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1 Introduction

The MASS instrument measures scintillation indices (normal and differential) in 4 concentric apertures
A,B,C,D. The data are fitted to a model of 6 layers at fixed altitudes that represents the measured
indices by linear combinations of the layer intensities (i.e. turbulence integrals in m?/ 3) with weighting
functions (WFs). The WFs are computed using the standard weak-perturbation theory applicable in
the regime of weak scintillation. This theory was extended from the standard monochromatic case to
treat correctly scintillation in a wide spectral band.

As a justification of the linear theory, Roddier (1981, p.329) writes that “Saturation regimes
usually occur when the distance from zenith exceeds 60°. Near the zenith, they are exceptional...”. In
practice the scintillation index measured by MASS in the 2-cm aperture A exceeds 0.2 quite frequently.
The index is a square of relative intensity fluctuations, so 0.2 means that the light intensity in the
pupil fluctuates by a factor of 2, making the non-linear effects quite significant. Indices exceeding
one have been measured occasionally. It has been found that MASS over-estimates the seeing in
these conditions. Its capacity of turbulence profile (TP) restoration also becomes questionable, as it
critically depends on the WFs.

Here we simulate light propagation in the atmosphere numerically and compare the results with the
weak-perturbation theory. The implications for the interpretation of the MASS results are discussed.

2 Simulation tools

2.1 Atmospheric simulator: simatm.pro

Simulation of turbulence is widely used nowadays, e.g. in adaptive optics. As a starting step, we took
the “Turbulenz” code in IDL from Heidelberg (http://www.mpia-hd.mpg.de/AO/ATMOSPHERE/
TurbuLenZ/tlz.html). Given the Fried parameter ro for a layer, the code outputs a phase screen
generated by spectral technique: the Fourier Transform (FT) of the phase is generated as an array

of zero-mean Gaussian random numbers, their amplitudes increasing at low frequencies f as f~1/6,
The underlying phase power spectrum W (in square meters) is
W, = 0.023f /3, %3, (1)

It is well known that this method underestimates the low-frequency part of turbulence, and,
notably, produces wrong phase structure functions. The reason is that any function obtained by
discrete FT is periodic, with a period equal to the grid size. Thus, the structure function initially
increases, reaches a maximum at half-grid-size and then gracefully drops to zero again at a separation



equal to the grid size. Additional steps are usually taken to overcome this (like adding sub-harmonics),
but then the simulated phase is no longer periodic. We are interested here in the scintillation which
effectively filters only high spatial frequencies. So, no sub-harmonics were added.

The propagation of wave-fronts is simulated by the spectral technique, again using the FT. A code
in C for light propagation was written by Gleb Vdovin and can be found at http://www.okotech.com,/.
Briefly, if U;(7) is the amplitude of the light waves before propagation, and A;( f ) is its FT, then the
FT of amplitude after propagation is obtained by frequency filtering:

Aa(f) = Ar(f) exp(—imzA[?), (2)
where z is the propagation distance, f = | ﬂ

This method is computationally fast, involving only two FFTs. Its drawback, however, is that in
fact it simulates propagation in a rectangular waveguide of grid size with reflective walls. In order
to approximate propagation in the free space, numerical “absorption” is sometimes added near the
“walls”. Alternatively, beam size must be some 2 times smaller than the grid size, so that the intensity
near the walls is negligible. However, propagation of periodic phase screens does not present problems
near the grid boundaries because amplitude continues smoothly outside the boundaries. This is why
in our simulations periodic phase screens can be propagated any distance without artifacts near grid
boundaries.

The code simatm.pro presently simulates two turbulent layers. Its input parameters are the
half-size of the computational grid in pixel (512 recommended, but 256 works faster), the physical
size of the pixel (5mm or 2.5mm), the wavelength (we used 0.45 pum, close to the MASS effective
wavelength), the total seeing, the fraction of turbulence in the high layer, and the altitudes of the
two layers. If the fraction is zero, only the low layer is simulated and the additional propagation
step is skipped. This makes things faster and closer to 1-layer theory. The calculations are done in
double precision (otherwise the intensity distribution is wrong). The output is saved in atm.idl as
2-dimensional complex amplitude, accompanied by the input parameters.

The limitation of the above simulation is monochromatic light (we know that finite bandwidth
does modify the WF's) and the displacement of all layers with the same speed (in the real atmosphere
the layers move with different speeds). The number of simulated layers can be increased easily, but
two are sufficient for this study.

2.2 MASS simulator: simmass2.pro

The code simmass?2.pro simulates the temporal and spatial variation of the light intensity detected by
the MASS apertures. The complex amplitude screen is converted to the light intensity with average
value of one. A suitable portion of n2, size is cut out from this large screen and integrated over the
MASS ring apertures. At each subsequent exposure, the selected portion is shifted by jsep =V *T'/p
pixels (V' is the wind speed, T is the exposure time, p is the pixel size of the atmospheric screen).
Only integer shifts are allowed, so the “effective wind speed” is calculated after rounding. If zero wind
speed is specified, the jgp is set to 1 pixel.

We take advantage of the periodic properties of the screens. As the selected portion approaches
the right border of the array, the array is left-shifted. The screen can be visualized as a cylinder of
infinite length. In order to sample the whole cylinder efficiently, we add small shifts in the y-direction,
so that the apertures slide a certain length per full screen width (Fig. 1). The slide angle is small
and is neglected as far as effective wind is concerned. The default slide is twice the largest aperture.
As the trajectory approaches the upper limit of the array, the y-shift is performed. We arrange the
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Figure 1: Left: Simulation of MASS aperture motion over the atmospheric screen.

Figure 2: Right: The simulated temporal autocorrelation function for 2-cm aperture is compared to
the theoretical model.

slide to be an odd number of pixels, so that when the same part of the array is sampled again, the
trajectory does not repeat exactly.

With the typical simulation parameters, the screen size is 5.12 m. The slide is 16 cm, giving 32
passes or an effective trajectory length of 163 m. With a wind velocity of 15 m/s, some 10-s exposure
samples the whole screen. We usually simulated 20-s accumulation time.

Figure 3: Four MASS ring apertures A,B,C,D “trailed” by 1.5 cm, corresponding to a shift during
1 ms exposure under 15 m/s wind.

During 1-ms MASS exposure time the intensity pattern is shifted with respect to the apertures,
decreasing the measured scintillation. Instead of shifting the screen, we trail (smear) the apertures by
a suitable amount (Fig. 3). The apertures are defined on a grid over-sampled by a factor of 2 or 4 with
respect to the original screen. At the beginning of the calculation, the aperture transmission (1 inside,
zero outside) is shifted and averaged, producing “trailed” apertures. Those are multiplied by the
selected portion of the intensity screen (also over-sampled, with linear interpolation) and integrated.
Thus, series of 4 intensity samples (each 20000 points for 20-s accumulation) are generated.

The intensities serve to compute the scintillation indices (normal and differential) by both linear
and logarithmic formulas. Moreover, the correlation between successive intensity samples is computed
in order to simulate the “zero-exposure” correction as implemented in MASS. For zero wind, there



is no aperture trailing, but the screen still shifts between exposures, so in this case the correlation is
meaningless.

To test the correctness of the temporal behavior, we computed the auto-correlation function (ACF)
of the simulated intensities and compared it with the theoretical ACF derived for the same model
from the temporal power spectrum (program tempsp.pro). The results shown in Fig. 2 are quite
satisfactory.

Extensive tests of simatm.pro and simmass2.pro show that under weak scintillation these tools
faithfully reproduce the expected theoretical behavior. The scintillation indices match the WEF-
calculated ones to within 2%. The spatial spectrum of the intensity fluctuations also corresponds
to theory. Thus, we are confident that the tools do not contain any major errors. We also checked
that the numerical parameters (grid size, pixel size, over-sampling) can be changed by factors of at
least two around their best selected values without large effect on the results.

2.3 Simulation package

Atmgspherlc pgrameter; SIMATM
Ngrid,pixel,seeing,profile
wavelength atm.idl
MASS parameters SIMMASS2
Apertures,Texp,Tacc,Wind
int2.idl
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Figure 4: Relation between the components of the simulation IDL package.

The relation between various components of the simulation package is shown in Fig. 4. The two
major programs are described above. The routine wtcalc.pro computes the theoretical WFs for a
set of MASS apertures and a grid of altitudes. Our standard logarithmic grid (0.5, 1, 2,... 16 km) was
used. The procedure profrest.pro takes the set of 10 scintillation indices delivered by massim?2.pro
and the weights to compute the “restored” profile that can be compared to the initial 2-layer model.
Thus, the effects of saturated scintillation or finite exposure time can be evaluated. An attempt to
correct the saturated indices is implemented in the code corrind.pro, so that corrected data can
replace the raw one in the restoration.



3 Results

3.1 Spatial structure of saturated scintillations

Figure 5: Intensity screens of 1 m? size in conditions of weak scintillation (left, 0.2” seeing, 1 layer at
10 km) and strong scintillation (right, 1” seeing, equal layers at 2 and 10 km)

The linear theory of weak scintillation presumes that each frequency component of the phase
screen gives rise to the intensity fluctuations of the same spatial frequency, with its amplitude being
determined by the Fresnel propagation factor. Indeed, the Fresnel propagation is a linear operator
with respect to the complex amplitude of the light waves. However, it is not linear with respect
to phase or amplitude. Moreover, the intensity is the square modulus of the amplitude. These
non-linear operations give rise to harmonics of each frequency and to cross-talk between frequencies.
Generally, we expect that as scintillations approach saturation, the high-frequency content of the
intensity fluctuations would increase because the energy will be transferred from low to high spatial
frequencies.

Under weak scintillations, the intensity fluctuations on the ground are distributed more or less
symmetrically around the mean value. Strong scintillations are characterized by bright spikes amidst
the “dark” background (Fig. 5). All things being equal, the spiky pattern contains more high fre-
quencies. This is indeed borne out by the simulations (Fig. 6). The theoretical form of the spatial
spectrum dominated by the ripples of the Fresnel term is reproduced faithfully only under very good
seeing. The deviations become apparent already at 0.5” seeing, when the scintillation index is as low
as 0.14. Under the typical seeing of 1” the mis-match is already well developed, becoming catastrophic
under the 2” seeing.

MASS distinguishes individual turbulent layers by the spatial filtering of fluctuations with its
ring apertures. The differential indices correspond to band-pass filters and play a crucial role in
constraining the turbulence integral. As the power spills to high frequencies, the differential indices
become over-estimated (thus over-estimating the seeing) and the normal indices saturate.

3.2 MASS simulation

An extensive run of MASS simulations has been done (code run2.pro). The extract of the code shows
major parameters used in this simulation.
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Figure 6: Radially-averaged spatial power spectra of simulated intensity fluctuations corresponding
to progressively increasing scintillation. The smooth lines depict theoretical spectra. The area under
the curves is directly proportional to the contribution of individual frequencies.

lambda = 0.45e-6 ; wavelength

ngrid = 512 ; 1024x1024 grid
pixel = 0.0025 ; 2.5mm pixels
zlow = 2000 ; low layer at 2km

zhigh = 10000 ; high layer at 10km

see = [0.3,0.6,0.9,1.2,1.5,1.8,2.1] ; seeing, arcseconds
d =[1.9,3.15,5.6,8.0]%0.01 ; aperture diameter, m: Meade
texp = 0.001 ; exposure time, s

tacc = 20 ; accumulation time, s
prof=[[1,0],[0.9,0.1],[0.5,0.5],[0,1]]

For each value of seeing, 4 different TPs were simulated, with the high-layer fraction of 0, 0.1,
0.5, and 1 (hereafter profiles 1 to 4, respectively). For each profile and seeing, MASS was simulated
for wind speeds of 0, 10, and 20 m/s. The arrays of scintillation indices (exposure-corrected and
uncorrected) are saved in run2.idl for further analysis.

The simulated scintillation indices are compared to the small-perturbation theory in Fig. 7. The
excellent match is obtained under good seeing. As the seeing degrades, the normal indices become
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Figure 7: The ratio of the simulated scintillation indices to theoretical ones under different conditions
(asterisks) and attempted corrections (dashed lines). The wind velocity is zero.

less than expected (saturate) and most differential indices become larger. This behavior is a direct
consequence of the modified spatial spectrum of intensity fluctuations. The mis-match between the
simulations and theory does not depend only on seeing, but rather on the amplitude of the scintilla-
tions. Thus, the same 1.5” seeing can have either large or small deviations of indices from theory.

3.3 Index correction

The simulation results were studied in hope to find some way to correct the measured indices for
the effect of saturation. This attempt has met with only partial success because the effect depends
on two parameters — seeing and TP. The formula that were coarsely fitted to the “correction vs.
index” plot (Fig. 8) give the ratio f of measured and expected values for each index as a function of
measured indices. Thus, we have to divide the measured indices by f. The formulas implemented in
corrind.pro and used in Fig. 7 are:

fa = 1-0.5440.334% (3)
fB = 1-05B (4)
fo = 1-05C—2C? ()
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No correction is applied to the differential indices AD, BD and CD.

We noted that the correction for AB works rather well in all conditions (Fig. 8). This is a good
news because this index is mostly used to estimate the total integral and seeing. In all cases the
correction brings the indices closer to their expected values, achieving a match to 10everything fails).

3.4 Effect of saturation on profile restoration

The turbulence profiles restored from the raw and corrected indics are plotted in Figs. 9,10. As
expected, under partial saturation the increased power at high frequencies translates to the downward
shift of the restotred profile. At the same time the seeing is over-estimated due to the bias in differential
indices (“overshoots”).

The influence of saturation is partially removed with the proposed correction of indices. Limiting
ourselves to moderate seeing (better than 1.8”), we see that the localization of turbulent layers def-
initely improves when the correction is applied. The worst case is profile 3 when the success of the
correction remains questionable.

The restoration procedure depends on the delicate balance betwen the measured indices, it is
sensitive to the index erors at 1-2% level. Clearly, the crude correction suggested above is insifficient.
It has not been tested on an more extensive set of profiles. We hope that a better way to interpret
semi-saturated scintillation will result from a deeper understanding of the spatial spectrum of intensity
fluctuations in this regime.

On the positive side, a simple correction of differential indices removes most of the bias in the
turbulence integral and seeing. This is illustrated in Fig. 11.
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Figure 9: Normalized turbulence profiles restored from the uncorrected indices (left) and corrected
indices (right) vs. seeing. The top pair is for profile 1, the bottom pair — for profile 2.

3.5 Exposure-time correction

To be written. It was clear already from the Appl. Opt. (2002) paper that the linear extrapolation
over-corrects. The effect is, at worst, 10% on the turbulence integrals (6% on seeing). A simple
modification of the correction is sufficient to remove this bias.

4 Conclusions

The current interpretation of the MASS signal in the framework of the weak-scintillation theory is
shown to fail even under moderate scintillation. Moreover, the initial guess that the seeing is under-
estimated turned out to be wrong: under partial saturation the seeing is over-estimated, explaining
the “over-shoots” of MASS compared to DIMM.

A deeper insight is required to understand fully the modification of the scintillation spatial spec-
trum caused by the saturation. Until then, a simple ad hoc correction of the measured scintillation
indices may be used to remove most of the bias in seeing. This finding is very important for correct
comparisons between MASS and DIMM and for estimating the intensity of ground-layer turbulence
from their difference.
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Figure 10: Normalized turbulence profiles restored from the uncorrected indices (left) and corrected
indices (right) vs. seeing. The top pair is for profile 3, the bottom pair — for profile 4.
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Figure 11: The bias in seeing deduced from the profiles (left — uncorrected indices, right — corrected).
All 4 profiles are plotted with the same notation as in Fig. 8.
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