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1 Introduction

The theory of the RINGSS turbulence sensor assumes that the defocused ring images are distorted
only by the atmoshperic turbulence, while the telescope optics is perfect. In practice, this is not
quite true. It has been established by simulation that small static aberrations do not affect RINGSS
measurements. However, aberrations with amplitudes larger than ∼1 rad distort the response (namely,
the weighting functions, WFs) strongly and therefore bias the resulting turbulence profiles. If the
optical aberrations are known, they can be explicitly included in the calculation of the WFs, allowing
to get rid of the bias caused bt the imperfect feeding optics.

This document presents a practical method of measuring the aberrations. The aberrations are
described by the Zernike polynomials (in the Noll’s notation). I use the standard full-aperture poly-
nomials that are not orthogonal for the annular aperture of the instrument, but the orthonormality is
not needed for this study. The Zernike terms 1, 2, and 3 (piston and tilts) are irrelevant. The terms
4, 5, 6 characterize the defocus and astigmatism, 7 and 8 are the coma coefficients, 9 and 10 are the
trefoil, and 11 is the spherical aberration.

The average image saved in the data processing can be used to iteratively fit the aberrations using
the donut software. However, this tool is available only in IDL, and its port to python is a substantial
work. Meanwhile, the mean radial and angular coefficients computed in the standard processing of the
data cubes already contain the information on the low-order aberrations. Therefore, these aberrations
can be determined from the regular data using a simple tool, without image analysis.

2 Development in IDL

The program getimage.pro generates the undistorted ring image using the instrument parameters.
It can optionally take arguments zn and zrad – numbers and amplitudes of Zernike aberrations (in
radians at the wavelength given by the parameters).

Using getimage, I studied the effect of aberrations on the cofficients C derived in RINGSS from the
data cube. The algorithm of computing these coefficiens, implemented in cubecoef.pro, is re-created
and applied to the simulated images or to the real average images. As the coefficients are determined
by a linear operation, the average coefficients for a data cube equal the coefficients derived from the
average image.

The first tests (see aber1.pro) have shown that the effects of defocus and spherical aberrations
(terms 4 and 11) are almost identical: both affect only the ring’s radius. The spherical aberrtion
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influences also the ring width, but the width is not captured in the coefficients. Therefore, I restrict
the fitting to the 7 Zernike terms from 4 to 10 and do not determine the spherical aberration.

The code aber1.pro applies sequentially Nz aberrations and records the resulting coefficients Ci.
Their difference from the undistorded values ∆Ci = Ci − C0, normalized by the amplitude of the
applied aberration, represents the interaction matrix of the system, I of the size Ncoef × Nz. For
small-amplitude aberrations z (vector of Zernike coefficients in radians), the linearity holds, hence

∆C = Iz. (1)

The left-hand side is measured, I is determined, and we can find the aberrations as the least-squares
solution of (1). This is the same idea as in donut, except that here we use the coefficients ∆C, while
donut operates directly on the image pixels.

I found that the least-squares method recovers well all simulated aberrations except coma (terms
7, 8). It is well known that coma displaces the image center. The coefficients C are computed from
the centered rings. Although centering is included in the calculation of I, the response of the sector
radii to coma is still distorted. Coma mostly affects the sector radii (the first 8 coefficients), but also
the m = 1 angular signals.

Realilzing that the sector radii are related mostly to the Zernike aberrations 3, 4, and 5, I modified
I by nulling the I elements for these terms that contain angular signals, leaving only the radii. On
the other hand, for the coma (terms 7, 8), I nulled the I elements corresponding to the radii. With
the modified matrix, the least-squares solution of (1) becomes stable and the coma is well recovered.
This approach is implemented in aber1a.pro.

Finally, the detailed analysis of I shows that each coma and trefoil aberration affects only one
angular signal, m = 1 for coma and m = 3 for trefoil. So, we can further simplify the least-squares
problem and get rid of the matrix inversion. This approach is implmented in aber1b.pro. The input
signals are the 8 sector radii and the 6 angular coefficients with m = 1, 2, 3 (m > 3 are not needed).
These signals C ′ are selected from the full vector of the mean coefficients. The pre-calculated selector

matrix S transforms them into quantities proportional to the Zernike coefficients. The piece of code
computing S is:

smat[0,0:7] = 1. ; focus 4

smat[1,0:7] = sin(2*phisect) ; astig 5

smat[2,0:7] = cos(2*phisect) ; astig 6

smat[3,12] = 1. ; coma 7

smat[4,8] = 1. ; coma 8

smat[5,14] = 1. ; trefoil 9

smat[6,10] = 1. ; trefoil 10

The focus term is related to the sum of the sector radii, the astigmatisms are derived from the radii
weighted by sinφi and cosφi, respectively, where φi are the angles of the sector centers. The remaining
lines of S simply select one angular term related to the appropriate coma or trefoil aberration. The
response to the aberration of 1 radian equals R = SI (a 7-element vector). The aberrations z are then
estimated from the S-weighted signals as

z = (SC ′)/R. (2)
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Here C ′ is the vector of 14 mean coefficients containing the 8 sector radii in pixels and the 6 angular
coefficients. The values of the R vector for our prototype instrument are: (8.11, 2.50, 2.47, 0.096,
0.092, -0.156, -0.156). For example, changing the focus by +1 radian increases all sector radii by ∼1
pixel, while z7 = +1,rad produces an average m = 1 sine coefficiengt of 0.092.

This simple algorithm works well on the simulated images, recovering the input aberrations. I ap-
plied it to the two real average ring images. Finally, I ran the algorithm on the coefficients determined
by cubecoef.pro, instead of the images, and obtained the same results.

Figure 1: Modeling real average ring images: left: cube-1 taken on May 24, right: cube-2 taken on
March 21. Each panel shows the real image on the left and its model on the right, both on the same
scale. The real images are slightly blurred by turbulence, while the models are not.

The average images and their models with 7 Zernike terms computed using (2) are illustrated
in Fig. 1. The cube-1 data 2021-05-24-233329 cube.fits is taken on May 24 and suffer from
substantial coma aberration. In contrast, on March 21 the telescope was better aligned, and the cube-
2 2021-03-22-000902 cube.fits has smaller aberrations. The coefficients derived for both cubes are
listed below.

Zn cube-1 cube-2

---------------------

4 0.10 0.28

5 -0.35 0.34

6 0.59 -0.08

7 1.27 -0.06

8 0.67 0.02

9 -0.03 0.05

10 0.01 0.15

3 Port to python

Calculation of Zernike aberrations is done by the code zernike.py, found on the web and slightly
tuned. It contains subroutines to compute the radial part, define the n,m indices from the sequential
number j, and, finally, compute the Zernike polynomial as zer = zernikel(j,rho,phi), where rho

is a list or array of radii (normalized by the aperture radius), and phi is the corresponding array
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of angles. The result is not masked by the pupil, i.e. it returns non-zero values at radii exceeding
one. The code was compared with the IDL ztools.pro and found to give the same results. The
polynomials correspond to the Noll definition and are orthonormal on the pupil of unit radius.

The progam getimage.py computes a 2-dimentional monochromatic ring image that optionally in-
cludes static Zernike aberrations: img, rad = getimage(d,eps,pdist,lam,pixel,zn=[],zrad=[]).
The ring radius in pixels is returned as a second parameter. The image is computed on an internal grid
of 512x512 ’fine’ pixels and re-binned on the coarse CCD pixels (the rebin utility, not found in numpy,
is included in this module). The image size is a power of 2, e.g. 64x64 pixels. I found that the resulting
ring was shifted from the grid center by half-pixel in both coordinates because of the re-binning, and
corrected most of this offset by back-shifting the computed image prior to its rebinning. The image is
normalized so that its sum equals one.

The code cube2.py is slightly modified: now, after computing the radii and angular coeffi-
cients for a data cube, it saves the selected mean values needed for the aberration calculus in the
[’moments’][’mcoef’] section of the resulting dictionary. This is an array of 14 elements: 8 mean
sector radii, 3 cosine terms for m=1,2,3, and 3 corresponding sine terms.

The code aberration.py determines the 7 response coefficients to the Zernike aberrations and
saves them in the aberration.json file. The algorithm is ported directly from IDL. Using the
instrument parameters dictionary, the function aberresp(par) returns the dictionary that contains
the 7 response coefficients R, as well as the matrix S and the mean radius of the unaberrated image.
This calculus uses getimage.py and implements the same algorithm of the coefficients calculation as
in cube2.py. Once the response is defined, the call zampl = getzampl(par,mcoef) computes the
7-element vector of Zernike aberrations (in radians at 600 nm). The main program can be called as
python aberration.py <par-dict> <data-dict>. The resulting Zernike amplitudes are added to
aberration.json.

Given the same inputs, the IDL and python codes produce the same response to aberrations. As
an example, I processed the real data cube:
python aberration.py par-mar21.json data/2021-05-24-233329.json. The table below com-
pares the Zernike coefficients determined for this cube by the IDL and python codes. A small dis-
crepancy in the defocus is caused by the differences in the nominal ring radius: IDL uses the ring
radius returned by getimage, computed on the fine grid without radial masking, while in python the
mean nominal radius is computed from the sector radii of the un-aberrated and binned image, using
the radial mask. These radii are similar, but not identical, e.g. 11.56 and 11.41 pixels. The python
algorithm is more rigorous.

Zn IDL Python

---------------------

4 0.10 -0.51

5 -0.35 -0.29

6 0.59 0.62

7 1.27 1.61

8 0.67 0.64

9 -0.03 0.01

10 0.01 0.02

Once the aberrations are known, they can be accounted for in the calculation of the weights.
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Adding a sum of static aberrations to the conic wavefront in aweight.py seemed trivial. However,
this modification produced unexpectedly wrong results even for a small-amplitude coma, while it
worked for defocus and astigmatism. The reason for this discrepancy was found to be in the subtle
differences between the direct and inverse FFTs and their normalization as implemented in IDL and
numpy. The problem was corrected.

After correction of aweight.py, I compared again the weights calculation by the IDL and python
tools. In python, testweight.py computes the polychromatic weights for m = 0...20 (the m =
0 weight refers to the sector motion) and 5 distances z = 1, 2, ...16 km and saves the table in
weight3.txt; it uses aweight.py. The instrument parameters are as defined in par-mar21.json.
Then the IDL code weightcompare.procomputes the same weights using aweight3.pro and com-
pares them with the results of python.

Figure 2: Ratio of weights computed in python and in IDL, for 5 distances from 1 to 16 km shown in
the legend. Left: no aberrations, right: coma of 1 radian.

Figure 2 plots the ratio of weights calculated with python and IDL for a perfect optics (left) and
for a 1-radian of coma (right). In the latter case, 5 radians of tilt of opposite sign are added to
compensate ring displacement produced by the coma and keep the rings approximately centered. The
results are very satisfactory. With coma, the sector weight in python is slightly less than in IDL, while
for perfect optics their difference does not exceed 2%.

4 Tolerable aberration amplitudes

Using IDL, I explored the impact of low-order aberrations on the WFs. The calculation is programmed
in biases.pro using instrument parameters mar21a.par.

The left panel of Fig. 3 compares the first 10 angular weights without and with coma. The
m = 1, 2 weights remain unaffected, while at larger m coma increases the weights, and the red curves
are elevated above the black ones. The right-hand panel shows the relation between the amplitude A
of the m = 1 angular coefficient and coma z7. It is linear up to ∼2 rad with a slope of 0.086. The
slope is the coma response coefficient, which is found above to be 0.096/0.092 using a different tool.
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Figure 3: Left: WFs without aberration (black) and with 1 rad of coma (red). Top to bottom: curves
for m = 1, 2, ...10. Right: relation between the coma amplitude z7 in radians and the m = 1 mean
coefficient A. The dashed line has a slope of 0.086.

Figure 4: Ratio of the WFs with and without coma. Left: 1 radian, right: 0.5 radian.

The procedure comaweight in biases.pro evaluates the effect of aberrations on the WFs. In the
case of coma, the tilt with a coefficient of −5 is also applied to keep the ring centered. The effect is
not proportional to the aberration amplitude but, on the contrary, is highly non-linear. As shown in
Fig. 4, 1 rad of coma modifies the WFs by as much as two times (mstly at large m and z), while 0.5
rad of coma causes a much smaller effect, only within 20%. In practice, the impact is even smaller
because at large z the WFS are much smaller than at maximum (for a given large m). When the
difference of WFs normalized by the WF maximum is plotted, the effect of 0.5 rad coma is under 7%,
i.e. quite tolerable.

Figure 5 plots the normalized differences of WFs for astigmatism and trefoil. An astigmatism of
0.5 rad produces an acceptably small change of the WFs, just as coma. On the other hand, a trefoil of
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Figure 5: Difference between aberrated and un-aberrated WFs normalized by the WF maximum at
each m. Left: astigmatism of 0.5 rad, right: trefoil of 0.3 rad.

the same amplitude gives a much larger effect, and the threshold of acceptable trefoil must be lowered
to 0.3 rad, as shown in the right panel. In all cases, the aberrations increase the WFs, leading to an
over-estimate of turbulence strength.

5 Summary

Standard processing of the RINGSS data cubes offers a convenient way to evaluate low-order aber-
rations from the mean angular coefficients and ring radii. The relation between aberrations and
coefficients was studied using IDL, and tools for estimating these aberrations are ported to python
and tested. This means that the RINGSS instrument can be self-calibrated with respect to aberrations.

In practice, some coma aberration is expected from an imperfect or unstable alignment of the
Cassegrain telescope, and some astigmatism arises from a slight de-centering of the re-imaging lenses.
The astigmatism also depends on the star position in the field. Processing the real data shows the
presence of both aberrations. Their amplitudes in cube-2 above is small and does not cause trouble,
while in cube-1 the aberrations arising from poorly aligned optics require re-calculation of the weights.

Aberrations produce a positive bias on the WFs. This effect can be accounted for in the data
processing. The bias is a non-linear function of the aberration amplitude. Small (under 0.5 rad)
aberrations can be safely neglected. If the data reveal larger aberrations, they can be icluded in the
parameters and the weights can be re-computed to cancel this bias. The strategy of dealing with
aberrations will be determined during initial test phase of the prototype. This study gives the tools
needed to chracterize aberrations and account for them if necessary.
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