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1 Introduction

The theory of all scintillation sensors (MASS, FASS, RINGSS) is based on the small-signal (weak scin-
tillation) approximation which is not quite fulfilled in the real conditions. Spatial spectrum of strong
(semi-saturated) scintillation differs from the theoretical (weak-scintillation) spectrum by containing
more high-frequency power and less low-frequency power. As a result, the angular power spectrum
(APS) S(m) increases at large m, imitating a low-altitude turbulence, and the seeing is over-estimated
(over-shoots). This effect was studied in the case of MASS and its partial correction based on numeri-
cal simulations was developed (Tokovinin & Kornilov, 2007). The idea is to transform the scintillation
variances to their values that would be obtained without saturation, using only the measured signals,
and then to apply the standard linear profile restoration algorithm. This strategy was explored in
the the pupil-plane case (solid-state MASS or FASS) and it also works. Here it is studied for the
ring-image sensor, again using simulations.

2 Effect of strong scintillation

Figure 1: Comparison of analytic WFs (solid line) with WFs from numerical simulation with seeing
from 0.2′′ to 2′′ for a single layer at 1 km (left) and at 4 km (right).

Figure 1 compares theoretical (weak-scintillation) weighting functions (WFs) with results of sim-
ulations for monochromatic light (code wtbias.pro) to illustrate the impact of increasingly strong
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scintillation. For a turbulent layer at 4 km, the classical effect is observed, namely decrease of power at
low frequencies (small m) and its increase at intermediate frequencies, m > 5. The cross-over occurs
at m = 4. Note that at m ∼ 20 the impact of saturation becomes smaller.

For a layer at 1 km the overall scintillation is smaller, and the effect of saturation is also moderate
below the cross-over at m = 8. However, the WF minimum at m = 11 is progressively filled. If the
effect of saturation is expressed at a ratio of simulated and theoretical WFs (WF bias), there is a
strong “spike” around m = 11, reaching a factor of two. However, the WFs at those frequencies are
already an order of magnitude smaller compared to their maximum. Therefore, the effect of this bias
on the restored turbulence profiles (TPs) is negligibly small. Moreover, in polychromatic light this
minimum is less deep and, correspondingly, its filling should be less pronounced.

Summarizing, there are two distinct effects of saturation: (i) progressive transfer of power to
intermediate frequencies at large z and (ii) partial filling of WF minima at small z. The second
effect is specific to RINGSS and is not present when the scintillation is measured at the pupil; it
is presumably caused by the interplay between phase and amplitude distortions. This second effect,
however, can be neglected in practice, as confirmed below by simulation.

3 Simulations

When the scintillation is measured at the pupil plane, polychromatic light can be simulated by prop-
agation of several wavelengths and averaging the resulting intensity patterns. It is more complex
in the case of RINGSS because at each wavelength the image formation must be treated separately.
Therefore, this study is based on monchromatic simulations. The effect of spectral bandwidth consists
mostly in damping the signal at high frequencies at substantial propagation distances.

The simulation code bigsimul.pro randomly selects a seeing value in the range from 0.2′′ to 2′′

and generates two turbulent layers with a 0.8:0.2 ratio of turbulence power (i.e. turbulence integrals
Ji) using simatm.pro. The distances zi are chosen randomly from a log-spaced grid with a step of√
2, ranging from 0.5 km to 16 km. Monochromatic waves are propagated through these layers and

the simulated image cubes are generated using ringsim.pro with the instrument parameters specified
in sim1.par (telescope diameter 0.13m, central obscuration 0.5, pixel size 1.55′′, wavelength 0.6µm,
effective conjugation to −400m). The strength of the scintillation is characterized by the intensity
variance s20, usually called Rytov number (or variance):

s20 = 19.12λ−7/6
∑

Jiz
5/6
i . (1)

Only cases with s20 from 0.02 to 1 are used to avoid too weak or too strong scintillation. A total of
500 realizations are computed. Theoretical (i.e. small-signal) APS Stheo

m computed using the WFs is
compared to the measured APS Sm. The total power Stot =

∑
m Sm is a measure of the scintillation

strength. As shown in Fig. 2, the total power is a good proxy for the unknown Rytov variance when
the scintillation is strong.

The main set of simulations produced by bigsimul.pro contains 500 cases. The results (measured
and theoretical indices, altitudes, etc.) are saved and used for development of the correction algorithm.
Other, smaller sets of simulations (e.g. with equal layers) were also generated. For one set of 100 cases
the data cubes are saved and processed by the standard pipeline to produce the control sample.
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Figure 2: Ratio of the total mea-
sured power Stot to the Rytov vari-
ance s20 in the simulations.

4 Correction algorithm

The saturation correction is based on linear combinations of the measured APS Sm with coefficients
adjusted to reach the best match between theoretical and corrected (quasi-linear) power, similarly to
the method used in MASS. The set of these coefficients, derived for each m, represents the correction
matrix Zm,k, or Z-matrix (Tokovinin & Kornilov, 2007). The analysis indicates that only a few terms
involving the lowest-m signals are useful, because the correction quality does not improve further with
increasing number of coefficients. The ratio of the measured APS Sm to the unknown (small-signal)
APS Stheo

m is modeled as

Sm/Stheo

m ≈ 1 +
5∑

k=1

Zm,kSk, (2)

where the sum includes a restricted number of terms from k = 1 (the k = 0 term is not used) to 5.
The correction from measured to quasi-linear signal is the inverse of the right-hand part; it approaches
one as the scintillation tends to zero.

This model was studied in the case of pupil-plane turbulence sensor and shown to work; typically
the first 5 terms are sufficient. Alternative flavors of correction algorithms were probed, but they
performed less well. For RINGSS, I probed a simplified version with a single parameter Zm multiplied
by Stot, replacing the linear combination in eq. 2. This linear correction works, but less well than
the matrix correction with 5 terms adopted finally. Alternatively, I considered a matrix correction
involving 3 terms S1, S2 + S3, and , S3 + S4 + S5. It gives good results, but computationally is not
simpler than the full matrix correction with 5 terms. Including the S0 term does not improve the
correction.

The correction is determined and evaluated by the procedure zmatrix2 in bigtest.pro. Equation
(2) is transformed to ∑

k

SkZm,k = Ym, Ym = Sm/Stheo

m − 1. (3)

Here Ym is the vector of length 500 (total number of simulations), Sk is a subset of APS from 1 to 5
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for each simulation, i.e. the matrix S of the size 500×5, and Zm,k is the m-th line of the Z-matrix.
For each m, equation (3) is solved to find Zm,k by the standard least-squares method. Let A = (S)TS
be the system matrix. Then the solution is

Zm = A−1[STYm]. (4)

Two subtleties are involved. First, only simulation results with Rytov variance from 0.05 to 0.7 are
used and the cases with the lowest layer at or below 1 km are excluded. This “training set” of 149
cases (out of 500) is used to find Z, and the resulting rms difference between theoretical and corrected
signals is computed for the training set and for the full set. Second, the inversion of A is done by SVD
with rejection of singular values below 10−3 of the largest singular value to avoid noise amplification.
Typically, 3 singular values are rejected.

Figure 3: Ratio of uncorrected to theoretical power Sm/Stheo
m (crosses), ratio of corrected power for

the training set (red squares) and for the remaining cases (blue asterisks) plotted against Stot for
terms m = 2, m = 5 (top) and m = 8, m = 12 (bottom).

The matrix correction was studied for all m from 1 to 20 that are used in the profile restoration.
Figure 3 gives representative plots. The quality of the correction is estimated by the rms of the

4



Table 1: Correction quality and Z-matrix

m Uncorr. Training All Z1 Z2 Z3 Z4 Z5

rms set rms rms

1 0.13 0.08 0.10 0.2 3.8 -0.2 -3.0 -3.1
2 0.13 0.07 0.09 0.1 -1.1 -1.1 -0.6 -0.3
3 0.18 0.06 0.08 1.9 -0.5 -2.9 -3.3 -2.5
4 0.23 0.05 0.07 4.2 1.6 -4.4 -6.4 -5.3
5 0.26 0.07 0.09 1.3 9.6 -2.9 -10.8 -10.5
8 0.29 0.06 0.10 1.6 -3.1 6.0 10.7 9.4
9 0.30 0.09 0.11 4.0 -9.4 6.1 16.0 14.9
10 0.28 0.07 0.13 5.2 -12.2 5.5 17.4 16.7
12 0.31 0.06 0.23 -0.5 -2.9 4.8 8.6 7.5
15 0.20 0.05 0.14 0.9 -6.0 3.4 9.2 8.6

ratio Scorr
m /Stheo

m computed separately for the training set and for the full set. Sample of these rms
values and the rms differences without correction is given in Table 1 together with the Z-matrix lines.
Overall, the correction works quite well and the rms for the training set are between 0.05 and 0.09.
The largest impact of saturation and, correspondingly, the largest correction is found for m = 9; the
m = 1 and m = 2 terms have the smallest correction.

Looking at Fig. 3, one notes that for m = 5 and m = 8 the correction works very well not only for
the training set, but also for the full set; the rms for the full set is within 0.1. However, for m = 12
some blue asterisks are well above one, while the rms for the full set, 0.23, is almost as large as 0.31
without correction. These deviant points correspond to the cases with layers below 1 km, where the
minima of the WFs are filled (see Fig. 1, left). This phenomenon is not corrected by the current
algorithm and this is the reason why the low-z cases are removed from the training set. The mixture
of two different phenomena related to strong scintillation complicated development of the correction
algorithm for RINGSS.

5 Testing

A quick simulation run of 100 1-second data cubes (1000 frames each) was processed by the pipeline.
In the profile restoration code profrest4.pro, the correction for finite exposure was disabled (the
simulations did not include the blur), and the Z-matrix correction was either enabled or disabled.
Figure 4 compares the total estimated seeing with the simulated one. In the left-hand panel we note
the “overshoots” caused by partially saturated scintillation. Energy spilled to higher frequency is
interpreted as coming from lower but stronger layers, and the seeing is over-estimated. When the
Z-matrix correction is switched on, the over-shoots disappear. Note that the seeing is estimated
reasonably well from only 1000 simulated frames.

The seeing deduced from the differential sector motion is under-estimated (under-shoots). This is
caused by two distinct effects illustrated in Fig. 5. First, propagation reduces the phase fluctuations
and, correspondingly, the differential sector motion. Second, the sector motion is further reduced under
strong scintillation, as shown in the rigt-hand panel. The empirical correction factor 0.87(1−0.78Stot)
could be applied to reduce both biases, but it is better to treat them separately. Similar effects are
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Figure 4: Seeing deduced from the turbulence profiles restored from APS (crosses) and estimated
from the differential sector motion (asterisks) is plotted against simulated seeing, with the straight
line corresponding to equality. Left: without saturation correction, right: with correction.

Figure 5: Explanation of bias in the seeing estimated from the differential sector motion. Left: relative
response in the weak-scintillation rgime showing reduction of the variance with increasing z. Right:
ratio of the estimated and true seeing as function of the scintillaion strength Stot. The dashed line is
a linear fit 0.87(1− 0.78Stot).

encountered in DIMM (Tokovinin & Kornilov, 2007). Typical DIMMs have larger apertures compared
to RINGSS, reducing the impact of diffraction. However, even a standard DIMM needs corrections
for propagation and partial saturation that are not implemented in the existing site monitors.

Figure 6 gives additional insight into over-shoots by plotting the simulated (input) turbulence
profile and the retrieved profile. The simulated seeing was 2.12′′, with 0.8 fraction at 4 km and 0.2 at
16 km, resulting in a strong scintillation of Stot = 0.55. The estimated seeing is 2.22′′ and 2.77′′ with
and without correction, respectively. Without correction, the restored profile is shifted to a closer
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Figure 6: Simulated turbulence profile (asterisks) and the restored profile (line) for one simulation
with Stot = 0.55. Left: without saturation correction, right: corrected.

distance. Correction improves the result, but it is still far from perfect. Interestingly, the mean rms
residuals between measured and modeled APS are substantially smaller without correction. A similar
situation was found in MASS: the restoration algorithm happily models the biased signal by placing
turbulence at a closer range. This means that the rms residuals to APS fits are not suitable as a
metric of the accuracy of result.

6 Conclusions

The proposed algorithm gives an empirical solution to turbulence profile restoration for moderately
saturated scintillation. This regime is frequently encountered in practice, and the correction seems to
be necessary; otherwise the seeing and free-atmosphere seeing become over-estimated. However, these
over-shoots remain modest (mostly within 10%) and can be considered as tolerable, especially at good
sites. After all, turbulence parameters are always measured with a varying degree of approximation.

The phenomenon of saturated scintillation is generic, but the correction matrix depends on the
instrument parameters. A tool to estimate the Z-matrix from simulations for an arbitrary instrument
will be developed by adaptation of existing code. The general character of the correction (decrease at
small m and overshoots at large m) is valid for any instrument.
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