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1 Introduction: MASS time constants

The atmospheric time constant τ0 is an important parameter for all high-resolution techniques, espe-
cially adaptive optics. The definition of the AO time constant is

τ0 = 0.314r0/V = 0.057 λ
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where C2
n(h) is the vertical profile of the refractive index structure constant, V (h) is the vertical profile

of the modulus of the wind speed. In the following we always assume that τ0 refers to the wavelength
λ0 = 0.5 µm.

The differential-exposure scintillation index (DESI) is computed for the smallest 2-cm MASS aper-
ture as a differential index between 1 ms and 3 ms exposures. Instead of binning the signal in 3 ms,
the DESI index σ2

DESI is actually computed as

σ2

DESI = 2/9 (3σ2

0 + σ2

2 − 4σ2

1), (2)

where σ2

i is the covariance of the normalized light intensity with a time lag of i sampling periods. The
first term σ2

0
is a normal scintillation index with the photon-noise bias subtracted.

It has been shown in [4] that DESI is useful for estimating the atmospheric time constant. A
formula

τMASS = 0.175 ms (σ2

DESI)
−0.6 (3)

has been suggested on the basis of limited data on real turbulence profiles.
The empirical calibration coefficient K = 0.175 ms is used in the actual calculation of the MASS

time constants τMASS . However, the real instrument is different from the conditions used to derive
K: the wavelength response of MASS is broad-band centered at λ ≈ 0.45 µm, the aperture diameter
is about 2 cm and the aperture is conjugated to the ground, not to −1 km.

In this Report, the calibration of the MASS time constant is re-considered. First, we use the same
method as in [4] but with the real instrument parameters and a larger test set of profiles. Second,
we perform direct numerical simulations of MASS with a single phase screen, taking into account
the effects of saturated scintillation. Finally, some other data are involved to check the MASS time
constants.
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2 Calibration with real turbulence profiles

The response of the MASS DESI to a single turbulent layer at a distance (range) h moving with the
speed V is described by the corresponding weighting function WDESI(h, V ), so that for j layers

σ2

DESI =
∑

j

WDESI(hj , Vj) (C2

ndh)j . (4)

Comparing this with Eq. 1, we see that MASS would give an exact measure of τ0 if a condition
WDESI(h, V ) ∝ V 5/3 holds. For the real MASS DESI signal, this condition can be only approximate.
How good is it?

We computed the DESI weight using the recipe of [4] modified for a poly-chromatic spectral
response according to [5]. A central wavelength 450 nm and FWHM bandwidth 100 nm were assumed,
mimicking the actual instrument characteristics. The exposure time is 1 ms and aperture diameter
d = 2 cm. The ratio W 0.6

DESI(h, V )/V is plotted in Fig. 1. Its deviation from a constant can be
directly interpreted as a bias in τMASS for a single turbulent layer. The plots show that MASS

Figure 1: Plots of W 0.6
DESI/V vs. range for different wind speeds.

under-estimates the contribution of turbulence below 1-2 km to the integral (hence over-estimates τ0).
Low wind speeds also lead to a strong bias, but for typical wind speeds in the range 15–50 m/s the
condition W 0.6

DESI(h, V )/V = const. roughly holds for the high atmosphere, to within ±20%. The
intrinsic accuracy of τMASS should be of the same order.

The profiles of C2
n(h) and V (h) at Cerro Pachón have been measured with balloons in 1998 during

the Gemini site-testing campaign [1]. These data were retrieved for the study of the Gemini GLAO
system. Of the 44 profiles, only 26 contain the wind speed data and are useful for the present study.

For each profile, the time constant τ0 was calculated. Also, the constant τ0,h ignoring the contri-
bution of layers below 1 km was calculated, in hope to be more directly comparable to the τMASS .
The bias is evaluated in the logarithmic sense by computing the average of r = log10(τMASS/τ0) and
the rms scatter σr.

The comparison of τMASS with τ0 and τ0,h is shown in Fig. 2. Most of the time, MASS slightly
under-estimates the true time constant. However, for low wind speeds or strong ground-layer turbu-
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Figure 2: Test of the MASS τ0 measurements against 26 real turbulence profiles for Cerro Pachón.
The horizontal axis shows true time constants computed for the whole atmosphere (left) and above
1 km (right). The full line corresponds to equality, the dotted line is the estimated MASS bias of 0.78.

lence the MASS bias is positive, and on the average the ratio τMASS/τ0 is close to one. By restricting
the comparison only to high layers and high wind speeds (23 profiles out of 26), a more sound estimate
of the MASS bias is obtained, τMASS/τ0 = 0.78.

Figure 3: Comparison of the trun-
cated estimate τ0,h (vertical axis)
with the true time constant τ0 (hor-
izontal axis). The full line corre-
sponds to equality.

Figure 3 compares the true and truncated time constants. It shows that the time constant is
mostly determined by the high atmospheric layers and the bias caused by truncation is small, about
1.16 on the average.
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Figure 4: Comparison of the τ0 for a
single-layer turbulence and its simu-
lated measurements by MASS. The
full line corresponds to equality, the
dotted line is 2 times lower. The im-
ages of the 2-cm aperture blurred by
the 20 m/s wind in 1 ms and 3 ms
exposures are shown on the right.

3 Numerical simulation

A scintillation signal produced by a single turbulent layer has been simulated numerically. The method
of the simulation is described in [6]. The pixel size of the simulated phase screens is 5 mm, with 10242

pixels (5.12 m). The light was monochromatic, λ = 450 nm. To simulate the effect of the finite
exposure time of t = 1 ms, the MASS aperture with d = 2 cm was blurred by a liner shift V t. A blur
of 3V t simulates the signal binned in 3 ms (Fig. 4), so a DESI index can be computed in the same
way as the differential index between two blurred apertures. Alternatively, the DESI was computed
directly from the 1-ms samples using Eq. 2. These two alternative estimates of DESI are in a very
good agreement.

This simulation takes into account the effects of strong (semi-saturated) scintillation. A single
layer with seeing of 0.3′′, 1.0′′ and 1.5′′ was placed at h = 10 km. Also layers with (0.5′′, 2 km) and
(1.0′′, 4 km) were simulated. The scintillation index ranged from 0.05 to 0.86. Each layer was given
a range of wind speeds from 5 to 50 m/s.

The results of all simulations combined are plotted in Fig. 4. Of the three cases of high positive
bias of τMASS , two correspond to the slow wind speed 5 m/s and one to V = 50 m/s and h = 2 km.
Ignoring these cases, the remaining 19 points lead to the average MASS bias of τMASS/τ0 = 0.79.
This is very close to the result of the previous Section. To remove the bias, the calibration coefficient
in (3) should be set to K = 0.22 ms.

4 Additional data

Suzanne Kenyon extracted the MASS data for Cerro Tololo for the period April 2003 to April 2006
(64504 points) and matched them to the data on wind speed extracted from the NCEP/NCAR
database. These meteorological data are available on a coarse vertical grid with a time sampling
of 6 h. The matching in time consists in selecting the V data closest in time to the MASS data. The
matching in altitude was done in two different ways. First, the wind speed was interpolated to the
nominal altitudes of the MASS layers (0.5, 1, 2, ... km) from the nearest NCEP layers. Alternavively,
the wind speed from NCEP was averaged within the nominal width of the MASS layers, e.g. from
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6 km to 12 km for a 8-km layer. Then the atmospheric time constants τ0,av and τ0,int were computed
from (1) and compared with τMASS . This calculation of τ0 automatically excludes turbulence below
0.5 km. The comparison plots (Fig. 5) are presented in grey-scale (as a density of points) in order to
avoid cluttering.

Figure 5: Comparison of the time constants measured by MASS (vertical axis) with the time constants
calculated from the MASS turbulence profiles and wind speeds (left – averaged within MASS “layers”,
right – interpolated to the layer nominal altitudes). The dashed lines show equality, the full lines –
estimated MASS bias.

Both methods of the time constant calculation show a very similar bias of MASS, τMASS/τ0,av =
0.47. Otherwise, the correlation between these estimates is as good as can be expected, given the
approximations involved.

Marc Sarazin compared the time constant measured by MASS with the approximate estimate
computed from the seeing (DIMM data) by the recipe of [3]. The plot of Fig. 6 is taken from the
ESO web site1. The scatter of points in this plot is large. Concentrating on the values close to typical
(3 ms), we see that DIMM “measures” ∼2.5 times larger time constants than MASS.

5 Summary and discussion

The data on the bias in the time constant measured by MASS are summarized in Table 1. As noted,
the bias is evaluated in the logarithmic sense by computing the average of r = log10(τMASS/τ0) and
the rms scatter σr. The Table gives the number of “points” N used in calculating the bias.

The two most reliable estimates of the MASS bias come from the first two lines. The rms scatter
of the bias from profiles is even less than from the simulations, probably because the range of the
wind velocities contributing to the real τ0 estimates is rather restricted. It is encouraging that both
methods require the same adjustment of the calibration coefficient, to K = 0.22 ms. A large part of
this bias disappears when the contribution of the low layers (un-sensed by MASS) is accounted for, so
the actual τMASS turn out to be essentially un-biased. The scatter of the τMASS is about 27% relative
to the un-biased τ0 and only 13% relative to τ0,h.

1http://www.eso.org/gen-fac/pubs/astclim/paranal/asm/mass/MASS-Paranal-2003/
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Figure 6: Comparison of the time
constants measured by MASS (hor-
izontal axis) with the time constants
estimated from the DIMM (vertical
axis) for Paranal. The diagonal cor-
responds to the equality.

Table 1: Estimates of the τMASS bias

Num. Comparison data N 〈r〉 σr

1 Phase screens 19 −0.103 0.090
2 Pachón profiles, h > 1 km 23 −0.106 0.054
3 Pachón profiles, full 26 −0.017 0.102
4 Meteo data, average V 64504 −0.326 0.133
5 Meteo data, interp. V 64504 −0.387 0.143
6 DIMM + meteo ? ∼ −0.4 -

The comparison of τMASS with the indirect τ0 estimates derived from meteo-data hints that τMASS

under-estimates τ0 by as much as 2–2.5 times. Such a large bias cannot be explained by the intrinsic
defects of the MASS method (an over-estimate is expected instead). Hence the comparison values are
suspect.

The NCEP wind velocities were averaged without C2
n weighting and we may guess that layers

with stronger turbulence move faster than the bulk of the atmosphere. This explanation implies a
difference of ∼ 1.6 times between the simple average V and the C2

n-weighted average. However, the
balloon profiles show the ratio of C2

n-weighted to simple average wind speed (in 1-km bins) to be close
to one (within 10%). Averaging witnin wide MASS “layers” does reduce the apparent wind speed.
Figure 7 compares the median wind speed derived from the balloon profiles with the median speeds
used to compute τ0,av. The 8-km layer shows the bias caused by the altitude averaging.
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Figure 7: Median wind speed at
Cerro Pachón vs. altitude computed
from the 26 balloon profiles (line)
and from the meteo data averaged
within MASS layers (points).

6 Conclusions

It is found that the real MASS instrument measures the atmospheric time constant produced by high-
altitude layers 0.79 times smaller than the true τ0. This bias is, on the average, compensated by the
un-measured contribution from the low layers, at least at Cerro Pachón. Other sites may have quite
different fraction of the ground-layer (GL) turbullence, hence it is better to consider this contribution
explicitly. The turbulence integral in the ground layer (C2

ndh)GL is measured by the MASS-DIMM,
and the GL wind speed is known from a local meteo-station. Hence, the un-biased time constant can
be estimated as

τ
−5/3

0
= (1.27 τMASS)−5/3 + (0.057)−5/3λ−2

0
V

5/3

GL (C2

ndh)GL. (5)

The intrinsic accuracy of such estimate is expected to be ±20% or better.
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