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1 Introduction

Optical turbulence near the ground can be measured by a suitable analysis of lunar or solar scintillation.
However, the problem of restoring the turbulence profile (TP) C2

n(h) from the covariances of intensity
fluctuations in an array of detectors is non-trivial.

A simple and robust technique has been proposed [5] where linear combinations of the covariances
are used to derive the turbulence integrals in a number of “layers”. Each layer is characterized by its
own response function R(z), so the results are integrals J =

∫
C2

n(z)R(z) dz. The disadvantage of this
method is that the response functions are quite wide (FWHM ∆z/z ∼ 4 for a 4-element array) and are
defined along the line-of-sight z = h sec γ for altitude h and zenith distance γ. The interpretation of
the results in terms of profile or its products such as integral in a given altitude range is problematic.
For the same reason there is no straightforward way to get rid of the zenith-angle dependence.

Here we study the methods to derive a continuous C2
n(z) profile from the scintillometer data. Such

methods were successfully used in the SHABAR restoration [3, 1]. The profile is defined by its values
at certain fixed points – pivot points, and is interpolated between those points. As a first step, we
use linear interpolation. This is equivalent to the de-composition of C2

n(z) on a set of triangular
functions with vertices at the pivot points. Such linear restoration can be done very rapidly, in one
step. However, the representation of C2

n(z) is necessarily very coarse. At the second step, we refine
the result by using non-linear fitting of a more complex model which ensures the non-negativity of the
C2

n.
Representing a continuous unknown TP by a coarse model with a few parameters is a kind of

regularization necessary to solve the inverse problem. One does not expect a miracle, i.e. that the
model would give an accurate representation of any profile. Instead, we hope that the model will render
correctly the total intensity of the ground-layer turbulence and its location or thickness, therefore we
test the accuracy of these parameters. In fact, the experience of the ATST site testing with SHABAR
[3] shows that individual TPs are not very useful, as they contain excessive information. What is
really needed usually is the measurement of the ground-layer seeing at few selected altitudes.
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Table 1: Notation

Parameter Notation Dimension Units

Range z and altitude h z = h sec γ Nz m

Turbulence profile C2
n,C Nz m−2/3

Turbulence integrals J Nz or other m1/3

Covariance B Nb —

Weight W Nb × Nz m−1/3

Parameters X Nx m−2/3

Interaction matrix A Nb × Nx m2/3

Triangular functions T Nz × Nx —

Figure 1: Left: Weighting function for the 4-element scintillometer array (full Moon). Right: triangular
functions T (z). [weight1,triang]

2 Restoration algorithm

2.1 Parameters and main relations

The covariance of intensity fluctuations B between two detectors separated by a baseline b depends
on the turbulence distribution along the line of sight C2

n(z) as

B(b) =

∫
∞

0

W (z, b)C2
n(z) dz. (1)

Here W (z, b) is the weighting function (WF). We study here the scintillometer array with four 1-cm
round detectors in a linear configuration with coordinates (0, 10, 13.5, 38) cm, see Fig. 1 (left). Apart
from the baseline length b, the WF depends on the baseline orientation, lunar phase, detector size,
and turbulence outer scale (L0 = 25 m is assumed here).
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In the discrete formulation, we select the logarithmic altitude grid with Nz = 80 layers from 1 m
to 10 km. The sampling of this grid zi+1/zi = 1.12365 is small enough to capture the details of the
weighting and response functions. The turbulence profile is sought as a vector C with Nz elements.
The turbulence integrals at each grid point Ji equal the products of the Ci with the grid step ∆zi.

The scintillometer array contains Nb baselines (including the zero baseline) and the measured
covariances are represented by a vector B with Nb elements. This vector is related to the TP linearly,

B = W ′C, (2)

where W ′

i,j = Wi,j∆zi is the interaction matrix, borrowing this term from adaptive optics.
A simple inversion of Eq. 2 to derive the TP does not work, becasue the number of unknowns is

larger than the number of measurements. Some parametrization of the problem is needed to reduce
the unknowns to a reasonably small number Nx ≤ Nb. The vector of parameters X can be defined in
various ways.

2.2 Linear reconstructor

It is convenient to de-compose the TP on a set of some basis functions Tk,

C2
n(z) ≈

Nx∑
k=1

XkTk(z). (3)

We choose triangular basis functions on the logarithmic distance grid,

Tk(z) = 1 − | log(z/zk)|/ log(4) for | log(z/zk)| < log(4). (4)

The central points are zk = {4, 16, 64, 256}m (Fig. 1, right). The first function equals 1 for z < 4 m
and the last one equals 1 for z > 256 m. This set of Tk represents the TP by linear segments between
the pivot points zk and by constants outside this interval. The parameters Xk equal the TP values at
the pivot points, Xk = C2

n(zk). The matrix T has dimensions Nz × Nx and interpolates the vector of
parameters to all grid points, C = TX.

The linear relationship between parameters and measures translates into the matrix equation

B = AX, (5)

where the elements of the Nb × Nx interaction matrix A are

ak,j =

∫
W (z, bj)Tk(z) dz = W ′T. (6)

The unknown coefficients X can be determined by the standard least-squares (LS) method,

X ≈ (AT A)−1 AT B = RLSB. (7)

The LS reconstructor matrix RLS (dimensions Nx × Nb) translates the measurements B into the
unknowns X. The LS reconstructor (7) implicitly assumes that the measurement errors of covariances
B are all equal and uncorrelated. In reality the measurements are strongly correlated [6]. However,
numerical tests have shown that the optimized reconstructor which takes these errors into account
and the simpler LS reconstructor produce comparable results.
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2.3 Non-linear reconstructor

Having obtained the first estimate of the TP, X, we now want to refine it by changing slightly the
model and using the fact that C2

n(z) is a non-negative quantity. To do this, we change the parameters
to y = log C. The values of y at the pivot points will be the parameters Y of the new model which
interpolates y between the pivot points linearly. This corresponds to the approximation of C2

n(z)
by power-law functions between the pivot points. Obviously, y = TY and C = 10y. Putting these
reconstructed values into Eq. 2, we obtain the estimate of the covariances B̂. The quality of the
restoration can be measured by the closeness between the actual data B and their model B̂, for
example as

δ2 =
1

NbB
2
0

Nb∑
j=1

(B̂j − Bj)
2, (8)

where B0 is the covariance at zero baseline (i.e. the scintillation index). The rationale for selecting
such simple goodness-of-fit criterion is provided by the analysis of the measurement errors, which are
not very different for all elements of the vector B, decreasing only slightly at longer baselines [6].
These errors could be estimated if the TP and wind speed profile were known, but we do not want to
complicate the algorithm by invoking these additional parameters. The error metric (8) is thus nearly
proportional to the standard χ2 metric because all measurement errors are proportional to B0.

In short, the non-linear method consists in taking the initial parameter estimates Y obtained from
the linear reconstruction (we set Y > −19 to prevent numerical problems) and minimizing (8). We
used initially the Powell routine [2] for the minimization, but found that it fails to converge sometimes,
so finally adopted a more robust amoeba routine.

The model approximates the TP by segments of power-law functions. Consider some segment
between the pivot points z1 and z2, with the fitted C2

n values C1 and C2 at the ends of this segment.
For some value z inside the segment, the model TP is

C2
n(z) = C1(z/z1)

a, where a = log(C2/C1)/ log(z2/z1). (9)

The integral of this TP from z1 to z is equal to

J(z) =

∫ z

z1

C2
n(z)dz = z1C1[(z/z1)

a+1 − 1]/(a + 1), (10)

where the case a = −1 must be considered separately. In practice, we simply interpolate the TP on
the whole z=grid and calculate the integrals up to a certain altitude by summation of C2

n∆z.

3 Testing the algorithm

The ability of the algorithm to restore different TPs was tested. The covariances are calculated from
the model TP and are presented to the 2-step reconstruction (code moonx5.pro). No measurement
noise was simulated.
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Table 2: TP models (C0 and C1 in 10−16 m−2/3, h0 and h1 in m)

Model C0 C1 h0 h1 Figure

2-exponent 50 1 30 104 Fig. 2
Power 50 1 20 — Fig. 3
Gaussian 50 1 10 30 Fig. 4
Top-Hat 50 1 10 30 Fig. 5

3.1 TP models

Several TPs were presented to the reconstruction algorithm (Table 2). The double-exponential TP [4]
is

C2
n(z) = C0 exp(−z/h0) + C1 exp(−z/h1) (11)

with C0 = 5 10−15 m−2/3, C1 = 10−16 m−2/3, h0 = 30 m, and h1 = 10 km (or some variations of these
parameters).

The power-law TP is
C2

n(z) = C0(z/h0)
−1.5 + C1 (12)

with the same (or similar) constants C0 and C1 and h0 = 20 m.
The Gaussian TP is

C2
n(z) = C0 exp[−(z − h0)

2/(2h2
1)] + C1, (13)

h0 = 10 m, h1 = 30 m.
Finally, the top-hat TP equals C0 between h0 and h1 and C1 otherwise, with h0 = 20 m and

h1 = 30 m.

3.2 Test results

Table 3: Restoration quality (ε in percent)

Model Nominal Offset Airmass
ε4 ε200 ε4 ε200 ε4 ε200

2-exponent 1 −4 6 1 3 −4
Power 19 4 21 13 32 −4
Gaussian −4 0 2 10 3 −1
Top-Hat 100 −19 −144 10 13 −1

The results of the TP restoration are presented in Figs. 2,3,4,5. The left-hand panels show the
TPs, the right-hand panels plot the cumulative profiles J(z) calculated by summing C2

n∆z over the
grid points, starting from z = 1 m upwards. Obviously, the smooth TPs (double-exponential and
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Figure 2: Exponential profile model (full line) and its restoration (dashed line). The cumulative
profiles are plotted in the right panel. [profexp,cumexp]

Figure 3: Power-law profile model (full line) and its restoration (dashed line). [profpow,cumpow]

Gaussian) are modeled very well. The errors are larger for the power-law and top-hat models, but
even in these cases the restored TPs give a correct indication of the ground-layer seeing and turbulence
location.

To quantify the accuracy of the restoration, we define the relative error of the cumulative profiles
ε(z) = (J − Jrest)/J . Of course, we do not expect the restoration to be accurate everywhere, but
rather concentrate on the relevant range between 4 m and 200 m. The maximum absolute value of ε
over this range is a good measure of the accuracy. We found that the relative errors of the cumulative
profile at the lowest and highest points, ε4 and ε200, are just as representative as εmax, because the
worst error is usually found at one of the limits. Note that for the top-hat profile, the relative error at
the lower limit is large simply becasue there is very little turbulence below 4 m. The plots show the
detailed behavior of the reconstructions.

Relative errors of the cumulative profiles are gathered in Table 3. We did two additional tests. First,
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Figure 4: Gaussian profile model (full line) and its restoration (dashed line). [profgauss,cumgauss]

Figure 5: Top-hat profile model (full line) and its restoration (dashed line). [profhat,cumhat]

all covariances were artificially increased by adding 0.5 of the scintillation index. This situation models
the effect of high-altitude turbulence which produces slow correlated scintillation at all baselines.
Similar bias can be caused by varying atmospheric transmission or by a correlated electrical noise.
As expected, the restoration algorithm adjusts by increasing the C2

n value at the highest pivot point
(256 m), but the results at lower altitudes are affected only mildly. So, the method is robust with
respect to the additive bias on covariances.

The second test emulates the effect of observing at an air mass sec γ = 1.5 by increasing the
altitudes of all pivot points by the same amount. The altitude grid and weighting functions remain
unchanged. Again, the results are reasonably accurate. Therefore, we can define the pivot points in
altitude (rather than range), which is more convenient for the data interpretation. We aslo tried to
decrease the pivot points range and found that the method still works.
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3.3 Processing the real data
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Figure 6: One night of LuSci data at Penyon, March 17/18 2008. Left – “layers” restoration, right –
“profile” restoration. [080318layers.eps,080318prof.eps]
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Figure 7: One night of LuSci data at Penyon, March 22/23 2008. Left – “layers” restoration, right –
“profile” restoration. [080323layers.eps,080323prof.eps]

A code profrest.pro implements the new algorithm. It has been applied to four nights of LuSci
data collected at Penyon in March 2008 during the LSST campaign. Figures 6 and 7 show the plots of
the same data processed by the old “layers” method and by the new profile-reconstruction method. In
the left-hand plots, the numbers indicate mid-points of the layers along the line of sight (i.e. without
accounting for the air mass), the upper limits of these layers are rather fuzzy and extend to at least
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twice the mid-point. The 200-m layer is particularly ill-defined, its response is simply equal to the
weighting function at the longest baseline (Fig. 1) and extends to high altitudes. MOreover, it can
be biased by the transparency variations. In contract, the numbers in the right-hand plots are the
upper limits in altitude to which the retored profile has been integrated (the lower limit is ∼1m), the
corresponding seeing values are fully corrected for the air-mass effect.

The 256-m seeing deduced with the new code is comparable to the sum of the first three layers
(55-m seeing). The layers method shows a larger total GL seeing because its response extends to
higher altitudes and because it is not correcetd for the air mass.

The product of profrest.pro is a multi-column file with .tp extension. Each line contains the
name of the input data file, Julian day, air mass, and the total (256-m) GL seeing in arcseconds. The
following 4 numbers are the turbulence integrals (in m1/3) from the ground to the pivot points which
are at 4, 16, 64, and 256 m altitudes from the ground. The last 4 numbers are the decimal logarithms
of the C2

n values (in m−2.3) at the pivot points. Using these 4 numbers, we can calculate the turbulence
integrals between any altitudes, as explained above.

4 Conclusions

The proposed restoration method seems to work well. The errors of representing real TPs with a crude
model translate to the errors on the turbulence intergals that are mostly below 20%. The error in the
measured GL seeing would be 12%. The restoration is robust with respect to the additive errors on
all measured covariances. The data product of this algorithm are the four C2

n values at pre-defined
altitudes of 4, 16, 64, and 256 m and the recipe (10) for calculating turbulence integrals between any
altitudes using these four numbers.
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