20ANDICAM%20observing
[543] mailto:depoy@astronomy.ohio-state.edu
[544] mailto:pogge@astronomy.ohio-state.edu
[545] mailto:michelle.buxton@yale.edu
[546] mailto:swt@astro.yale.edu
[547] mailto:csmith@noao.edu?subject=ANDICAM
[548] http://www.ctio.noao.edu/noao/content/andicam
[549] http://www.astro.yale.edu/cgi-bin/ANDICAM/Obs/obsentry.pl
[550] http://www.ctio.noao.edu/noao/content/ANDICAM-Contacts
[551] http://www.astro.yale.edu/smarts/ANDICAM/Obs/phase2.html
[552] http://www.astro.yale.edu/smarts/ANDICAM/Obs/obshelp.html
[553] http://www.astro.yale.edu/smarts/ANDICAM/Obs/moshelp.html
[554] http://www.astro.yale.edu/smarts/ANDICAM/Obs/ph2help.html
[555] http://www.astro.yale.edu/smarts/ANDICAM/Obs/mgrhelp.html
[556] http://www.astro.yale.edu/smarts/ANDICAM/Obs/oldobs.html
[557] http://www.ctio.noao.edu/noao/content/andicam-phase-ii-observing-tools
[558] http://www.ctio.noao.edu/noao/content/andicam-contacts
[559] http://www.ctio.noao.edu/noao/content/andicam-phase-ii-submission-instructions
[560] http://www.ctio.noao.edu/noao/content/andicam-phase-ii
[561] http://www.ctio.noao.edu/noao/content/andicam-filters
[562] https://www.astro-research.org/
[563] http://www.astro.yale.edu/smarts/13-m-telescope.htm
[564] http://www.ctio.noao.edu/noao/content/y4kcam
[565] http://www.astronomy.ohio-state.edu/Y4KCam/detector_ap7.html
[566] http://www.astro.yale.edu/smarts/smarts1.0m.html
[567] http://www.astronomy.ohio-state.edu/Y4KCam/
[568] http://www.astronomy.ohio-state.edu/Y4KCam/detector.html
[569] http://www.itl.arizona.edu/
[570] http://www.astro-cam.com/
[571] http://www.astronomy.ohio-state.edu/Y4KCam/OSU4K/index.html#DQE
[572] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/smarts/tele10/y4kcam_bias_071210.jpg
[573] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/smarts/tele10/y4kcam_star_071210.jpg
[574] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/smarts/tele10/badpix.1.0m.pl.txt
[575] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/smarts/tele10/badpix.1.0m.2x2.pl.txt
[576] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/smarts/tele10/y4kshut_300ms.jpg
[577] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/smarts/tele10/y4k_xtalk.jpg
[578] http://www.ctio.noao.edu/noao/sites/default/files/instruments/imagers/y4kcam_xtalk.txt
[579] http://www.astronomy.ohio-state.edu/Y4KCam/Y4KObsguide.pdf
[580] http://www.ctio.noao.edu/noao/sites/default/files/1m_observing.pdf
[581] http://www2.lowell.edu/users/massey/obins/y4kcamred.html
[582] http://www.ctio.noao.edu/noao/sites/default/files/quadproc_head.txt
[583] http://www.ctio.noao.edu/noao/sites/default/files/quadproc_head_2x2.txt
[584] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/smarts/tele10/phot.txt
[585] http://www.ctio.noao.edu/noao/content/13-m-logs-2011
[586] http://www.ctio.noao.edu/noao/content/13-m-logs-2010
[587] http://www.ctio.noao.edu/noao/content/13-m-logs-2009
[588] http://www.ctio.noao.edu/noao/content/13-m-logs-2008
[589] http://www.ctio.noao.edu/noao/content/13-m-logs-2007
[590] http://www.ctio.noao.edu/noao/content/13-m-logs-2006
[591] http://www.ctio.noao.edu/noao/content/15-m-logs-2006a
[592] http://www.ctio.noao.edu/noao/content/15-m-logs-2005b
[593] http://www.ctio.noao.edu/noao/content/13-m-logs-2005
[594] http://www.ctio.noao.edu/noao/content/15-m-logs-2005a
[595] http://www.ctio.noao.edu/noao/content/15-m-logs-2004b
[596] http://www.ctio.noao.edu/noao/content/13-m-logs-2004
[597] http://www.ctio.noao.edu/noao/content/10-m-Logs-2004
[598] http://www.ctio.noao.edu/noao/content/15-m-logs-2004a
[599] http://www.ctio.noao.edu/noao/content/15-m-logs-2003b
[600] http://www.ctio.noao.edu/noao/content/13-m-logs-2003
[601] http://www.astro.sunysb.edu/fwalter/SMARTS/smarts_15msched.html
[602] http://www.astro.yale.edu/smarts/15-m-telescope.htm
[603] http://www.astro.yale.edu/smarts/10-m-telescope.htm
[604] http://www.chara.gsu.edu/~thenry/SMARTS/
[605] http://www.astro.yale.edu/smarts/contact.htm
[606] http://www.astro.yale.edu/smarts/operatingplan.htm
[607] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/smarts/SMARTS2MOU.v3.pdf
[608] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/smarts/SMARTSAppendixA.pdf
[609] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/smarts/SMARTSAppendixC.pdf
[610] http://www.ctio.noao.edu/noao/content/mou-appendix-d
[611] http://www.ctio.noao.edu/noao/content/smarts-telescopes-history
[612] mailto:wsmith@aura-astronomy.org
[613] mailto:centerline@noao.edu
[614] mailto:csmith@noao.edu?subject=SMARTS2%20Consortium
[615] mailto:charles.bailyn@yale.edu?subject=SMARTS2%20Consortium
[616] http://www.astro.yale.edu/smarts/observing.html
[617] http://www.ctio.noao.edu/noao/content/observing-through-noao
[618] http://www.astro.yale.edu/smarts/about.htm
[619] http://www.chara.gsu.edu/~thenry/SMARTS/smarts.dutiesproposers.user
[620] http://chiron.astro.yale.edu/
[621] http://www.ctio.noao.edu/noao/content/planning-executing-wrapping-your-run-ctio
[622] http://www.ctio.noao.edu/noao/content/visiting-astronomers-travel-guide
[623] http://www.ctio.noao.edu/noao/content/sky-conditions
[624] http://ast.noao.edu/data
[625] http://www.ctio.noao.edu/noao/content/Fiber-Echelle-Spectrograph
[626] http://www.ctio.noao.edu/noao/content/ASCAP
[627] http://www.ctio.noao.edu/spectrographs/4m_Echelle/4m_echelle.html
[628] http://www.ctio.noao.edu/noao/sites/default/files/instruments/spectrographs/ech_manual.pdf
[629] http://www.chara.gsu.edu/~thenry/SMARTS/schedule2012B.htm
[630] http://www.astro.yale.edu/smarts/schedules/sched10m2012b.txt
[631] http://www.astro.yale.edu/smarts/schedules/sched13m2012b.txt
[632] http://www.astro.yale.edu/smarts/schedules/sched15m2012b.txt
[633] http://www.astro.yale.edu/smarts/previous.htm