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1 Introduction

Turbulence profile in a surface layer can be measured by a lunar Scintillometer, LuSci (also called lunar
SHABAR) [1, 3]. The profile is reconstructed from the covariances of signals from several detectors
located in appropriate spatial pattern. The covariances are measured with certain statistical errors
related to the properties of the scintillation signals. In this note we estimate the errors and calculate
their effect on the restored turbulence profile.

2 Formulas for errors of covariances

A lunar scintillometer measures fluctuations of the lunar flux caused by turbulence. The covariance
of the normalized intensity fluctuations from two sensors separated by a baseline b, C(b), is computed
from the measured intensities Ii and Ij (at detectors i and j) as

Cij(bij) =
〈∆Ii∆Ij〉

〈Ii〉〈Ij〉
= 〈xixj〉, (1)

where xi = ∆Ii/〈Ii〉 are normalized intensity fluctuations. The statistical averaging is done on a finite
data sample of duration T , so the measured quantities Cij are estimates of the true covariances which
we denote by the same symbols (God forgive). The baseline vector is bij . The normalized variance
(scintillation index) σ2 = Cii is a specific case of coincident detectors and zero baseline. The intensity
fluctuations xi have zero mean by definition and are Gaussian random variables.

Textbooks give formulas for calculating the variances of statistical estimates. For example, Eq. 8.95
of Bendat & Piersol [2] reads

Var[Cij ] =
1

T

∫ T

−T

(

1 −
|ζ|

T

)

[Cii(ζ)Cjj(ζ) + Cij(ζ)Cji(ζ)] dζ, (2)

where Cij(ζ) is the temporal covariance of the signals. In the following we assume that the averaging
time T is much larger than the signal correlation time. The auto-covariances Cii and Cjj are, of
course, equal, while Cji(ζ) = Cij(−ζ). This simplifies Eq. 2 to

Var[Cij ] =
1

T

∫

∞

−∞

[C2
ii(ζ) + Cij(ζ)Cij(−ζ)] dζ. (3)
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Now if we define the time constant τij ,

τij(bij) = σ−4

∫

∞

−∞

[C2
ii(ζ) + Cij(ζ)Cij(−ζ)] dζ, (4)

the expression for the error variance becomes

Var[Cij ] = σ4 τij/T. (5)

These time constants depend on the baselines. The time constant for zero baseline τ0 = τii is a useful
characteristics of the signal variation in one detector. The approximation (3) is valid for T À τ0. The
relative error of the variance measurement is equal to

√

τ0/T .
For calculating the error of the reconstructed profile, we also need to know the correlation between

different covariance estimates. Some covariances involve common detectors and are obviously corre-
lated. Moreover, the scintillation signal contains an important low-frequency component, therefore all

covariance estimates, even with different detector pairs, are correlated.
Let A = Cij and B = Ckl be two measured covariances, where some indices may coincide. The

signals xi = ∆Ii/Ii are Gaussian, so the fourth moment is expressed by a combination of the second
moments,

〈AB〉 = 〈xixjxkxl〉 = 〈xixj〉〈xkxl〉 + 〈xixk〉〈xjxl〉 + 〈xixl〉〈xjxk〉. (6)

The correlation (we do not say covariance to avoid confusion of terminology) between two errors is

Cov(AB) = E(∆A∆B) = E(AB) − E(A)E(B) = 〈xixk〉〈xjxl〉 + 〈xixl〉〈xjxk〉. (7)

Continuing the analogy with Bendat & Piersol, the estimates obtained over a finite time T À τ0 will
have the error correlation expressed as

Cov[AB] =
1

T

∫

∞

−∞

[Cik(ζ)Cjl(ζ) + Cil(ζ)Cjk(ζ)] dζ. (8)
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Figure 1: To the calculation of the
error correlation (see text). [base-
order.fig]

The formula (8) shows that the correlation of errors of covariances measured at two baselines b1

and b2 depends on the covariances at some other baselines. Figure 1 illustrates the calculation. Let
the first baseline involve signals xi and xj , the second – signals xk and xl (some indices may coincide).
The first term of (8) is a product of covariances between the first and second pairs of signals, as
illustrated by the two large red horizontal arrows. The second term involves two combinations of
the type “first with second” shown by the inclined blue arrows. The order of the signals in each
combination does matter because Cij(ζ) = Cji(−ζ). In the case of two coincident baselines i = k,
j = l, (8) is transformed into (3).
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3 Estimation of the temporal covariance for one layer

In order to proceed with the calculation, we need to estimate the temporal covariance Cij(ζ). The
scintillation signal from different layers is independent, so the covariances are just sums over all layers
weighted by the turbulence integrals C2

ndz in each layer. We start with one layer and use the Taylor
hypothesis, supposing that the layer moves as a whole with the wind speed vector V. Then the
temporal covariance is related to the spatial covariance in the obvious way,

Cij(bij , ζ) = Cij(bij + ζV, 0). (9)
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Figure 2: Left: The relation between temporal and spatial covariances of lunar scintillation (see text).
Right: the covariance in normalized coordinates (full line) and its model (crosses). The difference
between them is plotted in dotted line. [tempcov.fig,acfmod.ps]

Figure 2 helps to visualize this relation. The two-dimensional spatial covariance of scintillation
resembles a cone centered at the coordinate origin and falling below zero at baseline d = θz – the
projected diameter of the Moon at a distance z from the detector. The covariance is circularly
symmetric for the full Moon, but has elliptic contours otherwise, being more extended along the
terminator line. The right-hand plot shows a cut through the center of this function, normalized to
one at the origin. If the baseline bij is not zero, the temporal covariance Cij(ζ) equals the spatial
covariance along the line passing through the baseline point and parallel to the wind vector, with the
displacement along the line being η = V ζ. The result depends on the baseline length and orientation
with respect to the terminator, lunar phase, the speed and direction of the wind. This large number
of variables make the modeling very difficult, so some approximations must be made.

If we neglect both the scintillation averaging by the detector and the finite turbulence outer scale,
all covariances will have the same shape, they are only stretched spatially in proportion to d = θz
(projected lunar diameter) and scaled in amplitude. The covariance function normalized to one at the
origin is a universal function C ′(b′) of the normalized distance b′ = b/(θz). The analytical expression
for this function is given by Hickson & Lanzetta [1]. For the purpose of numerical calculation, we use
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the following approximation:

C ′(b′) ≈

{

1.06[1 − |b′|1.6] − 0.06/[1 + 0.5(b′)4] for |b′| < 1
−0.06/[1 + 0.5(b′)4] for |b′| ≥ 1

(10)

This formula is over-plotted in Fig. 2 with crosses. Its maximum deviations from the exact curve are
−0.037 and +0.013 – much less than the errors caused by the un-modeled surface structure of the
Moon, for example.

We suppose that the baseline is oriented along the terminator (parallel to the coordinate axis x)
– a good approximation for LuSci with its baseline along declination, especially near full Moon. The
dependence on the wind speed V can be eliminated by replacing the temporal coordinate ζ with the
spatial one η = ζV . The only two remaining variables are the relative baseline length b/d and the angle
α between the wind and the baseline. A general expression for the normalized temporal covariance is
then

Cij(b
′, η′) = C ′(b′x + η′ cos α, b′y + η′ sin α), (11)

where the normalized coordinates are b′ = b/d and η′ = η/d.
For one detector, the calculation of the time constant leads to τ0 = 0.86 θz/V . The time con-

stants at non-zero baselines decrease approximately as exp[−(b′/0.3)2]. However, modeling of the time
constant for one layer is of little value because the combined time constants are calculated from the
products of covariances (cf. Eq. 8) and hence depend on the turbulence profile in non-linear way. In
other words, the errors of the measured covariances depend on the scintillation produced by all layers

jointly. Scintillation from high layers is slow and will dominate the measurement errors, even if we
are interested only in measuring the low-altitude turbulence with LuSci.

4 Estimation of the reconstruction errors

Now all elements are in place to evaluate the errors of the reconstructed turbulence profiles. We recall
that the linear restoration method used in LuSci [4] consists in defining a certain number K of “layers”.
The turbulence integrals Jk are derived from the linear combinations of the measured covariances,

Jk =
∑

l

RklCl =

∫

C2
n(z)Rk(z) dz. (12)

Here we numbered all L baselines with the index l. The restoration matrix R has dimensions K × L.
Each line of this matrix corresponds to a restored layer with a certain response function Rk(z)

Rk(z) =
∑

l

RklWl(z) (13)

being a linear combination of the weighting functions Wl(z). Examples of such response functions are
given in Fig. 3.

We compare here two scintillometer arrays. The first, L-1, has four 1-cm square detectors in
a linear configuration with coordinates (0, 10, 13.5, 38) cm. This array has been used already in
several missions. An optimized set of response functions R(z) peaking at the distances z of (3, 12, 40,
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Figure 3: The response functions Rk(z) for the scintillometer arrays L-1 with 4 detectors (left) and L-2
with 6 detectors (right). The sum of all responses is over-plotted as thick line. [allwf l1.ps,allwf l2.ps]

200) m has been used for profile reconstruction, with a total number of baselines L = 7 (six pairwise
combinations plus the zero baseline).

The second array, L-2, contains 6 detectors in the linear arrangement with coordinates (0, 12, 15,
17, 21, 40) cm giving L = 16 non-redundant baselines. The weighting functions corresponding to these
baselines and full Moon are plotted in Fig. 4. A set of 6 response functions peaking at distances (2,
3.8, 7.5, 14, 25, 50) m is also displayed in Fig. 3. The method of deriving these functions was modified
to enforce their zero value at z > 500 m. The increased number of detectors and baselines permits to
reach a better altitude resolution ∆z/z ∼ 2 (at FWHM level). In comparison, ∆z/z ∼ 4 for L-1 (cf.
Fig. 3).

We can calculate the covariance matrix of the measurements SC using Eq. 8 and then derive the
covariance matrix of the profile errors SJ in the usual way,

SJ = RSCRT . (14)

The diagonal elements of the matrix SJ are equal to the variances of the profile estimates σ2
Jk. The

signal-to-noise ratio can be defined as rk = Jk/σJk. If the turbulence profile C2
n(z) is scaled without

changing its shape, the time constants and signal-to-noise ratios do not change.
In the spirit of Tokovinin & Travouillon [5], we use a two-exponent model of the turbulence profile

C2
n(z) = A exp(−z/h0) + B exp(−z/h1) (15)

with A = 5 10−15 m−2/3, B = 10−16 m−2/3, h0 = 30 m, and h1 = 10 km. The logarithmic altitude
grid with 80 layers from 1 m to 10 km is defined. The sampling of this grid zi+1/zi = 1.12365 is small
enough to capture the details of the weighting and response functions. The turbulence integrals in each
layer Ji equal the products of the C2

n(zi) defined by the model (15) with the step ∆zi. The covariances
equal Cl =

∑

i Wl(zi)Ji. The scintillation index in one detector σ2 = 7.75 10−8. The total turbulence
integral of out model J = Ah0 + Bh1 corresponds to the seeing ε = (J/6.8 10−13)0.6 = 1.37′′. The
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Figure 4: Weighting functions
Wl(Z) for the L-2 scintillometer ar-
ray with 6 detectors. [wt l2.ps]

ground-layer seeing calculated from the sum of Jk depends on the response functions. For L-1, the
GL seeing ε = 0.61′′ is larger than for L-2, ε = 0.42′′, for this reason.

We suppose that the wind speed in the whole atmosphere increases from 1 m/s at the ground to
20 m/s at 1k̇m, then stays constant. An alternative case with a constant V = 5 m/s in all layers
was tried as well. Our calculation assumes the averaging time T = 20 s corresponding to the effective
averaging length V T = 100 m for V = 5 m/s. The results can be easily applied to other wind speed and
averaging time values by noting the proportionality σJk ∝ (V T )−1/2 which follows from the relations
given above.

The calculations are performed by the code moonx3.pro containing several sub-programs. The
code is suitable for both for L-1 and L-2. First, we run prepare to calculate the weights, then allwf

to define the response functions, and, finally, tempcov to determine the temporal covariances and
errors.

In the calculation of the temporal covariances, we adopt the time sampling of 5 ms and a grid
size of ±256 points, or time lags up to ±1.28 s. For each layer, the shape of Cl(ζ) is determined by
the simple model (10) and (11) multiplied by W0(zi)Ji, i.e. normalized by the signal variance at zero
baseline. Thus, we neglect the influence of the finite detector size and turbulence outer scale on the
shape of Cl(ζ), but account for these effects in the normalization. This is a good approximation at
altitudes from 10 m to 100 m.

When the wind speed is parallel to the baseline, all functions Cl(ζ) have the same shape, being only
shifted by bl/V from the coordinate origin. This is not realistic, so we adopt the wind direction at 45◦

to the baseline. Figure 5 (left) shows the set of temporal covariances for the L-1 array resulting from
the combined effect of all layers. The wide “wings” of all functions are determined by the high-altitude
turbulence and are essentially the same for all baselines. For comparison, we show in the same figure
the experimentally measured temporal covariance. Its wings are artificially shortened by using short
individual accumulation time (5 s) and some high-pass filtering in the calculation of the covariance.

The table below gives the matrix of the correlation times τlk (in milliseconds) for the L-1 array and
our model. The baselines (in cm) are listed in the first line. We see that τ0 = 138 ms. The calculation
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Figure 5: Temporal covariance functions. Left: our model for the L-1 array (zero baseline in full
line, other baselines in dotted lines). Right: covariance at baseline 38 cm (full line) and at zero
baseline (in two detectors) measured on February 5, 2007 at 7:45 UT at Cerro Tololo with T = 20 s.
[tempcov l1.ps,cov0745 03.ps]

follows the prescription (8). The array of temporal covariances at all baselines is used as the input.
Then, for each pair of baselines, we select the two lines of this array corresponding to the first term of
(8), revert the temporal argument where necessary, and sum the product of these lines, approximating
the integral over ζ. The second term is calculated in the same way.

0.0 3.5 10.0 13.5 24.5 28.0 38.0

---------------------------------------------------

137.8 70.6 96.9 87.6 46.0 49.3 59.9

70.6 125.3 89.5 89.9 66.5 66.6 54.2

96.9 89.5 107.3 96.5 53.9 57.3 58.0

87.6 89.9 96.5 101.5 56.7 57.1 58.0

46.0 66.5 53.9 56.7 91.2 82.6 63.2

49.3 66.6 57.3 57.1 82.6 89.4 67.1

59.9 54.2 58.0 58.0 63.2 67.1 85.9

We see that all time constants τlk take similar values, i.e. the errors of covariance measurements
are strongly correlated, as expected. We have established that a single turbulent layer at altitude z
leads to a time constant τ0 = 0.86 θz/V . The above model with constant wind speed V = 5 m/s gives
τ0 = 112 ms; in this case, the combined effect of all layers can be likened to a single layer at z ≈ 75 m.

At the final step, we multiply the matrix of time constants by σ4/T to get the error covariances SC

and use (14) to calculate the errors of the results JK . For the L-1 array, we obtain the signal-to-noise
ratio S/N = (2.1, 2.1, 1.9, 3.7) in the four restored layers. Thus, all integrals are measured with a
relative statistical error of ∼ 50% which can be reduced to 25% by increasing the integration time to
T = 80 s. The noise will be less on the nights with higher wind speed.

Under the same conditions, the L-2 array has S/N = (0.3, 0.6, 0.8, 0.7, 1.0, 1.2). The restored
turbulence profile is noisier for two reasons. First, the measurement errors of Jk are slightly larger
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because the restoration operation is more complex. Secondly, the Jk themselves are smaller because
the “layers” are thinner owing to the better altitude resolution of L-2. The results are gathered in
the Table below, with integrals Jk in the units of 10−13 m1/3. The calculations were repeated with
different parameters of the turbulence profile. For example, with a 10-fold increase of A (strong
ground-layer turbulence), the S/N in the first layer improves. These numbers are marked S/N* in the
Table. Slightly higher S/N are obtained with a constant wind speed of 5 m/s. Yet another case with
the standard turbulence model and a faster wind V = 3 + 0.0025 z (this approximates the median
wind profile at Cerro Pachón) leads to τ0 = 127 ms and S/N = (3.1, 3.0, 2.5, 3.4) for the L-1 array.

L-1 array (4 detectors) L-2 array (6 detectors)

-------------------------------------------------------------------------

z0, m 3 12 40 200 2 3.8 7.5 14 25 50

J_k 0.32 0.49 0.60 1.57 0.08 0.12 0.21 0.31 0.40 0.46

S/N 2.1 2.1 1.9 3.7 0.3 0.6 0.8 0.7 1.0 1.2

S/N* 2.7 2.6 2.8 1.4 0.4 0.7 1.0 1.0 1.2 1.3

5 Conclusions

The lunar scintillation signal contains a slowly varying component originating at high altitudes and
correlated between all detectors. The covariances between signals in a scintillometer array estimated
from a sample of finite duration T have substantial statistical errors. These errors should not be
confused with the detector noise, they are caused by the statistical nature of the signal itself. The
effect of these errors was evaluated numerically using a representative model of the turbulence profile.
It is shown that by increasing the number of the detectors in the array, we can improve the altitude
resolution, at a cost of reduced measurement precision. Therefore, a longer integration time will be
necessary to compensate for this loss. For example, the S/N for 5-min. integrations and L-2 arrray
will reach 4.
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