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1 Method

Continuing the study of MASS behavior under string scintillation, we simulated intensity patterns
resulting from a single turbulent layer, of varying intensity. The turbulence strength is parametrized
by the seeing (at 500nm).

The code simatmpoly.pro computes intensity distributions for polychromatic light passing through
an arbitrary number of turbulent phase screens. The turbulence profile is specified by the relative
strength of these screens (sum to unity), the total is determined by the seeing. The polychromatic
light is modeled by a set of discrete wavelengths [λ], each with its own intensity [sp]. Each wavelength
is propagated (independently of others) through the common set of screens, and the resulting intensity
patterns are averaged with the relative weight [sp].

Figure 1: Simulated and modeled power spectra of poly-chromatic scintillation. Left: 0.2′′ seeing at
10km, right – 1′′ seeing at 10km. The wavelengths of 0.4, 0.55, and 0.5 µm are mixed with equal
weight. The dotted curves are weak-scintillation models, the full curves – new models, and the dashed
curve on the right-hand plot shows the weak model with reduced layer height.

Tests (Fig. 1) have shown that the spatial spectra of these intensity patterns match very well the
results of poly-chromatic scintillation theory, in case of weak scintillation (code intsp7a.pro). As
scintillations become stronger, the energy is transferred from low frequencies to higher frequencies
and “fills in” the gaps in the spatial power spectrum due to Fresnel propagation. This behavior is
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qualitatively similar to the monochromatic case, except that the high-frequency component decreases
faster, just as in the case of weak scintillation.

Interestingly, for 1′′ seeing the low-frequency part of the spectrum is well represented by the
classical weak-scintillation model with a scaled (reduced) height, the scaling being 1 + 0.5σ2

I
(dashed

line in Fig. 1). When scintillations are low-pass filtered by the MASS apertures (i.e. normal indices),
the mismatch at high frequencies does not matter, and a good model of the scintillation index results
(see below).

Multiple layers cross-modulate each other. I checked that the spatial power spectrum of the
logarithm of intensity can be well modeled by the sum of the individual layers. However, the spatial
filtering by the MASS apertures is applied to the intensity, not to its logarithm. Hence, the cross-
modulation appears. It is accounted for empirically because our corrections use the measured indices
from all layers combined.

2 MASS simulation

Figure 2: Weighting functions for selected normal (top row) and differential (bottom row) indices in
the MASS apertures as determined from the simulations (run3). The approximate theoretical WFs
are plotted as asterisks.
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Several simulation runs have been done to determine realistic scintillation indices as would be
measured by MASS. Previously (in 2004), similar simulations were performed for monochromatic
light. Now we model polychromatic scintillation with simatmpoly.pro. The spectrum of the light
was represented by 3 wavelengths with equal weight, mimicking roughly the MASS response. The
theoretical polychromatic weights have been computed only approximately, for an average wavelength
of 467nm and a quasi-Gaussian bandwidth of 100nm. The parameters common to all simulations are
listed below. The physical size of simulated phase screens and intensity patterns is 2.56m across, with
2.5mm pixels.

lambda = [0.4,0.45,0.55]*1.e-6

sp = [1.,1.,1.]/3.

ngrid = 512

pixel = 0.0025

d =[1.9,3.15,5.6,8.0]*0.01 ; aperture diameter, m: Meade

In the previous simulations, the intensity patterns have been “trailed” across MASS apertures,
simulating both spatial and temporal response. This time, we simply computed the spatial filters
corresponding to the MASS apertures and applied them to the power spectra of the intensity fluc-
tuations. Two alternative programs of index calculation were used, both in indcalc.pro. The first,
“slow” option directly multiples the 2D power spectrum of intensity fluctuations by the 2D aperture
filter functions. The second (actually used) routine first calculated the radially averaged power spec-
trum, and only then makes products and integration over the radius in 1D. We checked that the
simulations and the index calculations closely reproduce theory for weak scintillation.

The first run, run3a.pro, simulates a single turbulent layer placed at “standard” MASS altitudes
0.5, 1, 2,...16km, and with varying total integral (seeing).

The second run run4.pro simulates 2 layers at 10km and 2km. The high layer contains 10%, 50%,
or 90% of turbulence: profs=[[0.1,0.9],[0.5,0.5],[0.9,0.1]]. In both runs the seeing takes
values see = [0.3,0.6,0.9,1.2,1.5] arcseconds.

The third run run5.pro is simular to the run4, except that the altitudes of the two layers are 8km
and 1km, with 4 profiles simulated, profs=[[0.1,0.9],[0.3,0.7],[0.5,0.5],[0.7,0.3]]

Figure 2 shows the simulation results for the run3 interpreted in terms of weighting functions
(WFs). Under strong scintillation, all WFs for the normal indices become smaller, i.e. saturate. The
behavior of the differential WFs is more complex. The WFs AB and AC always increase, but the AD
at first decreases, especially for low altitudes. The remaining 3 differential WFs BC,BD, and CD also
demonstrate this non-monotonous behavior. This can be traced to the shape of the intensity spectrum
(Fig. 1) which decreases at low frequencies but increases at high frequencies, in comparison with the
weak-scintillation theory.

3 Modeling

3.1 Stretching and scaling

We have a guidance for modeling the scintillation indices from the previous studies and from expe-
rience. In case of strong scintillation, the MASS restoration is always done with consistently small
residuals. It means that the measured set of indices can be well modeled by the classical weak-
scintillations WFs. Of course, the results of these models are wrong: the restored profiles shift to
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Figure 3: Ratio of measured to modeled scintillation indices for run3 and run4, with a stretch-and-scale
correction. Selected normal (top row) and differential (bottom row) indices in the MASS apertures as
determined from the simulations are divided by the linear model (small crosses) or by the corrected
model (empty symbols).

lower altitudes, and the turbulence strength is over-estimated. This over-estimation (“overshoot”) of
turbulence integral is well described by the 1 + 0.7A factor, where A is the index in the A-aperture.
The recipe for the model emerges from these considerations.

Normal scintillation indices under moderate scintillation can be modeled by the same weighting
functions, but with reduced altitudes. Denoting by A the index in the smallest aperture A, the altitude
reduction is approximately 1 + 0.3A. The modified weight is then

W ∗

A(z) = WA

(

z

1 + 0.3A

)

. (1)

The same altitude reduction factor works well for other normal indices B,C, and D.
To model the differential indices, we keep the same altitude reduction factor and increase the WF

by some amount (individual for each aperture pair) to compensate for the excess of high frequencies.
For AB, for example, the model will be
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Table 1: Bias and variance of scintillation indices (percent). Altitude stretch 1+0.3A.

Index Raw Corrected Factor
Aver. rms Aver. rms

A 93.6 4.0 101.4 2.7 1
B 90.2 5.3 99.1 3.1 1
C 89.6 6.6 99.5 3.5 1
D 91.7 5.4 101.2 3.3 1

AB 125.1 14.3 100.3 5.4 1 + 1.0A
AC 111.0 9.1 98.1 3.1 1 + 0.9B
AD 102.0 8.4 98.3 3.8 1 + 0.9B
BC 107.2 9.8 98.0 3.6 1 + 0.7B
BD 99.7 8.8 97.7 4.5 1 + 0.7C
CD 100.1 8.1 98.1 5.8 1 + 0.7C

W ∗

AB(z) = (1 + 1.0A) WAB

(

z

1 + 0.3A

)

. (2)

For AC, AD, BC, BD and CD, the only thing that changes is the coefficient in the brackets. Instead of
1.0A, we put, respectively, 0.9B, 0.9B, 0.7B, 0.7C, and 0.7C. The code is r3c.pro for the run3, and
r4c.pro for the run4. The code r34c.pro analyzes the results of both runs jointly. Note that in the
results presented here, the theoretical weights are approximated by a quasi-Gaussian spectral response.
Exact weight calculation for given spectrum has been implemented later (code wtcalc2.pro), and the
fitting results change slightly. The numerical values for the coefficients correspond to the exact weights.

The comparison of old (linear) and new models with the simulations is given in Fig. 3. Clearly,
the proposed correction removes most of the “saturation” from the normal indices and most of the
“overshoot” from the differential ones. This empirical correction, however, only works at moderate
scintillation. The vertical line in Fig. 3 depicts the index A=0.6 that can be considered as a limit of
the empirical model.

In order to quantify the quality of the correction, we analyzed jointly the results of both runs
in the range of scintillation index A from 0.1 to 0.6 (18 different combinations of profile and seeing
satisfy this condition). At lower scintillation, the correction becomes small (and unnecessary), and at
stronger scintillation the model breaks apart.

Table 1 compares the bias and scatter (around the mean) of the ratio of measured-to-modeled
indices, in percent. It can be seen that most of the bias is removed and, more importantly, the scatter
of indices is reduced significantly, to a level of 3-4%. It appears in Fig. 3 that the indices for the
single-layer case show somewhat larger scatter, and this can be confirmed by a separate analysis of
the runs. Moreover, the parameters of the model (coefficients and altitude stretch factors) can be
optimized separately for each run. For example, using the altitude stretch of 1+0.4A, we can reach
the rms of nearly 1% for the results of the run3, but this approximation is worse for the run4.

3.2 Linear correction

Let S be the 10-element vector of measured scintillation indices, S0 – the vector of theoretical indices
expected in the linear theory without saturation, and S∗ – vector of corrected indices. A rather general
correction formula can be written as
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Figure 4: Ratio of measured to modeled scintillation indices for runs 3, 4, 5. Selected normal (top
row) and differential (bottom row) indices in the MASS apertures as determined from the simulations
are divided by the weak-scintillation model without correction (crosses) or after correcting by Eq. 3
(empty squares).

S∗ =
S

1 + ZS
≈ S0. (3)

The rationale for selecting this formula is that it automatically removes corrections for weak scintil-
lation, and that this type of formula works already for the differential indices. Here, Z is a 10 × 10
correction matrix.

The idea is to determine Z from the results of simulations, by least squares (LS) fitting. This
matrix is “learned” from simulations. The LS problem can be re-written as

ZS = Y, Y = S/S0 − 1. (4)

The “learning” is restricted to the relevant range of scintillation indices, A from 0.1 to 0.7, because
weak scintillation does not need correction (but adds statistical noise), whereas strong scintillation is
hopeless. Thus, a total of K simulations are selected with 0.1 < A < 0.7 (either from a single run, e.g.
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r4d.pro, or from the merged runs 3,4,5 – code r5dd.pro). The right-hand matrix Y has dimension
10 × K, same as S. The standard LS solution is

Z = (SST )−1(ST Y ) (5)

The theoretical indices are computed accurately with wtcalc2.pro. The inversion of the normal
matrix (SST ) is done by SVD, selecting sigular values above 1e-3 of the maximum. The finally
adopted correction matrix Z (all runs, K = 35 relevant simulations) is

A B C D AB AC AD BC BD CD

-0.010 -0.107 0.098 0.102 0.230 0.349 -0.268 0.041 -0.302 -0.042

-0.037 -0.121 0.115 0.117 0.241 0.339 -0.353 0.031 -0.362 -0.054

-0.102 -0.240 0.024 0.067 0.293 0.480 -0.271 0.068 -0.347 -0.050

-0.175 -0.152 -0.171 -0.114 -0.054 -0.058 0.088 -0.001 0.077 0.004

0.324 0.615 0.023 -0.100 -0.631 -1.034 0.596 -0.146 0.760 0.114

0.394 0.685 0.393 0.185 -0.384 -0.839 -0.142 -0.183 0.164 0.018

0.374 0.402 0.596 0.410 0.182 0.057 -0.711 -0.065 -0.524 -0.075

0.408 0.597 0.514 0.302 -0.146 -0.479 -0.422 -0.141 -0.149 -0.025

0.371 0.321 0.654 0.475 0.347 0.320 -0.869 -0.029 -0.720 -0.101

0.400 -0.012 0.756 0.633 0.947 1.395 -1.133 0.155 -1.239 -0.156

For example, the denominator in Eq. 3 for the index A will be 1 − 0.010A − 0.107B + 0.098C + . . .
We see that the coefficents of Z take moderate values, hence there will be no noise amplification in

the corrected indices. The threshold in the SVD influences the Z matrix, of course: lower thresholds
lead to larger coefficients and to better modeling of the indices. However, with only 35 cases and 10
free parameters to model each index, we have only 25 degrees of freedom. By setting a too low SVD
threshold, we model part of the simulation statistical noise. By trial and error it is determined that
a threshold of 1e-3 is the best choice.

The application of formula (3) to the joint data set of 3 runs results in the complete elimination
of the index bias (not surprisingly) and in the reduction of the scatter. The Table below shows
uncorrected and corrected values for average ratios of indices to model, and the rms values of these
ratios in the relevant range 0.1 < A < 0.7.

Uncorrected Corrected

A 0.961 0.061 1.010 0.033

B 0.930 0.082 1.008 0.032

C 0.909 0.099 1.000 0.036

D 0.935 0.083 1.005 0.046

AB 1.248 0.223 0.996 0.016

AC 1.152 0.147 1.001 0.019

AD 1.062 0.063 1.010 0.026

BC 1.120 0.113 1.007 0.025

BD 1.037 0.047 1.011 0.027

CD 1.019 0.036 1.008 0.034

The best correction is for the index AB, rms 1.6%, and the worst correction – for D, rms 4.6%. The
results are illustrated in Fig. 4.
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4 Application to profile restoration

Both “stretch-and-scale” and linear approaches were applied to the runs 4 and 5 in order to see how
they improve the quality of profile restoration. The results are rather similar. Here, only the linear
correction is discussed.

Figure 5: Restorations of turbulence profiles in the run 4 without correction (dashed lines) and with
correction (full lines), for the 3 profiles and different seeing values. The 10-km layer contains 10%,
50% and 90% of turbulence, respectively. The 3D plot illustrates the altitude shift in the restored
profile without correction for the last profile.

The profiles restored in the run 4 with and without correction are plotted in Fig. 5. When the bulk
of turbulence is concentrated at 2 km, the scintillation is weak and the correction does not change the
profiles. However, when a strong layer at high altitude dominates, the profiles without correction are
significantly biased towards low altitude. At the same time, both seeing and isoplanatic angle are over-
estimated (Fig. 6). The correction removes these biases. We note, however, that the restored profiles
are not perfect even with correction, especially at low altitudes where the restoration algorithm can
re-distribute turbulence to lower altitudes. The input indices in these simulations contain statistical
noise of few percent, hence this is a realistic test of the restoration procedure and its accuracy.

Similar tests for the run 5 are plotted in Fig. 7 and Fig. 8. The programs used to process and plot
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Figure 6: Ratio of seeing (left) and isoplanatic angle (right) calculated from the restored profiles to
the true values (run 4). Crosses indicate the data without index correction.

the runs are run4rest.pro and run5rest.pro.

5 Conclusions

In the absence of accurate analytic description of the scintillation spatial spectrum under realistic
condition of moderately strong scintillation, the simple empirical approach proposed here seems rea-
sonable. It makes a good job in correcting the saturation effects to the first order. The bias can be
virtually eliminated with the linear correction, and the residual rms scatter of 2-3% comes mostly
from the statistical noise of the simulations.

Both approaches (linear and stretch-scale) improve the profile restoration. The correction removes
biases in the measured seing (“overshoots”) and isoplanatic angles. These biases, however, are quite
small even before correction. The new procedure leads to a more faithful profile reconstruction,
preventing the “leak” of turbulence to lower altitudes under moderately strong scintillation. Finally,
when the scintillation index in the A-aperture exceeds 0.7, the results of MASS should be considered
as unreliable or tentative.

The proposed correction is empirical. The coefficients depend on the adopted instrument param-
eters such as wavelength, spectral response and aperture diameters. A test run 5a with aperture
diameters increased by 1.3 times has been done. The results are yet to be discussed.
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Figure 7: Restorations of turbulence profiles in the run 5 without correction (dashed lines) and with
correction (full lines), for the 4 profiles and different seeing values. The fraction of turbulence in the
8km layer is 0.1, 0.3, 0.5, and 0.7. The lower layer is at 1km.

Figure 8: Ratio of seeing (left) and isoplanatic angle (right) calculated from the restored profiles to
the true values (run 5). Crosses indicate the data without index correction.
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