Draft version June 1, 2023

1

12

13

15

Typeset using IATEX twocolumn style in AASTeX631

Speckle Interferometry at SOAR in 2022 4 BRIAN D. MASON,¹ ANDREI TOKOVININ,² RENE A. MENDEZ,³ AND EDGARDO COSTA³ 5 ¹U.S. Naval Observatory, 3450 Massachusetts Ave., Washington, DC, USA 6 ²Cerro Tololo Inter-American Observatory — NFSs NOIRLab Casilla 603, La Serena, Chile 7 ³Universidad de Chile, Casilla 36-D, Santiago, Chile 8 ABSTRACT 9 Results of the speckle-interferometry observations at the 4.1 m SOuthern Astrophysical Research 10 Telescope (SOAR) obtained during 2022 are presented: 2507 measurements of 1925 resolved pairs 11 or subsystems and 787 non-resolutions of 613 targets: 26 pairs are resolved here for the first time.

Telescope (SOAR) obtained during 2022 are presented: 2507 measurements of 1925 resolved pairs or subsystems and 787 non-resolutions of 613 targets; 26 pairs are resolved here for the first time. This work continues our long-term effort to monitor orbital motion in close binaries and hierarchical systems. A large number of orbits have been updated using these measurements.

¹⁴ *Keywords:* binaries:visual

1. INTRODUCTION

This paper continues the series of double-star mears surements made at the 4.1 m SOuthern Astrophysical Research Telescope (SOAR) since 2008 with the speckle camera, HRCam. Previous results are published by Tokovinin, Mason, & Hartkopf (2010a, hereafter TMH10) and in (Tokovinin et al. 2010b; Hartkopf et al. 2012; Tokovinin 2012; Tokovinin et al. 2014, 2015, 2016, 2018a, 2019, 2020, 2021, 2022). Observations reported there were made during 2022.

The structure and content of this paper are similar to other paper of this project. Section 2 reviews all speckle programs that contributed to this paper, the observnet procedure and the data reduction. The results are presented in Section 3 in the form of electronic tables archived by the journal. We also discuss new resolutions and present orbits resulting from this data set. A short summary and an outlook of further work in Section 4 close the paper.

34 35

2. OBSERVATIONS

2.1. Observing Programs

brian.d.mason.civ@us.navy.mil andrei.tokovinin@noirlab.edu rmendez@uchile.cl As in previous years, HRCam (see § 2.2) was used during 2022 to execute several observing programs, some with common targets. Table 1 gives an overview of these programs and indicates which observations are published in the present paper. The numbers of observations are approximate. Here is a brief description of the main programs.

43 *Orbits* of resolved binaries: New measure-44 ments contribute to the steady improvement 45 Of the quantity and quality of orbits in $_{46}$ the Sixth Catalog of Orbits of Visual Binary Stars 47 (Hartkopf, Mason & Worley 2001). See 48 Anguita-Aguero et al. (2022); Gómez et al. (2022) as ⁴⁹ recent examples of this work. We provide large tables $_{50}$ of reliable and preliminary orbits in §3.3.

Hierarchical systems of stars are of special interest because their architecture is relevant to star formation; dynamical evolution of these hierarchies increases chances
of stellar interactions and mergers (Tokovinin 2021b).
Orbital motions of several triple systems are monitored
at SOAR and these data are used for the orbit determinations (Tokovinin & Latham 2020; Tokovinin 2021a,
2023a).

Hipparcos binaries within 200 pc are monitored to
measure masses of stars and to test stellar evolutionary
models, as outlined by, e.g., Horch et al. (2015, 2017,
2019). The southern part of this sample is addressed
at SOAR (Mendez et al. 2017). This program overlaps
with the general work on visual orbits.

 Table 1. Observing programs

Program	PI	Ν	$_{\mathrm{Publ.}}a$
Orbits, hierarchies	Mason, Tokovinin	1402	Yes
Hipparcos binaries	Mendez, Costa	247	Yes
Neglected binaries	R. Gould, Mason	390	Yes
Nearby M dwarfs	E. Vrijmoet	323	Some
TESS follow-up	C. Ziegler	739	No
Acceleration stars	K. Franson	188	No
Gaia hierarchies	Tokovinin	1203	No
Wide pairs	J. Chanamé	275	No

^{*a*} This columns indicates whether the results are published here (Yes), published partially (Some), or deferred to future papers (No).

Neglected close binaries from the Washington Double
Star Catalog, WDS (Mason et al. 2001),¹ were observed
as a "filler" at low priority. In some cases, we resolved
new inner subsystems, thus converting classical visual
pairs into hierarchical triples. In other cases we identified neglected pairs as spurious doubles in §3.4.

Nearby M dwarfs are being observed at SOAR since
2018 following the initiative of T. Henry and E. Vrijmoet. The goal is to assemble statistical data on orbital
elements, focusing on short periods. First results on M
dwarfs are published by Vrijmoet et al. (2022). In 2022,
we continued to monitor these pairs; a paper on their
orbits is in preparation. Measurements of previously
known pairs are published here, those of newly resolved
pairs are deferred to the paper in preparation.

TESS follow-up continues the program executed in 2018–2020. Its results are published in (Ziegler et al. 2020, 2021). All speckle observations of TESS targets of interest are promptly posted on the EXOFOP web site. These data are used in the growing number of papers on TESS exoplanets, mostly as limits on close companions to exohosts.

Acceleration stars were observed as potential targets of high-contrast imaging of exoplanets in a program led by K. Franson and B. Bowler (continued from 2021).

Gaia candidate hierarchies are wide binaries in the
100-pc catalog where one or both components have indications of unresolved subsystems in the Gaia data.
A thousand of these candidates were observed during
2021–2023, about half were resolved, as reported in
Tokovinin (2023b).

Wide pairs were observed for the program led by J.
⁹⁷ Chanamé.

⁹⁸ If observations of a given star were requested by sev-⁹⁹ eral programs, they are published here even when the ¹⁰⁰ other program still continues. We also publish here the ¹⁰¹ measurements of previously known pairs resolved during ¹⁰² surveys, for example in the TESS follow-up.

Speckle observations in 2022 were conducted during
13 observing runs for a total of approximately 18 nights
(14 nights allocated and four nights of engineering time,
usually second halves). A total of 5974 observations
(including calibrators and reference stars) were made,
332 targets per night on average.

¹⁰⁹ 2.2. Instrument and Observing Procedure

The observations reported here were obtained with the 110 ¹¹¹ high-resolution camera (HRCam) — a fast imager de-¹¹² signed to work at the 4.1 m SOAR telescope (Tokovinin 113 2018). The instrument and observing procedure are ¹¹⁴ described in the previous papers of these series (e.g. ¹¹⁵ Tokovinin et al. 2020), so only the basic facts are re-¹¹⁶ stated here. HRCam receives light through the SOAR ¹¹⁷ Adaptive Module (SAM) which provides correction of ¹¹⁸ the atmospheric dispersion. We used mostly the near-¹¹⁹ infrared I filter ($824\pm170\,\mathrm{nm}$) and the Strömgren y fil- $_{120}$ ter (543 \pm 22 nm); the transmission curves of HRCam fil-¹²¹ ters are given in the instrument manual. In the stan- $_{122}$ dard observing mode, two series of 400 200×200 pixel 123 images (image cubes) are recorded. The pixel scale is 124 0.01575, so the field of view is 3.15; the exposure time ¹²⁵ is normally 24 ms. For survey programs such as TESS 126 follow-up, we use the I filter and a 2×2 binning, dou-¹²⁷ bling the field. Pairs wider than ~ 1.4 are observed with $_{128}$ a 400×400 pixel field and the widest pairs are sometimes ¹²⁹ recorded with the full field of 1024 pixels (16'') and a $_{130}$ 2×2 binning.

The speckle power spectra are calculated and displayed immediately after the acquisition for quick evaluation of the results. Observations of close pairs are accompanied by observations of single stars for reference to account for such instrumental effects as telescope vibration or aberrations. Bright stars can be resolved and model to the power spectrum and using the reference. The resolution and contrast limits of HRCam are further discussed in TMH10 and in the previous papers of this series. The standard magnitude limit is $I \approx 12$ mag under typical seeing; pairs as faint as $I \approx 16$ mag have two measured under exceptionally good seeing, albeit with reduced accuracy and resolution.

¹⁴⁵ Custom software helps to optimize observations by ¹⁴⁶ selecting targets, pointing the telescope and logging. ¹⁴⁷ The observing programs are executed in an optimized ¹⁴⁸ way, depending on the target visibility, atmospheric

¹ See the latest online WDS version.

¹⁴⁹ conditions and priorities, while minimizing the telescope ¹⁵⁰ slews. Reference stars and calibrator binaries are ob-¹⁵¹ served alongside the main targets as needed; their ob-¹⁵² servations are published here as well.

2.3. Data Processing

153

The data processing is described in TMH10 and 154 ¹⁵⁵ Tokovinin (2018). We use the standard speckle in-¹⁵⁶ terferometry technique based on the calculation of the ¹⁵⁷ power spectrum and the speckle auto-correlation func-¹⁵⁸ tion (ACF). Companions are detected as secondary peaks in the ACF and/or as fringes in the power spec-159 ¹⁶⁰ trum. Parameters of the binary and triple stars: sepa-¹⁶¹ ration (ρ), position angle (θ), and magnitude difference (Δm) are determined by modeling (fitting) the observed 162 ¹⁶³ power spectrum. The true quadrant is found from the ¹⁶⁴ shift-and-add (SAA) images whenever possible because ¹⁶⁵ the standard speckle interferometry determines position ¹⁶⁶ angles modulo 180°. The resolution and detection limits ¹⁶⁷ are estimated for each observation.

Calibration of pixel scale and orientation is based on a set of wide pairs with well-modeled motion. The system of calibrators is tied to Gaia astrometry. Further details ra can be found in Tokovinin et al. (2022).

172 3. RESULTS

173 3.1. Data Tables

The results (measures of resolved pairs and nonresolutions) are presented in exactly the same format resolutions) are al. (2021, 2022). The long tables are published electronically; here we describe their content.

Table 2 lists 2507 measures of 1925 resolved pairs and 178 179 subsystems, including new discoveries. The pairs are $_{180}$ identified by their WDS-style codes based on the J2000 coordinates and discoverer designations adopted in the 181 WDS catalog (Mason et al. 2001), as well as by alter-182 183 native names in column (3), mostly from the Hipparcos ¹⁸⁴ catalog. Equatorial coordinates for the epoch J2000 in $_{185}$ degrees are given in columns (4) and (5) to facilitate 186 matching with other catalogs and databases. Circum-187 stances of this particular observation (JY, filter, number $_{188}$ of cubes), be it Table 1 or 2, are given in columns (6) ¹⁸⁹ through (8). In the case of resolved multiple systems, ¹⁹⁰ the positional measurements and their errors (columns ¹⁹¹ 9–12) and magnitude differences (column 13) refer to ¹⁹² the individual pairings between components, not to their ¹⁹³ photocenters. As in the previous papers of this series, we ¹⁹⁴ list the internal errors derived from the power spectrum ¹⁹⁵ model and from the difference between the measures ob-¹⁹⁶ tained from two data cubes. The real errors are usually ¹⁹⁷ larger, especially for difficult pairs with substantial Δm

 Table 2. Measurements of Double Stars at SOAR

Col.	Label	Format	Description, units
1	WDS	A10	WDS code (J2000)
2	Discov.	A16	Discoverer code
3	Other	A12	Alternative name
4	RA	F8.4	R.A. J2000 (deg)
5	Dec	F8.4	Declination J2000 (deg)
6	Epoch	F9.4	Julian year (yr)
7	Filt.	A2	Filter
8	N	I2	Number of averaged cubes
9	θ	F8.1	Position angle (deg)
10	$ ho\sigma_{ heta}$	F5.1	Tangential error (mas)
11	ρ	F8.4	Separation (arcsec)
12	$\sigma_{ ho}$	F5.1	Radial error (mas)
13	Δm	F7.1	Magnitude difference (mag)
14	Flag	A1	Flag of magnitude difference a
15	$(O-C)_{\theta}$	F8.1	Residual in angle (deg)
16	$(O-C)_{\rho}$	F8.3	Residual in separation (arcsec)
17	Ref	A9	Orbit reference b

^a Flags: q – the quadrant is determined; * – Δm and quadrant from average image; : – noisy data or tentative measures.

 b References are provided at https://crf.usno.navy.mil/data_products/WDS/orb6/wdsref.html

¹⁹⁸ and/or with small separations. Residuals from orbits ¹⁹⁹ and from the models of calibrator binaries, typically be-²⁰⁰ tween 1 and 5 mas rms, characterize the external errors ²⁰¹ of the HRCam astrometry.

The flags in column (14) indicate the cases where the 203 true quadrant is determined (otherwise the position an- $_{204}$ gle is measured modulo 180°), when the relative pho-²⁰⁵ tometry of wide pairs is derived from the long-exposure ²⁰⁶ images (this reduces the bias caused by speckle aniso-207 planatism), and when the data are noisy or the resolu-²⁰⁸ tions are tentative (see TMH10). For binary stars with 209 known orbits, the residuals to the latest orbit and its $_{210}$ reference are provided in columns (15)–(17). Residuals $_{211}$ close to 180° mean that the orbit swaps the brighter ²¹² (A) and fainter (B) stars. However, in some binaries ²¹³ the secondary is fainter in one filter and brighter in the ²¹⁴ other (e.g. WDS15234-5919). In these cases, it is better ²¹⁵ to keep the historical identification of the components in ²¹⁶ agreement with the orbit and to provide a negative mag-²¹⁷ nitude difference Δm .

The 787 non-resolutions of 613 systems are reported in Table 3. Its first columns (1) to (8) have the same meaning and format as in Table 2. Column (9) gives the minimum resolvable separation when pairs with $\Delta m < 1$ mag are detectable. It is computed from the maximum spatial frequency of the useful signal in the power spectrum and is normally close to the formal diffraction limit

 Table 3. Unresolved Stars

Col.	Label	Format	Description, units
1	WDS	A10	WDS code (J2000)
2	Discov.	A16	Discoverer code
3	Other	A12	Alternative name
4	RA	F8.4	R.A. J2000 (deg)
5	Dec	F8.4	Declination J2000 (deg)
6	Epoch	F9.4	Julian year (yr)
7	Filt.	A2	Filter
8	N	I2	Number of averaged cubes
9	$ ho_{ m min}$	F7.3	Angular resolution (arcsec)
10	$\Delta m(0.15)$	F7.2	Max. Δm at 0.15 (mag)
11	$\Delta m(1)$	F7.2	Max. Δm at 1''(mag)
12	Flag	A1	: marks noisy data

²²⁵ $(\frac{\lambda}{D})$. The following columns (10) and (11) provide the ²²⁶ indicative dynamic range, i.e., the maximum magnitude ²²⁷ difference at separations of 0."15 and 1", respectively, at ²²⁸ 5 σ detection level. The last column (12) marks noisy ²²⁹ data by the flag ":".

Figure 1. Fragments of speckle ACFs of six newly resolved triple stars. The spatial and intensity scale is chosen for best representation of each system. Blue letters mark the ACF peaks corresponding to the components' location, O marks the ACF center. The outer and inner separations are indicated.

3.2. New Pairs

230

 Table 4. New Double Stars

WDS	Name	ρ	Δm	$_{\mathrm{Program}}a$	
J2000		(arcsec)	(mag)		
01079-4519	HIP 5305	0.04	0.0	HIPb	
01536-7018	HIP 8834	0.29	1.6	$_{\mathrm{HIP}}b$	
01575 - 5212	RST 43Aa,Ab	0.08	1.4	$_{MSC}c,d$	
02469-6009	I 268Ba,Bb	0.07	0.0	$_{\rm NEG}c,d$	
05090 + 0654	HIP 23961	1.84	2.0	$_{ m HIP}d$	
09275 - 7330	I 832Aa,Ab	0.05	1.3	NEG ^C	
09314 - 5724	RST3644Ba,Bb	0.06	0.4	$_{\rm NEG}c,d$	
11093-1141	HIP 54523	0.59	4.9	$_{ m REF}d$	
11260-5939	RST4476Aa,Ab	0.09	1.4	$_{\rm NEG}c,d$	
11349-4908	HIP 56497	1.14	5.7	$_{ m REF}d$	
$12241 {+} 0357$	LDS4205Ba,Bb	0.07	0.0	MSC	
13133-0756	HDS1851Ba,Bb	0.04	0.5	$_{\mathrm{NEG}}c,d$	
13557-3117	HIP 68021	0.07	2.5	$_{\mathrm{REF}}d$	
15531 - 1634	HDS2237Aa,Ab	0.04	1.4	$_{\rm NEG}c,d$	
16000-2025	HLD 125CD	0.41	0.0	${}_{\rm MSC}d$	
16161-3037	I 1586Aa,Ab	0.04	1.6	$_{\mathrm{ORB}}d$	
16580 + 0547	HD 153252	0.37	1.0	${}_{ m MSC}d$	
17323-4828	HIP 85831	3.00	5.6	$_{ m HIP}d$	
17435-6856	HIP 86741	0.44	2.8	$_{ m HIP}b$	
18274-3007	HIP 90450	0.06	0.6	$_{\mathrm{HIP}}b,d$	
20081-6745	HIP 99174	0.12	0.7	$_{ m HIP}b$	
20372-6234	HIP 101731	0.68	3.3	$_{\mathrm{HIP}}b$	
20374-3444	HIP 101752	0.05	0.3	$_{\mathrm{HIP}}b$	
20581-1510	HIP 103491	0.09	0.0	$_{ m HIP}b$	
21007-3518	BU 765BC	0.07	2.4	$_{\rm NEG}c,d$	

 Table 4 continued

WDS	Name	ρ	Δm	Program ^a
J2000		(arcsec)	(mag)	
21046-5621	RST1081Aa,Ab	0.10	1.6	$_{\rm NEG}c,d$
21077 - 4523	HIP 104296	0.03	0.0	$_{\rm HIP}b$
21232-1035	HIP 105589	0.68	3.1	$_{\rm HIP}^{b}$
23435 - 5947	HIP 117033	0.24	2.4	$_{\rm HIP}b$

 Table 4 (continued)

^a HIP – Hipparcos suspected binary; MSC – multiple system; REF – reference star; NEG – neglected pair; ORB – orbit pair.

^b Suspected binary in Gaia DR3.

 $^{\it c}$ New subsystem in a neglected binary.

^dSee comments in the text.

Table 4 highlights the 26 pairs resolved for the first 231 time in 2022. All measurements of these pairs are found 232 ²³³ in Table 2. The pairs are identified by the WDS-style 234 codes and the discovery codes or other names. The fol-²³⁵ lowing columns contain the separation ρ , the magnitude 236 difference Δm , and the observing program. About half of the new resolutions are Hipparcos stars within 200 pc 237 with an increased Reduced Unit Weight Error (RUWE) 238 239 in Gaia DR3 (GDR3; Gaia collaboration 2021). The ²⁴⁰ second largest group are subsystems discovered in previously neglected visual binaries that lacked recent mea-241 242 sures; six new triples are illustrated in Figure 1. Com-²⁴³ ments on some systems follow.

01575-5212. The newly resolved pair RST 43
Aa,Ab belongs to a quadruple system where the 0." 4 pair
RST 43BC is located at 3." 3 from star A, a G6/K1III+F
giant. The outer pair is COO 10 AB. The resolution of
A is supported by its large RUWE=20.2 in GDR3.

02469–6009 is a quadruple system where the new 0.07 subsystem Ba,Bb has been discovered serendipitously in the 0.4 visual pair I 268 AB. It has been observed at SOAR in 2016.96 without resolving the subsystem, owing to the lower quality of the power spectrum, while in 2022 the triple nature is clear (Figure 1). The outer component C of this system, at 20.9, has common proper motion (PM) and parallax.

257 **05090+0654.** The newly resolved companion to 258 HIP 23961 at 1. At is also found in GDR3 at a similar 259 position of 144. If and 1. At 250. Both stars have accu-260 rate and matching parallaxes of 13.4 mas and matching 261 PMs, while $\Delta G = 2.36$ mag. However, between 2016.0 262 and 2022.2 the relative position has changed by 95 mas, 263 which corresponds to a PM difference of 15 mas yr⁻¹. 264 Meanwhile, Gaia measured a relative PM of only 2.1 265 mas yr⁻¹. Future observations will help to settle this 266 discrepancy. 09314-5724 is another triple system discovered by
resolving the secondary component of the neglected 0.4
visual pair RST3644 with only three measures in the
WDS. The resolution (Figure 1) is confirmed in 2023.

11093–1141. A new faint 0.46 companion to the $_{272}$ K5/M0III giant HIP 54523 (HD 96906), observed as a point-source reference, was resolved only in filter y and $_{274}$ unresolved in I, where the magnitude difference should $_{275}$ be larger because the main star is very red.

11260–5939. The neglected 0".7 pair RST 4476 contrains a 0".1 subsystem Aa,Ab (Figure 1). Very little information on this A2/2III star is available. Photometry suggests a distance of \sim 500 pcand no motion in the outer pair is detected since its discovery in 1939.

²⁸¹ **11349–4908.** The new faint companion at 1."14 from ²⁸² the bright reference star HIP 56497 with a fast PM of ²⁸³ 250 mas yr^{-1} could be optical.

13133-0756. The secondary star in the 0."4 Hipparcos pair HDS 1851 was resolved at a separation of 0."04,
slightly below the diffraction limit, so only elongation
is seen. However, the discovery has been confirmed in
2023. The estimated period of Ba,Bb is about 25 yr.

13557-3117. A close 0.07 companion to the reference star HIP 68021 (HD 121397, G6/8III) was discovered unexpectedly. However, it could have been suspected by the large RUWE of 3.8 in GDR3 and by the
acceleration reported by Brandt (2021).

15531-1634. Resolution of a 0."04 subsystem
Aa,Ab in the neglected Hipparcos binary HDS 2237
(HD 142074, F6/7V) is tentative; in 2023.3 it was not
detected, although the quality of the power spectrum
was worse than in 2022.3. Reality of the subsystem
is supported indirectly by the large RUWE of 15.9 in
GDR3 and by the PM acceleration (Brandt 2021), which
is unlikely to be produced by the outer 0."4 pair A,B
with an estimated period of ~300 yr.

16000–2025. This system, previously known as a visual triple HLD 125 (AB at 2".9 and AC at 27".3), is converted into a quadruple by resolving star C into a 0".4 equal pair. Star C was also seen double by Gaia: the DR3 catalog contains two nearly equal ($\Delta G = 0.10$ mag) sources at 0".374 and 233°.0 relative position. Our observation was prompted by Gaia, which should be credited to for this discovery.

16161-3037. The visual pair I 1568 was monitored by HRCam since 2008 to follow its slow orbit with P =160 yr. Unexpectedly, the 0.000 pair Aa, Ab was detected in 2022.44 and confirmed in 2023. Re-examination of the HRCam data shows that Aa, Ab was also resolved in 2018.23, but overlooked at the time, and partially resolved in 2022.68. Estimated period of Aa, Ab is 10 sla yr; it is responsible for the large astrometric noise in 319 GDR3 (RUWE of 3.8). A wobble in the motion of AB caused by the subsystem could be detectable. 320

16580+0547 is a quaruple system HD 153252 (spec-321 $_{322}$ tral type G0) of 3+1 hierarchy. The outer 60" pair is CRV 942and its component A is a 5.52 day single-lined 323 ³²⁴ spectroscopic binary. Large astrometric noise of star A ³²⁵ in GDR3 (RUWE of 8.6) suggested an intermediate sub-326 system Aa, Ab, which was indeed resolved at 0.137. Its $_{327}$ estimated period of ~ 400 yr implies only a slow motion, so the large RUWE could be produced by the compan-328 ³²⁹ ion's light, rather than by the photocenter motion.

17323 - 4828.The faint companion found at 330 3'' from the high-PM star HIP 85831 is definitely op-331 ³³² tical. It is seen by Gaia DR3 at 1.768 and 40°2 with $_{333} \Delta G = 4.9 \text{ mag}$ and a parallax of -0.06 mas.

18274-3007. Star HIP 90450 with a large RUWE 334 335 of 5.0 has been resolved at 0".06. A short period is ³³⁶ expected and subsequent observations in 2022 and 2023 confirmed rapid retrograde motion of the new pair. 337

21007 - 3518.A new 0".07 subsystem BC was re-338 339 solved in a neglected 0".7 visual binary BU 765 (Fig- $_{340}$ ure 1). The estimated period of BC, ~ 10 yr, suggests 341 rapid orbital motion.

21046–5621. A 0."3 neglected pair RST 1981 turns 342 ³⁴³ into a spectacular triple with inner 0".1 pair Aa, Ab (Fig-344 ure 1).

345

3.3. New and Updated Orbits

With one exception described below, the orbits here 346 computed were determined with the venerable orbgrid 347 ³⁴⁸ code described in Hartkopf, McAlister & Franz (1989). ³⁴⁹ In this technique, an adaptive "three dimensional" grid $_{350}$ search is performed for initial guesses of period P, epoch Tand eccentricity e. Prior calculations of orbits for these 351 ³⁵² pairs, as cited in Tables 5 & 6, provide good inital ³⁵³ guesses of these elements. As the residuals are minimized, the grid spacing is reduced and this method con-354 $_{355}$ tinues until the grid steps fall below 0.01 yr in P and $_{356}$ T and 0.001 in e. Measures with overly large residuals are given either lower or zero weightand the process 357 ³⁵⁸ repeats until the grid steps of 1% in magnitude of the 359 prior iteration.

Individual weighted measures are accord-360 ³⁶¹ ing to the methodology described in $\S{2.1}$ of ³⁶² Hartkopf, Mason & Worley (2001). This determines $_{363}$ the weight of each observation based on N, the number ³⁶⁴ of nights (often one) in a mean position, the observation ³⁶⁵ technique, and a factor which takes into account the ³⁶⁶ measured separation and the resolution capability of ³⁶⁷ the telescope used for the observation.

A numerical "grade" is given to each calculated orbit. 368 ³⁶⁹ The subjective qualification of these numerical grades $_{370}$ are: 1 = definitive, 2 = good, 3 = reliable, 4 = prelimi- $_{371}$ nary and 5 = indeterminate. The actual grading is done ³⁷² with an objective rubric evaluating each orbit by several 373 criteria:

- 1. weighted rms residual in separation $(d\rho)$; 374
- 2. weighted rms residual in relative separation $\left(\frac{d\rho}{\rho}\right)$; 375
- 3. position angle (θ) coverage (most helpful evaluat-376 ing high eccentricity orbits); 377
- 4. maximum gap in position angle coverage (θ) ; 378
 - 5. phase coverage, calculated from P and T (most helpful evaluating high inclination orbits);
- 6. maximum gap in phase; 381

379

380

388

389

390

391

7. number of revolutions; and 382

8. total number of observations. 383

The final list of computed orbits are divided into two 384 groups, reliable and preliminary. However, rather than 385 ³⁸⁶ basing this solely on the grade, the criteria is based on ³⁸⁷ the criteria of Aitken (1964):

"In general, it
the orbit of a
arc not only
defines both e

is not worth while to compute double star until the observed exceeds 180 degrees, but also ends of the apparent ellipse."

The orbits meeting this criteria and having small $\left(\frac{\Delta P}{P}\right)$ 392 ³⁹³ relative error are found in the table of reliable orbits and ³⁹⁴ other orbit solutions are in the table of preliminary or-³⁹⁵ bits. While these preliminary orbits may lack sufficient ³⁹⁶ coverage at this time, they should allow the determina-³⁹⁷ tion of accurate predicted positions for the next years. 398 Some of these orbits were improved with the addition ³⁹⁹ of data taken in the first half of 2023 which will be pre-⁴⁰⁰ sented with the rest of the SOAR 2023 data next year. In these tables, the system is identified by the WDS 402 J2000 code and the Discoverer Designation, followed by 403 the seven Campbell Elements. Following this, a ref-⁴⁰⁴ erence to the most current Hartkopf, Mason & Worley 405 (2001) orbit which has been here improved is given. This 406 is followed by the orbit grade and a flag indicating if 407 there is a note. In Table 5, the following line provides ⁴⁰⁸ the error of each orbital element. The quoted precision 409 of each element is determined from the precision of the ⁴¹⁰ error, which is given to two significant digits. In Table 411 6, errors are not provided, but the elements are given to ⁴¹² the nearest degree for i, Ω and ω , to nearest tenth of a 413 year for P and T and the to a tenth of a percent for a $_{414}$ and e. If a higher precision is provided in Table 6, this ⁴¹⁵ is due to the precision of the error in that element.

Notes to individual systems in both tables follow. 416

474

417 3.3.1. Notes to Individual Orbital Systems

01388–1758 = LDS 838: Using the parallax from GDR3 and the mass ratio from Worley & Behall (1973), individual masses of $\mathcal{M}_a = 0.1191 \pm 0.0018 \mathcal{M}_{\odot}$ and \mathcal{M}_b = 0.1144±0.0017 \mathcal{M}_{\odot} are determined for these components. See Figure 2.

 $_{423}$ 10112-3245 = HDS1469 : Radically different so- $_{424}$ lution for this pair. See Figure 2.

13535+1257 = BEU 18 : This pair lacks data in the south to define that portion of the orbit. Data in A27 Autumn 2023 or Spring 2031 whould characterize those A28 parts of the orbit.

⁴²⁹ **14516–4335** = **FIN 319** : This pair lacks data ⁴³⁰ when the secondary is east of the primary. However, ⁴³¹ the separation predicted here (0''.017) would be a chal-⁴³² lenge. Close to this may be the best we can do. It is ⁴³³ predicted to move from 343°.0 & 0''.042 on 2031.0 coun-⁴³⁴ terclockwise to 214°.4 & 0''.047 on 2032.0. Observing the ⁴³⁵ pair many times in 2031 will be key to improving this ⁴³⁶ orbit.

⁴³⁷ 15440+0231 = RDR 6Ba,Bb: Predicted to get
⁴³⁸ as close as 0.007 at periastron, observing "both ends
⁴³⁹ of the apparent ellipse" will be challenging. However,
⁴⁴⁰ measures approaching and coming out of periastron as
⁴⁴¹ well as non-detection (cf. Table 3) when predicted should
⁴⁴² adequately probe this in Autumn 2025.

⁴⁴³ 15462-2804 = KOH 49Ca,Cb : This pair just
⁴⁴⁴ needs more data to adequately define the eastern end of
⁴⁴⁵ the apparent ellipse. It should get to widest separation
⁴⁴⁶ by mid 2027 and begin closing at that time.

⁴⁴⁷ **16555–0820** = **KUI 75AB** : Using parallax ⁴⁴⁸ from van Leeuwen (2007) and the mass ratio from ⁴⁴⁹ Harris et al. (1963), individual masses of $\mathcal{M}_a =$ ⁴⁵⁰ 0.487±0.054 \mathcal{M}_{\odot} and $\mathcal{M}_b = 0.487\pm0.054$ \mathcal{M}_{\odot} are de-⁴⁵¹ termined for these components. See Figure 2.

452 **17190–3459 = MLO 4AB** : Using parallax 453 from van Leeuwen (2007) and the mass ratio from 454 Harris et al. (1963), individual masses of $\mathcal{M}_a =$ 455 $0.65\pm0.12 \ \mathcal{M}_{\odot}$ and $\mathcal{M}_b = 0.448\pm0.085 \ \mathcal{M}_{\odot}$ are deter-456 mined for these components. See Figure 2.

457 **17304–0104** = **STF2173AB** : The program 458 orbgrid was used here to identify measures having 459 overly large residuals which were omitted from the so-460 lution. High-angular resolution measures only (speckle 461 interferometry, adaptive optics, Hipparcos, phase grat-462 ing interferometer) were coupled with radial velocities 463 from Batten et al. (1991) and Duquennoy et al. (1991), 464 to arrive at a combined solution using the orbit IDL 465 code Tokovinin (2016c), resulting in additional orbital 466 elements of $K_1 = 4.88 \pm 0.11 \,\mathrm{km \ s^{-1}}$, $K_2 = 5.49 \pm$ 467 0.11 km s⁻¹, $\gamma = -77.018 \pm 0.064 \,\mathrm{km \ s^{-1}}$, and in-466 dividual masses of $\mathcal{M}_a = 1.028 \pm 0.050 \,\mathcal{M}_{\odot}$ and \mathcal{M}_b $_{469} = 0.914 \pm 0.046 \ \mathcal{M}_{\odot}$ are determined for these compo- $_{470}$ nents. In addition, an orbital parallax of 59.90 ± 2.97 $_{471}$ mas is determined, which compares quite well with the $_{472}$ mean trigonometric parallax of 59.6071 mas from the $_{473}$ Gaia collaboration (2018). See Figure 2.

3.4. Spurious Pairs

475 False detections of double stars can be caused by er-476 rors in pointing, in data processing, or by other reasons; 477 cf. Table 5 and §4 of McAlister et al. (1993). Optical ⁴⁷⁸ artefacts resembling binary companions are discussed in 479 (Tokovinin, Mason, & Hartkopf 2010a; Tokovinin 2018). 480 Identifying these spurious pairs will save observing time 481 in the future by eliminating the need to followup and ⁴⁸² examine these targets. In Table 8 are listed pairs we ⁴⁸³ consider as likely spurious. The table contains the WDS ⁴⁸⁴ code and Discoverer designation, the method (Vis — vi-⁴⁸⁵ sual micrometer, Sp — speckle, HIP — Hipparcos) and 486 date of the original discovery and the year(s) it has been 487 unresolved in this program. Following that is a code giv-⁴⁸⁸ ing other indications supporting the characterization of ⁴⁸⁹ the double as "spurious". These codes are: R — normal ⁴⁹⁰ RUWE parameter in GDR3, hence lack of astrometric ⁴⁹¹ noise; L — long estimated period, making it unlikely ⁴⁹² that the pair has moved significantly between discovery ⁴⁹³ epoch and 2022; S — short estimated period covered by ⁴⁹⁴ non-resolutions; B — no PM anomaly in (Brandt 2021); ⁴⁹⁵ V – artefact caused by telescope vibration. Likely or-⁴⁹⁶ bital periods P^* are estimated from separation ρ and ⁴⁹⁷ parallax ϖ as $P^* = (\rho/\varpi)^{3/2} M^{1/2}$, assimung a mass ⁴⁹⁸ sum of $M = 2\mathcal{M}_{\odot}$. In the WDS (Mason et al. 2001), ⁴⁹⁹ these pairs are not removed but are given an X code ⁵⁰⁰ identifying them as a "dubious double" or a "bogus bi-501 nary".

 Table 8. Likely Spurious Pairs

WDS	Discoverer	Resolved	$_{ m Unresolved}a$
00547 - 2227	B 14	0'1 Vis 1926	2017–19, R
$00558\!-\!1832$	B 645	$0{\scriptstyle{.}^{\prime\prime}2}$ Vis 1926	2008-23, R, L, B
$01144 {-} 0755$	WSI 70Aa,Ab	$0\rlap{.}^{\prime\prime}2$ Sp 2008	2012-21, R, B, V
$01380 {+} 0946$	TOK 688	0.''1 Sp 2015	2016-21, R, B, V
01487 - 3839	I 1610AB	$0\rlap{.}^{\prime\prime}3$ Vis 1927	2016-22, R, B
$04381\!-\!1749$	B 1939	$0\rlap{.}^{\prime\prime}{.}^{\prime}1$ Vis 1932	2017-20, R, B
$05250 \!-\! 0249$	BAG 42Aa,Ab	$0\rlap{.}^{\prime\prime}2$ Sp 2009	2017 - 18, R
$07074 {-} 2127$	YSC 195	$0.''05 { m Sp} 2010$	2016-18, R
07346 - 3336	B 1551	$0\rlap{.}^{\prime\prime}2$ Vis 1929	2018-19, R, V
$08095 {-} 4720$	WSI 55Ba,Bb	$0''_{}1$ Sp 2006	2009-2018, V
$08246\!-\!0109$	B 527AB	$0{\scriptstyle{.}^{\prime\prime}2}$ Vis 1938	2010-21, R, S
08246 - 0345	CHR 172Aa,Ab	$0^{\prime\prime}_{\cdot}2$ Sp 1988	2011-21, R, S, V
10123 - 3124	WSI 128	1.''1 Sp 2010	2015-22, R
11006 + 0337	CHR 33	$0''_{2}$ Sp 1983	2014–17, R, B, L

Table 8 continued

Figure 2. Selected new orbital solutions, plotted together with all published data in the WDS database as well as the new data in Table 2. In each of these figures, micrometric observations are indicated by plus signs, interferometric measures by filled circles, conventional CCD by pink triangles, space-based measures are indicated by the letter 'H', new measures from Table 2 are plotted as a filled star. "O - C" lines connect each measure to its predicted position along the new orbit (shown as a thick solid line). A dot-dash line indicates the line of nodesand a curved arrow in the lower right corner of each figure indicates the direction of orbital motion. The earlier orbit referenced in Table 5 is shown as a dashed ellipse. For the combined orbit of 17304-0104 = STF2173, plots of the relative astrometry and the radial velocity curve are provided.

516

Га	bl	\mathbf{e}	8	(continued)	
----	----	--------------	---	-------------	--

WDS	Discoverer	Resolved	$_{ m Unresolved}a$
11042 - 5828	HLN 22Aa,Ab	0'2 Vis 1967	2009, R, L
11317 + 1422	WSI 101Aa,Ab	$0''_{1}$ Sp 2001	$2011{-}18$, R, S
$11479 {+} 0815$	CHR 134Aa,Ab	$0.''3 { m Sp} 1987$	$2014{-}17, R$
$11518 \!-\! 0546$	CHR 36	$0''_{}2$ Sp 1983	2014, R, L
$11545 \!-\! 5325$	YMG 39	$0.''03 { m Sp} 2019$	2019-21, R, S
$12062\!-\!2002$	B 1714	$0\rlap{.}^{\prime\prime}1$ Vis 1929	2018-22, R, B
$12532 {-} 0333$	CHR 38	$0.''5 { m Sp} 1984$	2013–19, R, B
12543 - 1139	CHR 206	$0.''04 { m Sp} 1984$	$2014{-}17$, R, S
$13208\!-\!1127$	HDS1872	0'1 HIP	2022, R, L
13212 - 7427	HDS1874	0'1 HIP	2021-22, R, B, L
$13297 {-} 4611$	HDS1890	0'1 HIP	2018, R, B, L
$13366\!-\!6433$	HDS1909	0'1 HIP	2022, L
$13400 \!-\! 7047$	HDS1918	0'1 HIP	2018, R, L
14029 - 3511	I 1574	$0\rlap{.}^{\prime\prime}2$ Vis 1927	2017-22, R, B
14141 + 1258	CHR 41	$0''_{2}$ Sp 1984	2014, R, B
14157 + 1911	HDS2003	0'1 HIP	2019, S
$14598\!-\!2201$	TOK 47Aa,Ab	$0.''04 { m Sp} 2009$	2013–17, R, S
15073 + 1827	A 2385AB	$0\rlap{.}^{\prime\prime}1$ Vis 1910	2018-21, R, B, S
15172 - 3435	BRR 10Ba,Bb	07 AO 1994	2022, R, B, L
$15210\!-\!1522$	MCA 41	$0''_{\cdot}4$ Sp 1980	2008 - 14, R, L
$15355 \!-\! 1447$	WRH 20Aa,Ab	$0\rlap{.}^{\prime\prime}1$ Vis 1937	2009-23, S
$15462\!-\!2804$	CHR 50Aa,Ab	$0''_{2}$ Sp 1983	2009–22, S
$16102\!-\!4008$	I 1082AB	$0{\scriptstyle .}^{\prime\prime}4$ Vis 1912	2008-22, R, B, L
16133 + 1332	CHR 52Aa,Ab	$0''_{2}$ Sp 1983	2008-09, R, S
$16142\!-\!5047$	TOK 409	$0\rlap{.}^{\prime\prime}1$ Sp 2014	2015-22, R, B, S, V
$16406 {+} 0413$	CHR 56Aa,Ab	0.''1 Sp 1985	2014-22, R, B, V
$16438\!-\!5330$	CHR 147Aa,Ab	0.04 Sp 1989	2008 - 14
$16542\!-\!4150$	CHR 252Aa,Ab	0.''1 Sp 1994	2009-19, R, L
$16593\!-\!1926$	HDS2403	0'4 HIP	2018, L, R
$17376\!-\!1524$	ISO 6Aa,Ab	$0.''3 { m Sp} 1987$	2023, B
17449 - 5733	HLN 44Aa,Ab	$0\rlap{.}^{\prime\prime}2$ Vis 1967	2008 - 19, R, B
18073 + 0934	STT 342Aa,Ab	$1\rlap.^{\prime\prime}3$ Vis 1842	2023, B
$18218\!-\!1619$	CHR 69	$0''_{1}$ Sp 1985	2013-18, R, L
18237 + 2146	TOK 60Aa,Ab	$0\rlap{.}^{\prime\prime}04$ Sp 2009	2018-21, B, V, L
$18367 {+} 0640$	CHR 76Aa,Ab	0.''1 Sp 1985	2008-09, R, B, S
$18448\!-\!2501$	CHR 78	$0.''1 { m Sp} 1983$	2014-19, R, V
18582 + 1722	CHR 82Aa,Ab	$0''_{\cdot \cdot 2}$ Sp 1984	2015, R, L
$19098\!-\!2101$	FIN 311AB	$0{\scriptstyle .}^{\prime\prime}1$ Vis 1936	2009 - 18
$19098\!-\!2101$	FIN 311AC	$0{\scriptstyle{.}^{\prime\prime}}4$ Vis 1936	2009 - 18
$19247 {+} 0833$	WSI 108	$0.''1~{\rm Sp}~2008$	2015-21, R, B, S
$19255 {+} 0307$	BNU 6Aa,Ab	0.''1 Sp 1979	2023, S
$19298\!-\!1102$	HDS2771	0'1 HIP	2015-21, R, B
$19409\!-\!0152$	TOK 424	$0\rlap{.}^{\prime\prime}04$ Sp 2014	2015 - 21
20011 + 0931	CHR 118	0."2 Sp 1985	2018, R. L

 ⁴ Additional indications of the spurious nature of resolutions: R – no excess noise in Gaia DR3, RUWE<2; L – long estimated period; B – no significa## PM anomaly in (Brandt 2021); S – short estimated period or spectroscopic coverage: V – artefact caused by SOAR vibration.

⁵⁰³ **15073**+**1827** = **A 2358AB** : This system is an-⁵⁰⁴ other classic "ghost" binary Tokovinin (2012), with ⁵⁰⁵ many measures and an orbit Eggen (1946), but many ⁵⁰⁶ unresolved measures and other indications confirming ⁵⁰⁷ its spurious nature.

⁵⁰⁸ **18582+1722 = CHR 82Aa,Ab** : The orbit of ⁵⁰⁹ Benedict et al. (2007), previously assigned to this pair ⁵¹⁰ is obviously the much closer pair CIA 14Aa1,2 of ⁵¹¹ Gallenne et al. (2019).

 $_{512}$ **19255**+**0307** = **BNU 6Aa,Ab** : The ESA $_{513}$ (1997) orbit is of the unresolved pair associated with the $_{514}$ Kamper et al. (1989) orbit and not the never confirmed $_{515}$ wider speckle pair of Bonneau et al. (1980).

4. SUMMARY AND OUTLOOK

The program continues to investigate the multiplic-⁵¹⁸ ity of various stellar samples, the kinematics and dy-⁵¹⁹ namics of binary and hierarchical systems, to find new ⁵²⁰ pairs, and to obtain orbital solutions for them as quickly ⁵²¹ thereafter as possible. Investigation of close pairs have ⁵²² found many that are rapidly moving and others which ⁵²³ are anomalous detections and can henceforward be ig-⁵²⁴ nored. For those which are rapidly moving, ascertaining ⁵²⁵ the proper observing cadence can be challenging, but we ⁵²⁶ have identified, when possible, specific future instances ⁵²⁷ when observations are needed.

We thank the SOAR operators for efficient support of this programand the SOAR director J. Elias for allocating some technical time. This work is based in part on observations carried out under CN-TAC programs CN2019A-2, CN2019B-13, CN2020A-19, CN2020B-10and CN2021B-17. R.A.M. and E.C. acknowledge support from the FONDECYT/CONICYT grant #1190038. The research of A.T. is supported by the NSFs NOIRLab.

This work used the SIMBAD service operated by Centre des Données Stellaires (Strasbourg, France), bibliographic references from the Astrophysics Data System maintained by SAO/NASA the Washington Double Star Catalog maintained at the USNO. This work has made use of data from the European Space Agency (ESA) mission Gaia Hit (https://www.cosmos.esa.int/gaia) processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement.

502

3.4.1. Notes to Individual Spurious Pairs

550 Facility: SOAR

- 551 Aitken, R.G. 1964, The Binary Stars (New York: Dover). 110 552
- 553 Anguita-Aguero, J., Mendez, R., Claveria, R. M. & Costa, E. 2022, AJ 163, 118 554
- 555 Argue, A.N., Hebden, J.C., Morgan, B.L. et al. 1985, MNRAS 216, 447 556
- 557 Batten, A.H., Fletcher, J.M., Hill, G., Wenxian, Lu &
- Morbey, C.L. 1991, PASP 103, 294 558
- 559 Benedict, G.F., McArthur, B.E., Feast, M.W., Barnes,
- T.G., Harrison, T.E., Patterson, R.J., Menzies, J.W., 560
- Bean, J.L. & Freedman, W.L. 2007, AJ 133, 1810 561
- 562 Blunt, S., Wang, J., Angelo, I. et al. 2020, AJ 159, 89
- 563 Bonavita, M., Gratton, R., Desidera, S. et al. 2021, ArXiv preprint 2103.13706 564
- 565 Bonneau, D., Blazit, A., Foy, R. & Labeyrie, A. 1980,
- A&AS 42, 185 566
- 567 Brandt, T. D. 2021, ApJS 254, 42
- 568 Brandt, T. D., Dupuy, T. J., Li, Y. et al. 2021, AJ 162, 186
- 569 Colacevic, A. 1941, Oss. e Mem. Arcetri 59, 15
- 570 Cortes-Contreras, M., Bejar, V. J. S., Caballero, J. A. et al. 2017, A&A 597, 47 571
- 572 Duquennoy, A., Mayor, M. & Halbwachs, J.-L. 1991, A&AS 88, 281 573
- 574 Eggen, O.J. 1946, AJ 52, 81
- 575 El-Badry, K., Rix, H.-W. & Heintz, T.M. 2021, MNRAS 506, 2269 576
- 577 The Hipparcos and Tycho Catalogues (ESA SP-1200)
- (Noordwijk: ESA) [DMSA/O Orbital Solutions] 578
- 579 Gaia Collaboration et al. 2018, A&A, 616A, 1
- 580 Gaia Collaboration, Brown, A. G. A., Vallenari, A., et al.
- 2021, A&A 649, A1 (Gaia EDR3) 581
- 582 Gallenne, A., Kervella, P., Borgniet, S., Merand, A.,
- Pietrzynski, G., Gieren, W., Monnier, J.D., Schaefer, 583
- G.H., Evans, N.R., Anderson, R.I., Baron, F., 584
- Roettenbacher, R.M. & Karczmarek, P. 2019, A&A 585 622A, 164 586
- Gómez, J., Docobo, J. A., Campo, P., Andrade, M., 587
- Mendez, R. & Costa, E. 2022, MNRAS 509, 4229 588
- 589 Harris, D.L., III, Strand, K.Aa. & Worley, C.E. 1963, in
- Stars and Stellar Systems, Vol. 3, Basic Astronomical 590 Data, ed. K. 591
- A. Strand (Chicago: Univ. Chicago Press), 273 592
- 593 Hartkopf, W.I., McAlister, H.A. & Franz, O.G. 1989, AJ 98, 1014 594
- 595 Hartkopf, W.I., Mason, B.D. & Worley, C.E. 2001, AJ 122, 3472 (ORB6) 596
- 597 Hartkopf, W.I., Tokovinin, A. & Mason, B.D. 2012, AJ 143, 42598

- ⁵⁹⁹ Hirsch, L.A., Rosenthal, L., Fulton, B.J. et al. 2021, AJ 161, 134 600
- 601 Horch, E.P., van Belle, G.T., Davidson, J.W., Jr. et al. 2015, AJ 150, 151 602
- 603 Horch, E.P., Casetti-Dinescu, D.I., Camarata, M.A. et al. 2017. AJ 153, 212 604
- 605 Horch, E.I., Tokovinin, A., Weiss, S.A. et al. 2019, AJ 157, 56 606
- 607 Horch, E.P., Broderick, K.G., Casetti-Dinescu, D.I. et al. 2021, AJ 161, 295 608
- 609 Isobe, S. 1991, Proc. Astron. Soc. Australia 9, 270
- 610 Izmailov, I.S. 2019, AstL 45, 30
- 611 Kamper, K.W., Legget, D. & McCarthy, D.W. 1989, AJ 98, 686 612
- 613 Kenyon, S., Lawrence, J.S., Ashley, M. et al. 2006, PASP 118, 924614
- 615 Mann, A.W., Dupuy, T., Kraus, A. et al. 2019, ApJ 871, 63
- 616 Mason, B.D., Wycoff, G.L., Hartkopf, W.I. et al. 2001, AJ 122, 3466 (WDS) 617
- 618 McAlister, H.A., Mason, B.D., Hartkopf, W.I. & Shara, M.M. 1993, AJ 106, 1639 619
- 620 Mendez, R.A., Clavería, R.M., Orchard, M.E. & Silva, J.F. 2017, AJ 154, 187 621
- 622 Mendez, R.A., Clavería, R.M. & Costa, E. 2021, AJ 161, 155623
- 624 Ruane, G., Ngo, H., Mawet, D. et al. 2019, AJ 157, 118
- 625 Tokovinin, A. 2012, AJ 144, 56
- 626 Tokovinin, A. 2016a, AJ 152, 138
- 627 Tokovinin, A. 2016b, Orbit: IDL Software For Visual,
- Spectroscopic, And Combined Orbits, Zenodo, 628
- doi: 10.5281/zenodo.61119 629
- 630 Tokovinin, A. 2017, AJ 154, 110
- 631 Tokovinin, A. 2018, PASP 130, 5002
- 632 Tokovinin, A. 2021a, AJ 161, 144
- 633 Tokovinin, A. 2021b, Universe 7(9), 352
- 634 Tokovinin, A. 2022, AJ 163, 127
- 635 Tokovinin, A. 2023, AJ 165, 165
- 636 Tokovinin, A. 2023, AJ 165, 180
- 637 Tokovinin, A. & Briceño, C. 2020, AJ 159, 15
- ⁶³⁸ Tokovinin, A. Cantarutti, R., Tighe, R. et al. 2010b, PASP 122, 1483 639
- 640 Tokovinin, A. & Latham, D.W. 2020, AJ 160, 251
- 641 Tokovinin, A., Mason, B.D. & Hartkopf, W.I. 2010a, AJ 139, 743 (TMH10) 642
- 643 Tokovinin, A., Mason, B.D. & Hartkopf, W.I. 2014, AJ 147, 123644
- ⁶⁴⁵ Tokovinin, A., Mason, B.D., Hartkopf, W.I. et al. 2015, AJ 150, 50 646

- ⁶⁴⁷ Tokovinin, A., Mason, B.D., Hartkopf, W.I. et al. 2016, AJ
 ⁶⁴⁸ 152, 116
- Tokovinin, A., Mason, B.D., Hartkopf, W.I. et al. 2018, AJ
 155, 235
- ⁶⁵¹ Tokovinin, A., Mason, B.D., Mendez, R.A. et al. 2019, AJ
 ⁶⁵² 158, 148
- ⁶⁵³ Tokovinin, A., Mason, B.D., Mendez, R.A. et al. 2020, AJ
 ⁶⁵⁴ 160, 7
- 655 Tokovinin, A., Mason, B.D., Mendez, R.A., Costa, E.,
- 656 Mann, A.W. & Henry, T.J. 2021, AJ 162, 41

- ⁶⁵⁷ Tokovinin, A., Mason, B.D., Mendez, R.A. & Costa, E.
 ⁶⁵⁸ 2022, AJ 164, 58
- ⁶⁵⁹ van den Bos, W.H. 1928, Ann. Leiden Obs. 14, Pt. 4
- 660 van Leeuwen, F. 2007, A&A 474, 653
- ⁶⁶¹ Vrijmoet, E.H., Tokovinin, A., Henry, T.J. et al. 2022, AJ
 ⁶⁶² 163, 178
- ⁶⁶³ White, G.L., Jauncey, D.L., Reynolds, J.E. et al. 1991,
 ⁶⁶⁴ MNRAS 248, 411
- 665 Worley, C.E. & Behall, A.L. 1973, AJ 78, 650
- ⁶⁶⁶ Ziegler, C., Tokovinin, A., Briceño, C. et al. 2020, AJ 159,
 ⁶⁶⁷ 19
- 668 Ziegler, C., Tokovinin, A., Latiolais, M., Briceño, C., Law,
- 669 N. & Mann, A.W. 2021, AJ 162, 192

WDS Desig.	Discoverer	Р	а	i	Ω	T_0	е	ω	Reference	Gr	Notes?
α, δ (2000)	Designation	(yr)	('')	(°)	(°)	(yr)		(°)			
00160 - 4816	TOK 808	6.98	0.14759	23.0	211.8	2023.388	0.3214	20.4	Tok2023a	3	
		± 0.12	± 0.00063	± 1.6	± 5.8	± 0.024	± 0.0058	± 8.7			
00261-1123	YR 4	39.12	0.2727	150.3	81.0	2025.44	0.694	66.	Tok2023a	3	
		0.75	0.0026	5.2	8.7	0.21	0.016	11.			
00324 + 0657	MCA 1Aa,Ab	27.503 0.052	0.1594 0.0022	110.7 2.3	105.80 0.74	1989.00 0.10	0.810 0.024	14.4 2.2	Msn2021c	2	
		0.002	0.0022	2.0	0.11	0.10	0.021	2.2			
01104 - 6727	GKI 3	1.14451	0.12478	126.44	89.55	2013.4206	0.1624	39.3	Kpp2020f	1	
		0.00022	0.00060	0.47	0.60	0.0057	0.0030	2.1			
01388 - 1758	LDS 838	26.351	2.0220	128.78	146.22	2024.855	0.6143	284.27	MnA2019	2	*
		0.049	0.0042	0.52	0.43	0.034	0.0034	0.81			
01559 + 0151	STF 186	167.7	1.048	74.6	220.07	1893.8	0.717	44.3 2.5	Msn2021c	2	
		3.1	0.035	2.4	0.05	3.1	0.057	5.5			
02290 - 1959	RST2280Aa,Ab	31.50	0.5290	163.5	168.3	2020.764	0.6497	18.3	Tok2023a	3	
		0.49	0.0070	1.7	5.2	0.012	0.0039	5.2			
02418 - 5300	SYU 4Ba.Bb	4.946	0.06887	138.7	139.7	2021.179	0.4597	276.0	Tok2023a	2	
	,	0.022	0.00075	1.4	2.3	0.019	0.0093	3.0		_	
02424 + 2001	BLA 1Aa,Ab	8.868	0.05467	71.50	101.07	1981.133	0.3767	96.0 2.4	Msn1997a	1	
		0.010	0.00007	0.02	0.75	0.089	0.0087	5.4			
02434 - 6643	FIN 333	35.19	0.269	92.20	33.99	1997.15	0.863	344.2	Msn2011a	3	
		0.16	0.010	0.78	0.24	0.53	0.068	7.0			
03125 ± 1857	HDS 408	9.525	0.0583	121.3	155.0	2023.72	0.844	329.	Cve2017b	3	
00120 1001	100	0.058	0.0020	9.6	4.9	0.19	0.058	10.	01020115	0	
03271 + 1845	CHR 10AB	8.408	0.0569	25.7	190.	2022.81	0.586	85.	Tok2020e	2	
		0.025	0.0018	9.0	20.	0.17	0.031	51.			
$03311 {-} 0029$	HDS 444	20.41	0.0783	37.1	49.6	2025.02	0.581	338.	Tok2023a	3	
		0.90	0.0020	3.1	7.6	0.21	0.038	11.			
03544 - 4021	FIN 3444B	14 077	0.06147	31.50	65.5	2008 058	0 5847	51.2	Tok2015c	2	
00011 1021		0.015	0.00027	0.88	1.8	0.022	0.0030	2.2	101120100	-	
04108 - 4200	HDS 530	23.80	0.224	110.6	193.0	2018.95	0.582	284.3	Tok2023a	3	
		0.74	0.013	2.5	1.6	0.18	0.014	3.5			
04119 + 2338	CHR 14Aa,Ab	43.41	0.4200	77.5	156.1	1993.31	0.924	258.7	Msn2010a	3	
		0.80	0.0070	3.1	1.6	0.39	0.028	7.7			
04219 + 0157	UDG E8E	71 79	0 3041	76.69	80.40	2013 075	0.4705	346 22	Tok2010c	9	
04312+0137	100 000	14.10	0.3941	10.00	00.40	2010.970	0.4700	040.00	10K20190	ა	

 Table 5 continued

Table 5 $($	continued)
-------------	------------

WDS Design Discoverer P a i Ω T_0 e ω Reference Gr Notest α, δ (2000) Designation (yr) ('') (*) (') (yr) (*)												
α, δ (2000) Designation (yr) (") (°) (°) (y) (y) (°) 04330-1633 GK1 78a, Bb 5.865 0.0887 98.48 171.07 0.0173.0 0.0990 7.7.4 Th/2012a 3 04430-3105 BD5 662 28.01 0.3112 118.10 174.47 2021.796 0.0663 81.51 Th/2012a 3 04590-1623 BU 3144.8 54.98 0.4783 119.0 129.20 203.84 0.927 334.7 Doc2019c 2 05174-3522 TSN<1	WDS Desig.	Discoverer	Р	a	i	Ω	T_0	е	ω	Reference	Gr	Notes?
0.28 0.0020 0.15 0.25 0.069 0.0023 0.44 04330-1633 081 79a,8b 5.685 0.0018 0.45 171.07 2017.39 0.1960 77.4 Tok2023a 3 04400-3105 RDS 662 2.8.01 0.3112 118.10 174.47 2021.796 0.0963 81.51 Tok2019c 3 04500-1623 BU 3144B 5.408 0.4783 119.0 129.20 2033.84 0.027 334.7 Doc2019c 2 05174-3522 T38 1 0.00042 0.39 0.55 0.0286 0.0007 2.15 96.52 1959.954 0.33653 273.97 Man2009 2 05125-0217 BDS 787 11.851 0.2007 72.15 96.52 1959.954 0.33653 273.97 Man2009 2 05252-0217 BDS 787 11.851 0.2007 72.15 96.52 1959.954 0.33653 273.97 Man2009 2 060	α, δ (2000)	Designation	(yr)	('')	(°)	(°)	(yr)		(°)			
1330-1633 CH 7Ba, Bb 5.685 0.0837 96.45 171.07 2017.33 0.1969 77.4 Tok2023a 3 04400-3105 BPS 602 28.01 0.3112 118.10 174.47 2021.796 0.0963 81.51 Tok2019c 3 04509-1623 BP 314.48 5.198 0.0012 1.2 0.01 2033.84 0.0977 31.7 Doc2019c 2 05174-3522 TSN 1 0.0062 0.0076 72.15 0.6.5 0.0056 0.0041 3.0 Tok2023a 2 05429-0648 A 4948 20.1843 0.20976 72.15 0.6.5 0.0056 0.0041 3.0 Tok2027b 2 05525-0217 HDS 787 11.851 0.1200 56.90 153.3 199.917 0.2285 91.8 Tok2017b 2 05525-0217 HDS 787 11.851 0.1025 56.90 153.3 199.917 0.2285 11.8 Tok2017b 2 <td></td> <td></td> <td>0.28</td> <td>0.0020</td> <td>0.15</td> <td>0.25</td> <td>0.069</td> <td>0.0023</td> <td>0.46</td> <td></td> <td></td> <td></td>			0.28	0.0020	0.15	0.25	0.069	0.0023	0.46			
October 1000 Chin Tan, b Ox039 Ox033 Ox039 Ox032 Ox033 Ox039 Ox039 Ox039 Ox039 Ox039 Ox039 Ox039 Ox033 Ox039 Ox033 Ox039 Ox039 Ox039 Ox039 Ox039 Ox039 Ox033 Ox039 Ox039 <td>0/330_1633</td> <td>CRI 7Ba Bb</td> <td>5 685</td> <td>0.0887</td> <td>98.48</td> <td>171.07</td> <td>2017 39</td> <td>0 1969</td> <td>77 4</td> <td>Tok2023a</td> <td>3</td> <td></td>	0/330_1633	CRI 7Ba Bb	5 685	0.0887	98.48	171.07	2017 39	0 1969	77 4	Tok2023a	3	
Hordson-3105 EDS 602 2.8.01 0.3112 118.10 174.47 2021.796 0.6063 S1.51 Tok2019e 3 D4500-1623 EU 314AB 54.98 0.1783 19.0 0.40 0.40 0.12 0.017 334.7 Doc2019e 2 D5174-3522 TSH 1 0.71094 0.05853 107.94 164.26 0.022.3670 0.242 140.7 Tok2023a 2 D5429-0648 A 494AB 0.0062 0.00072 7.15 96.52 1959.954 0.0393 27.37 Mar2009 2 D5429-0648 A 494AB 0.0062 0.0072 7.15 96.52 1959.954 0.0393 2.5 Tok2017b 2 D6325-0217 HD5 787 11.851 0.120 56.66 13.1 0.0067 0.034 2.5 10.1 0.0285 91.5 Tok2010b 2 D6335+1941 MC4 24 13.021 0.0168 13.7 10.20 0.311	1000	oni i Da, Do	0.039	0.0018	0.45	0.90	0.17	0.0057	9.2	10820254	0	
0.20 0.0019 0.40 0.019 0.0015 0.92 $04500-1623$ $B0$ $314AB$ 54.98 0.0042 4.2 0.61 0.012 0.017 334.7 $Doc2019$ 2 $05174-3522$ TSH 1 0.00038 0.0042 0.39 0.55 2022.3670 0.2242 140.7 $Tok2023a$ 2 $05429-0648$ A $494AB$ 20.1843 0.20976 72.15 96.52 1959.954 0.39553 273.97 $Man2009$ 2 $05525-0217$ $H05$ 7677 11.851 0.0015 66.90 153.3 1999.917 0.2285 91.85 $Tok2017b$ 2 $06035+1941$ HCA 24 13.021 0.0512 111.4 227.4 2006.64 0.0034 2.5 $Tok2020c$ 2 $06159+0110$ $RST5225$ 29.551 0.16583 13.7 185.6 1965.128 0.3773 $197.$ $Man2009$ 2 $06159+0110$ $RST5225$ 29.551 0.16583 13.7 185.6 1965.128 0.3773 $197.$ $Man2009$ 2 $06237-3319$ TOK $823a.hb$ 5.013 0.0426 22.9 119.4 2022.060 0.6061 327.3 $Tok20226$ 3 $0611+0551$ HE 96.5 0.4243 62.85 110.30 193.1 0.4225 252.0 $Man2009$ 2 $06237-3319$ TOK $823a.hb$ 5.013 0.0065 1.3 0.0661 <t< td=""><td>04400 - 3105</td><td>HDS 602</td><td>28.01</td><td>0.3112</td><td>118.10</td><td>174.47</td><td>2021.796</td><td>0.6963</td><td>81.51</td><td>Tok2019c</td><td>3</td><td></td></t<>	04400 - 3105	HDS 602	28.01	0.3112	118.10	174.47	2021.796	0.6963	81.51	Tok2019c	3	
D4590-1623 BU 314AB 54.98 0.4783 119.0 129.20 2033.84 0.927 334.7 Doc2019 2 D5174-3522 TSN 1 0.71094 0.00028 0.0002 0.39 0.655 0.0056 0.0011 3.0 Tok2023a 2 D5429-0648 A 494AB 20.1433 0.20976 72.15 96.52 1950.954 0.39553 273.97 Msn2009 2 D5525-0217 HBS 787 11.851 0.2007 0.011 0.0667 0.2285 91.8 Tok2017b 2 D6035+1941 RCA 24 13.021 0.0512 111.4 27.4 2006.64 0.806 26.6 Tok2020e 2 D6214+0216 A 2667 0.637 0.0018 0.47 1.03 193.1 0.4225 252.0 Msn2009 2 D6214+0216 A 2667 0.63 0.4263 14.3 1.03 0.931. 0.4225 261.0 Msn2009 2			0.20	0.0019	0.40	0.40	0.019	0.0015	0.92			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	04590 - 1623	BU 314AB	54.98	0.4783	119.0	129.20	2033.84	0.927	334.7	Doc2019e	2	
D5174-3522 TSN 1 0.71094 0.00833 107.94 164.26 2022.3670 0.2242 140.7 Tok2023a 2 D5429-0648 A 494AB 20.1843 0.20072 72.15 96.52 1959.954 0.30553 273.97 Msn2009 2 D5525-0217 HD8 787 11.851 0.1200 56.90 153.3 1999.917 0.2285 91.8 Tok2017b 2 D6035+1941 MCA 24 13.021 0.0512 111.4 227.4 2006.64 0.806 2.96.6 Tok2017b 2 D6035+1941 MCA 24 13.021 0.0512 111.4 227.4 2006.64 0.806 2.96.6 Tok2020e 2 D6159+0110 RST5225 29.551 0.16583 13.7 185.6 1995.128 0.3773 197. Msn2009 2 D6214+0216 A 2667 96.5 0.4243 62.85 110.30 1933.1 0.4225 252.0 Msn2009 2 D6214+0216 A 2667 96.5 0.4243 62.85 </td <td></td> <td></td> <td>0.10</td> <td>0.0042</td> <td>4.2</td> <td>0.61</td> <td>0.12</td> <td>0.017</td> <td>1.3</td> <td></td> <td></td> <td></td>			0.10	0.0042	4.2	0.61	0.12	0.017	1.3			
D5429-0648 A 494AB 20.1843 0.20076 72.15 96.52 1959.954 0.39553 273.97 Msn2009 2 D5525-0217 HDS 787 11.851 0.1200 56.90 153.3 1999.917 0.2285 91.8 Tok2017b 2 D6035+1941 MCA 24 13.021 0.0512 111.4 227.4 2006.64 0.806 296.6 Tok2020e 2 D6035+1941 MCA 24 13.021 0.0512 111.4 227.4 2006.64 0.806 296.6 Tok2020e 2 D6159+0110 RST6225 29.551 0.16583 13.7 185.6 1995.128 0.3773 197. Msn2009 2 D6214+0216 A 2667 96.5 0.4243 62.85 110.30 1933.1 0.4225 252.0 Msn2009 2 D6237-3319 TOK 823Aa, Ab 5.013 0.04626 129.9 199.4 2022.060 0.6601 327.3 Tok2019c 3 D6510+0551 HDS 950 2.91.11 0.1205 98.02)5174-3522	TSN 1	0.71094	0.05853	107.94	164.26 0.55	2022.3670 0.0056	0.2242	140.7 3.0	Tok2023a	2	
D5429-0648 A 494AB 20.1843 0.20076 72.15 96.52 1959.954 0.39553 273.97 Msn2009 2 D5525-0217 HDS 787 11.851 0.1200 56.90 153.3 1999.917 0.2285 91.8 Tok2017b 2 D6035+1941 MCA 24 13.021 0.0512 111.4 227.4 2006.64 0.806 296.6 Tok2020e 2 D6159+0110 R57525 29.551 0.16583 13.7 185.6 1995.128 0.3773 197. Msn2009 2 D6159+0110 R575225 29.551 0.16583 13.7 185.6 1995.128 0.3773 197. Msn2009 2 D6214+0216 A 2667 96.5 0.4243 62.85 110.30 1933.1 0.4225 252.0 Msn2009 2 D6237-3319 TOK 823As, Ab 5.013 0.04626 129.9 199.4 2022.060 0.6601 327.3 Tok2012g 3 D6510+0551 HDS 950 29.11 0.1205 98.02 162.3			0.00036	0.00042	0.55	0.00	0.0000	0.0041	5.0			
D5525-0217 HDS 787 11.851 0.1200 56.90 153.3 1999.917 0.2285 91.8 Tok2017b 2 06035+1941 MCA 24 13.021 0.0512 111.4 227.4 2006.64 0.806 296.6 Tok2020e 2 06159+0110 RST5225 29.551 0.16583 13.7 185.6 1995.128 0.3773 197. Msn2009 2 06214+0216 A 2667 96.5 0.4243 62.85 110.30 1933.1 0.4225 25.2.0 Msn2009 2 06237-3319 TOK 823Aa, Ab 5.013 0.04626 129.9 199.4 2022.060 0.6601 327.3 Tok2019c 3 06510+0551 HDS 950 29.11 0.1205 98.62 162.3 2016.79 0.3977 270.7 Tok2019c 3 07043-0303 A 519AB 43.84 0.2765 98.85 96.28 2007.446 0.559 0.49 Tok2019c 2 07548-0613 TOK 830 7.46 0.0322 0.45 0.57 0.065 0.606 <td>5429 - 0648</td> <td>A 494AB</td> <td>20.1843 0.0062</td> <td>0.20976 0.00072</td> <td>72.15 0.11</td> <td>$96.52 \\ 0.18$</td> <td>$1959.954 \\ 0.028$</td> <td>0.39553 0.00097</td> <td>273.97 0.45</td> <td>Msn2009</td> <td>2</td> <td></td>	5429 - 0648	A 494AB	20.1843 0.0062	0.20976 0.00072	72.15 0.11	$96.52 \\ 0.18$	$1959.954 \\ 0.028$	0.39553 0.00097	273.97 0.45	Msn2009	2	
D322-0211 HDS 767 11.831 0.1200 30.30 133.3 199.917 0.2283 91.8 1020170 2 0.023 0.0015 0.66 1.1 0.067 0.0034 2.5 06035+1941 MCA 24 13.021 0.0512 111.4 227.4 2006.64 0.806 296.6 Tok2020e 2 06159+0110 R575225 29.551 0.16583 13.7 185.6 1995.128 0.3773 197. Msn2009 2 06214+0216 A 2667 96.5 0.4243 62.85 110.30 1933.1 0.4225 252.0 Msn2009 2 06237-3319 TOK 823Aa, Ab 5.013 0.04626 129.9 199.4 2022.060 0.6601 327.3 Tok2022g 3 06510+0551 HDS 950 29.11 0.1205 98.02 162.3 2016.79 0.3977 270.7 Tok2019c 3 07043-0303 A 519AB 43.84 0.2765 98.85 96.28 2007.446 0.559 0.49 Tok2015c 2 0	DEEDE 0017	UDC 707	11 051	0 1200	56.00	159.9	1000.017	0.9995	01.9	Tal-2017h	2	
M6035+1941 MCA 24 13.021 0.0512 111.4 227.4 2006.64 0.806 296.6 Tok2020e 2 06159+0110 RST5225 29.551 0.16583 13.7 185.6 1995.128 0.3373 197. Msn2009 2 06214+0216 A 2667 96.5 0.4243 62.85 110.30 1933.1 0.4225 252.0 Msn2009 2 06237-3319 TOK 823Aa, Ab 5.013 0.04626 129.9 199.4 2022.060 0.6601 327.3 Tok2020e 3 06510+0551 HDS 950 29.11 0.1205 98.02 162.3 2016.79 0.3977 270.7 Tok2019e 3 07043-0303 A 519AB 43.84 0.2765 98.85 96.28 2007.446 0.559 0.49 Tok2019e 3 07508+0317 A 2880 109.6 0.1815 47.86 93.32 1991.903 0.6046 291.23 Hrt2000a 2 07548-6613 TOK 830 7.46 0.05329 147.9 114	05525-0217	HDS 787	0.023	0.1200 0.0015	0.66	153.3	0.067	0.2285 0.0034	$\frac{91.8}{2.5}$	10K2U17D	2	
0.029 0.016 6.3 2.5 0.11 0.045 6.9 06159+0110 RST5225 29.551 0.16583 13.7 185.6 1995.128 0.0035 10. Msn2009 2 06214+0216 A 2667 96.5 0.4243 62.85 110.30 1933.1 0.4225 252.0 Msn2009 2 06237-3319 T0K 823Aa,Ab 5.013 0.04626 129.9 199.4 2022.060 0.6601 327.3 Tok2022g 3 06510+0551 HDS 960 29.11 0.1205 98.02 162.3 2016.79 0.3977 70.42019c 3 07043-0303 A 519AB 43.84 0.2765 98.85 96.28 2007.446 0.559 0.49 Tok2019c 2 07043-0303 A 519AB 43.84 0.2765 98.85 96.28 2007.446 0.559 0.49 Tok2015c 2 07508+0317 A 2880 109.6 0.1815 47.86 93.32 1991.903 0.6046 291.23 Hrt2000a 2 <td>06035+1941</td> <td>MCA 24</td> <td>13.021</td> <td>0.0512</td> <td>111.4</td> <td>227.4</td> <td>2006.64</td> <td>0.806</td> <td>296.6</td> <td>Tok2020e</td> <td>2</td> <td></td>	06035+1941	MCA 24	13.021	0.0512	111.4	227.4	2006.64	0.806	296.6	Tok2020e	2	
06159+0110 RST5225 29.551 0.16583 13.7 185.6 1995.128 0.3773 197. Msn2009 2 06214+0216 A 2667 96.5 0.4243 62.85 110.30 1933.1 0.4225 252.0 Msn2009 2 06237-3319 TOK 823Aa,Ab 5.013 0.04626 129.9 199.4 2022.060 0.6601 327.3 Tok2022g 3 06510+0551 HDS 950 29.11 0.1205 98.02 162.3 2016.79 0.3977 270.7 Tok2019c 3 07043-0303 A 519AB 43.84 0.2765 98.82 96.28 2007.446 0.559 0.49 Tok2015c 2 17508+0317 A 2880 109.6 0.1815 47.86 93.32 1991.903 0.6046 291.23 Hrt2000a 2 17508+0317 A 2880 109.6 0.01815 47.86 93.32 1991.903 0.6046 291.23 Hrt2000a 2 17508+0317 A 2880 109.6 0.00927 147.9 114.8 2021.638 0.4088 98.6			0.029	0.0016	6.3	2.5	0.11	0.045	6.9			
0.037 0.00078 1.9 9.9 0.060 0.0035 10. 06214+0216 A 2667 96.5 0.4243 62.85 110.30 1933.1 0.4225 252.0 Msn2009 2 06237-3319 TOK 823Aa, Ab 5.013 0.04226 129.9 199.4 2022.060 0.6601 327.3 Tok2022g 3 06510+0551 HDS 950 29.11 0.1205 98.02 162.3 2016.79 0.3977 270.7 Tok2019c 3 07043-0303 A 519AB 43.84 0.2765 98.85 96.28 2007.446 0.559 0.49 Tok2019c 2 07508+0317 A 2880 109.6 0.1815 47.86 93.32 1991.903 0.6046 291.23 Hrt2000a 2 07508+0317 A 2880 109.6 0.1815 47.86 93.32 1991.903 0.6046 291.23 Hrt2000a 2 07548-6613 TOK 830 7.46 0.0529 147.9 114.8 2021.638 0.4088 98.6 Tok2018c 3 082820-3507	06159+0110	RST5225	29.551	0.16583	13.7	185.6	1995.128	0.3773	197.	Msn2009	2	
D6214+0216 A 2667 96.5 0.4243 62.85 110.30 193.1 0.4225 252.0 Msn2009 2 D6237-3319 TOK 823Aa, Ab 5.013 0.04626 129.9 199.4 2022.060 0.6601 327.3 Tok2022g 3 D6510+0551 HDS 950 29.11 0.1205 98.02 162.3 2016.79 0.3977 270.7 Tok2019c 3 D7043-0303 A 519AB 43.84 0.2765 98.85 96.28 2007.446 0.559 0.49 Tok2019c 2 D7043-0303 A 519AB 43.84 0.2765 98.85 96.28 2007.446 0.559 0.49 Tok2015c 2 D7508+0317 A 2880 109.6 0.1815 47.86 93.32 1991.903 0.6046 291.23 Hrt2000a 2 D7548-6613 TOK 830 7.46 0.05329 147.9 114.8 2021.638 0.4088 98.6 Tok2012g 3 D8280-3507 FIN 314Aa, Ab 35.41 0.07833 38.			0.037	0.00078	1.9	9.9	0.060	0.0035	10.			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	06214 + 0216	A 2667	96.5	0.4243	62.85	110.30	1933.1	0.4225	252.0	Msn2009	2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1.7	0.0018	0.47	0.20	1.8	0.0047	2.1			
D6510+0551 HDS 950 29.11 0.1205 98.02 162.3 2016.79 0.3977 270.7 Tok2019c 3 D7043-0303 A 519AB 43.84 0.2765 98.85 96.28 2007.446 0.559 0.49 Tok2015c 2 D7043-0303 A 519AB 43.84 0.2765 98.85 96.28 2007.446 0.559 0.49 Tok2015c 2 D7508+0317 A 2880 109.6 0.1815 47.86 93.32 1991.903 0.6046 291.23 Hrt2000a 2 D7548-6613 TOK 830 7.46 0.05329 147.9 114.8 2021.638 0.4088 98.6 Tok2022g 3 D8280-3507 FIN 314Aa,Ab 35.41 0.07833 38.8 289. 2005.25 0.9279 297. Tok2018e 3 D8539+0149 A 2554 44.43 0.2102 161.4 311.8 2021.750 0.4859 0.8 Tok2015c 2	06237-3319	TOK 823Aa,Ab	5.013 0.031	0.04626 0.00028	129.9 1.3	$199.4 \\ 1.0$	2022.060 0.013	$0.6601 \\ 0.0081$	327.3 1.8	Tok2022g	3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
D7043-0303 A 519AB 43.84 0.2765 98.85 96.28 2007.446 0.559 0.49 Tok2015c 2 D7508+0317 A 2880 109.6 0.1815 47.86 93.32 1991.903 0.6046 291.23 Hrt2000a 2 D7508+0317 A 2880 109.6 0.1815 47.86 93.32 1991.903 0.6046 291.23 Hrt2000a 2 D7548-6613 TOK 830 7.46 0.05329 147.9 114.8 2021.638 0.4088 98.6 Tok2012g 3 D8280-3507 FIN 314Aa, Ab 35.41 0.07833 38.8 289. 2005.25 0.9279 297. Tok2018e 3 D8539+0149 A 2554 44.43 0.2102 161.4 311.8 2021.750 0.4859 0.8 Tok2015c 2	06510+0551	HDS 950	29.11 0.23	$0.1205 \\ 0.0047$	$ 98.02 \\ 0.68 $	$162.3 \\ 1.3$	$\begin{array}{c} 2016.79\\ 0.36\end{array}$	$0.3977 \\ 0.0050$	$270.7 \\ 5.4$	Tok2019c	3	
0.34 0.0025 0.44 0.12 0.093 0.011 0.75 07508+0317 A 2880 109.6 0.1815 47.86 93.32 1991.903 0.6046 291.23 Hrt2000a 2 07548-6613 TOK 830 7.46 0.05329 147.9 114.8 2021.638 0.4088 98.6 Tok2022g 3 07548-6613 TOK 830 7.46 0.05329 147.9 114.8 2021.638 0.4088 98.6 Tok2022g 3 08280-3507 FIN 314Aa, Ab 35.41 0.07833 38.8 289. 2005.25 0.9279 297. Tok2018e 3 08539+0149 A 2554 44.43 0.2102 161.4 311.8 2021.750 0.4859 0.8 Tok2015c 2	07043 - 0303	A 519AB	43.84	0.2765	98.85	96.28	2007.446	0.559	0.49	Tok2015c	2	
D7508+0317 A 2880 109.6 0.1815 47.86 93.32 1991.903 0.6046 291.23 Hrt200a 2 D7548-6613 TOK 830 7.46 0.05329 147.9 114.8 2021.638 0.4088 98.6 Tok2022g 3 D7548-6613 TOK 830 7.46 0.05329 147.9 114.8 2021.638 0.4088 98.6 Tok2022g 3 D8280-3507 FIN 314Aa, Ab 35.41 0.07833 38.8 289. 2005.25 0.9279 297. Tok2018e 3 D8280+0149 A 2554 44.43 0.2102 161.4 311.8 2021.750 0.4859 0.8 Tok2015c 2			0.34	0.0025	0.44	0.12	0.093	0.011	0.75		-	
2.1 0.0022 0.45 0.57 0.065 0.0055 0.66 07548-6613 TOK 830 7.46 0.05329 147.9 114.8 2021.638 0.4088 98.6 Tok2022g 3 08280-3507 FIN 314Aa, Ab 35.41 0.07833 38.8 289. 2005.25 0.9279 297. Tok2018e 3 082839+0149 A 2554 44.43 0.2102 161.4 311.8 2021.750 0.4859 0.8 Tok2015c 2	07508 ± 0317	A 2880	109.6	0.1815	47.86	93.32	1991.903	0.6046	291.23	Hrt2000a	2	
O7548-6613 TOK 830 7.46 0.05329 147.9 114.8 2021.638 0.4088 98.6 Tok2022g 3 08280-3507 FIN 314Aa, Ab 35.41 0.07833 38.8 289. 2005.25 0.9279 297. Tok2018e 3 08539+0149 A 2554 44.43 0.2102 161.4 311.8 2021.750 0.4859 0.8 Tok2015c 2			2.1	0.0022	0.45	0.57	0.065	0.0055	0.66			
0.15 0.00097 1.5 2.9 0.016 0.0099 3.1 08280-3507 FIN 314Aa, Ab 35.41 0.07833 38.8 289. 2005.25 0.9279 297. Tok2018e 3 0.19 0.00046 4.8 12. 0.39 0.0090 16. 08539+0149 A 2554 44.43 0.2102 161.4 311.8 2021.750 0.4859 0.8 Tok2015c 2	07548 - 6613	TOK 830	7.46	0.05329	147.9	114.8	2021.638	0.4088	98.6	Tok2022g	3	
08280-3507 FIN 314Aa, Ab 35.41 0.07833 38.8 289. 2005.25 0.9279 297. Tok2018e 3 0.19 0.00046 4.8 12. 0.39 0.0090 16. 08539+0149 A 2554 44.43 0.2102 161.4 311.8 2021.750 0.4859 0.8 Tok2015c 2			0.15	0.00097	1.5	2.9	0.016	0.0099	3.1			
08539+0149 A 2554 44.43 0.2102 161.4 311.8 2021.750 0.4859 0.8 Tok2015c 2	08280-3507	FIN 314Aa,Ab	$35.41 \\ 0.19$	0.07833 0.00046	$38.8 \\ 4.8$	289. 12.	2005.25 0.39	0.9279 0.0090	297. 16.	Tok2018e	3	
J8539+0149 A 2554 44.43 0.2102 161.4 311.8 2021.750 0.4859 0.8 Tok2015c 2				0.0100	101.4	011.0	2021 550	0.4070		T 10017	c	
0.19 0.0011 2.1 5.8 0.064 0.0053 6.3	08539+0149	a 2554	$ \begin{array}{r} 44.43 \\ 0.19 \end{array} $	0.2102 0.0011	161.4 2.1	$\frac{311.8}{5.8}$	2021.750 0.064	0.4859 0.0053	0.8 6.3	Tok2015c	2	
8589+0829 DEL 2 5.5340 0.3925 123.1 279.89 2006.434 0.7723 19.9 Tok2015c 2	$)8589 \pm 0829$	DEL 2	5.5340	0.3925	123.1	279.89	2006.434	0.7723	19.9	Tok2015c	2	

Table 5continued

 Table 5 (continued)

WDS Desig.	Discoverer	Р	а	i	Ω	T_0	е	ω	Reference	Gr	Notes
α, δ (2000)	Designation	(yr)	('')	(°)	(°)	(yr)		(°)			
		0.0036	0.0019	1.2	0.60	0.39	0.0082	1.2			
9125 - 4032	B 1115	$\begin{array}{c} 135.49 \\ 0.60 \end{array}$	$0.33052 \\ 0.00072$	$\begin{array}{c} 141.98\\ 0.16\end{array}$	$\begin{array}{c} 104.37\\ 0.47\end{array}$	2005.782 0.025	0.4413 0.0018	$\begin{array}{c} 271.57\\ 0.36\end{array}$	Tok2014a	3	
9156 - 1036	MTG 2	5.0419 0.0023	$0.1992 \\ 0.0010$	$116.23 \\ 0.59$	$112.81 \\ 0.52$	$2014.191 \\ 0.015$	$0.4760 \\ 0.0045$	273.0 1.3	Msn2021a	2	
9243-3926	FIN 348	$41.58 \\ 0.19$	$0.12249 \\ 0.00047$	$160.5 \\ 2.1$	91.3 2.7	2004.920 0.095	$0.4589 \\ 0.0065$	$336.0 \\ 3.0$	Tok2021f	2	
09307-4028	COP 1	$34.11 \\ 0.12$	$0.8110 \\ 0.0017$	$58.45 \\ 0.15$	288.24 0.13	$2004.062 \\ 0.035$	$0.4375 \\ 0.0030$	$47.76 \\ 0.53$	Msn2021a	1	
09442 - 2746	FIN 326	$18.423 \\ 0.019$	$0.10904 \\ 0.00032$	$\begin{array}{c} 126.19\\ 0.44\end{array}$	$175.66 \\ 0.44$	2020.913 0.025	$0.4956 \\ 0.0031$	$138.04 \\ 0.86$	Tok2020e	1	
10112 - 3245	HDS1469	18.68 1.04	$0.1076 \\ 0.0069$	$121.6 \\ 2.4$	$255.2 \\ 3.8$	2018.22 0.15	$0.407 \\ 0.030$	$343.8 \\ 4.1$	Tok2016e	3	*
10214 - 2616	HDS1491	$22.14 \\ 0.28$	$0.11934 \\ 0.00038$	$150.1 \\ 1.0$	250.79 0.92	$2024.09 \\ 0.11$	$0.1954 \\ 0.0036$	$1.1 \\ 3.5$	Tok2019c	3	
10282 - 2548	FIN 308AB	$32.57 \\ 0.11$	$0.1442 \\ 0.0019$	$48.2 \\ 1.2$	157.8 1.9	2018.157 0.076	$0.7375 \\ 0.0051$	269.3 2.8	Tok2015c	2	
10430-0913	WSI 112	$27.62 \\ 0.24$	0.577 0.012	121.0 2.7	282.6 1.1	2002.11 0.11	$0.440 \\ 0.024$	284.1 3.1	Tok2022g	3	
11272 - 1539	HU 462	$48.16 \\ 0.75$	$0.4579 \\ 0.0056$	$169.0 \\ 4.9$	135. 18.	1960.9 1.1	$0.091 \\ 0.012$	1. 14.	Msn2021c	2	
11436 - 1401	YSC 210	$17.899 \\ 0.031$	0.16328 0.00034	$117.81 \\ 0.14$	207.83 0.23	2008.808 0.056	$0.1684 \\ 0.0017$	$134.9 \\ 1.2$	Tok2023a	3	
12290+0826	WSI 113	$11.6373 \\ 0.0052$	$0.3088 \\ 0.0016$	$\begin{array}{c} 108.43\\ 0.14 \end{array}$	$188.87 \\ 0.35$	2008.206 0.022	0.29482 0.00077	$89.00 \\ 0.79$	AST2016	2	
13123 - 5955	SEE 170AB	$27.51 \\ 0.42$	0.16644 0.00093	$60.22 \\ 0.96$	279.8 1.0	2022.140 0.071	0.6657 0.0084	18.3 2.8	Doc2021d	2	
13217 - 3919	HDS1875	40.72 0.77	$0.2024 \\ 0.0031$	119.83 0.66	$195.1 \\ 1.7$	2019.518 0.091	$0.5250 \\ 0.0062$	230.73 0.94	Tok2020g	3	
13574 - 6229	FIN 370	18.757 0.017	0.13544 0.00026	$144.34 \\ 0.33$	269.32 0.48	2005.849 0.023	0.2193 0.0020	$359.81 \\ 0.77$	Mdz2021	2	
14275 - 3527	TOK 724	4.103	0.0381	89.40 0.67	317.62	2018.499	0.480	31.3	Tok2022g	2	
		10.020	0.10110	0.07	287.0	1005 265	0.007	24.6	Mar 2010a	1	

Table	5	(continued)

WDS Desig.	Discoverer	Р	a	i	Ω	T ₀	е	ω	Reference	Gr	Notes?
$\alpha,\delta~(2000)$	Designation	(yr)	(″)	(°)	(°)	(yr)		(°)			
		0.0065	0.00051	0.74	2.0	0.019	0.0022	2.4			
14567 - 6247	FIN 372	38.20	0.08808	146.8	223.8	1993.76	0.2775	64.7	Msn2010c	2	
		0.20	0.00073	1.8	3.0	0.24	0.0080	4.9			
14589 + 0636	WSI 81	5.4589	0.09533	154.3	44.7	2016.653	0.4059	328.5	Tok2018e	2	
		0.0052	0.00041	1.1	2.7	0.012	0.0030	3.2			
15122 - 1948	B 2351Aa,Ab	23.512	0.12932	154.2	173.8	1971.034	0.2440	340.1	Msn2021c	1	
		0.026	0.00064	1.0	2.3	0.076	0.0029	2.8			
15537 - 0429	TOK 725	11.26	0.08241	166.6	198.	2020.729	0.5685	334.	Tok2021f	3	
		0.13	0.00064	4.5	20.	0.027	0.0081	20.			
16430 - 0857	YSC 155	10.772	0.0655	118.0	149.1	2021.631	0.738	12.8	Tok2021f	2	
		0.081	0.0011	3.4	2.1	0.087	0.029	5.2			
16555 - 0820	KUI 75AB	1.71741	0.22949	161.30	164.7	1991.6311	0.04225	128.7	Sod1999	1	*
		0.00005	0.00046	0.49	1.6	0.0063	0.00092	2.3			
17077+0722 YSC 62	YSC 62	14.327	0.30649	113.09	241.44	2006.535	0.4889	23.57	Mdz2021	2	
		0.025	0.00094	0.34	0.27	0.028	0.0034	0.79			
17119 - 0151	LPM 629	34.484	0.7688	19.94	143.9	1988.130	0.1969	218.7	Doc2018l	3	
		0.029	0.0021	0.88	4.4	0.057	0.0034	4.6			
17151 - 2750	ELP 40	19.789	0.11741	141.8	39.4	2009.20	0.2392	11.8	Tok2022g	3	
		0.086	0.00084	1.6	1.4	0.12	0.0084	3.3			
17190 - 3459	MLO 4AB	42.152	1.8260	127.662	133.574	1933.752	0.57374	68.451	Izm2019	1	*
		0.039	0.0017	0.034	0.063	0.079	0.00029	0.056			
17304 - 0104	STF2173AB	46.707	0.9693	98.76	151.623	2008.55	0.1784	324.53	Hei1994a	1	*
		0.069	0.0018	0.11	0.098	0.11	0.0022	0.94			
19167 - 4553	RST4036	7.6834	0.24586	124.499	200.172	1995.043	0.26067	240.72	Msn2019	1	
		0.0052	0.00018	0.066	0.097	0.016	0.00064	0.24			
21044 - 1951	FIN 328	27.896	0.2639	163.7	160.4	2002.41	0.4087	47.	Doc2013d	2	
		0.032	0.0016	3.4	9.8	0.13	0.0068	11.			
21214 + 1020	A 617	6.0570	0.0969	132.4	281.1	1991.855	0.827	13.2	Sod1999	1	
		0.0019	0.0011	4.4	2.1	0.023	0.020	3.3			
21274 - 0701	HDS3053	20.633	0.16476	50.27	152.93	2015.756	0.3545	149.3	Mit2021	2	
		0.051	0.00066	0.40	0.52	0.044	0.0027	1.1			
22508 - 6543	HDS3246	20.390	0.2110	94.01	92.50	2016.327	0.4202	326.1	Tok2018e	3	
		0.070	0.0011	0.15	0.20	0.054	0.0019	1.3			
22532 - 3750	HDS3250Aa,Ab	12.91	0.1261	42.5	42.5	2012.00	0.086	322.	Tok2020e	3	

Table 5continued

Table 5 (continued)

WDS Desig.	Discoverer	Р	а	i	Ω	T ₀	е	ω	Reference	\mathbf{Gr}	Notes?
α, δ (2000)	Designation	(yr)	('')	(°)	(°)	(yr)		(°)			
		0.47	0.0048	3.0	4.8	0.48	0.030	18.			
23191-1328	MCA 74Aa,Ab	$6.3211 \\ 0.0041$	0.1912 0.0023	46.8 1.2	158.7 1.8	$2012.405 \\ 0.058$	$0.1735 \\ 0.0062$	$37.1 \\ 4.3$	Doc2018f	1	

 Table 6. Provisional Orbital Elements

WDS Desig.	Discoverer	Р	а	i	Ω	T_0	е	ω	Reference	Gr	Notes?
α, δ (2000)	Designation	(yr)	('')	(°)	(°)	(yr)		(°)			
00000 4417	T 4477	110.1	0.404	60.0	140 7	2012.0	0.710	200	G 2010	0	
00003-4417	1 1477	119.1	0.424	60.8	148.7	2012.9	0.710	299.	Cve2010e	3	
00164 - 7024	HEI 198	52.4	0.1122	144.9	176.3	2012.33	0.483	238.	Tok2017b	3	
02514-2139	DUN 43	121.2	0.2068	41.5	209.	1976.0	0.399	283.	Doc20161	3	
03526 - 0829	RST4762AB	151.4	0.1668	120.1	264.8	1994.0	0.264	327.	Tok2023a	3	
05033 - 2315	BEU 7	15.34	0.326	136.3	273.	2022.2	0.093	75.	Tok2023a	4	
05320 - 0018	HEI 42Aa,Ab	317.4	0.355	107.3	142.8	1960.2	0.6750	257.	Tok2014a	4	
06337 - 2853	B 700	200.5	0.219	114.7	145.9	2008.7	0.826	133.	Tok2023a	4	
06354 - 0403	JNN 271	10.4	0.2017	88.42	171.47	2022.6	0.263	9.	Tok2023a	4	
$07175 {-} 4659$	I 7	85.9	1.05	104.	242.2	1958.4	0.976	251.	Tok2015c	3	
$07185 {-} 5721$	HDS1013Aa,Ab	56.6	0.3511	20.	171.	1997.9	0.216	124.	Hrt2012a	3	
$07417 {+} 0942$	STF1130	902.9	1.776	51.7	327.6	1981.2	0.793	346.5	Msn1999a	4	
$07522 {-} 4035$	TOK 195	7.149	0.0611	82.9	272.24	2012.13	0.385	350.	Tok2015c	3	
$08085 {-} 5237$	B 1586	201.8	0.314	74.42	86.1	2018.94	0.8476	297.0	Tok2022g	4	
08369 - 7857	KOH 79AB	56.2	0.1953	108.5	181.17	1991.6	0.1786	279.	Tok2016e	3	
08486 + 0237	A 2551	73.7	0.1484	36.8	160.2	1951.1	0.663	70.	Msn2017g	3	
10283 - 2416	TOK 537Aa,Ab	31.2	0.336	55.11	157.10	2021.825	0.694	10.7	Tok2021f	4	
10595 - 4130	RST2720	217.2	0.210	31.	241.	1975.4	0.241	53.	Tok2023a	4	
11128 - 7402	B 2009	142.0	0.276	140.	290.	1971.4	0.241	295.	Tok2023a	4	
11192 - 1950	TOK 383Aa,Ab	12.67	0.0429	134.9	177.0	2020.09	0.380	328.	Tok2020g	3	
11431 - 3601	I 1546	149.6	0.2017	121.3	272.9	2000.6	0.137	286.	Tok2022g	4	
12096 - 6727	HDS1716	56.2	0.150	53.6	57.6	2019.08	0.503	351.2	Tok2019c	3	
12117 - 5222	RIZ 2	3.626	0.0440	164.	225.	2019.237	0.619	54.	Tok2023a	3	
12228 - 0405	BWL 29AB	9.783	0.234	103.8	210.2	2023.56	0.741	252.	Tok2023a	4	
12446 - 5717	FIN 65AB	111.6	0.292	112.1	242.7	1946.1	0.413	114.	Doc2013d	3	
13344 - 5931	TOK 403	17.03	0.1423	117.53	252.65	2021.090	0.4587	90.3	Tok2020e	3	
13535 ± 1257	BEU 18	7.4020	0.18275	127.31	187.62	2023.701	0.5207	355.5	Tok2022g	2	*
14516 - 4335	FIN 319	10.874	0.0853	30.8	118.0	2020.650	0.8013	344.2	Doc2020d	2	*
15251 - 2340	RST2957	57.21	0.21689	85.59	93.019	2027.57	0.5505	338.4	Tok2016e	3	
15273 ± 0942	A 1120	51.8	0.174	67.0	156.2	1931.4	0.723	340	Msn2014b	3	
15394 - 1355	HDS2210	41.12	0.1701	109.4	172.34	2014.8	0.054	11	Tok2018e	3	
15433-0515	TOK 5944a Ab	3 800	0.0561	57.5	142.01	2011.0	0.001	137.2	Tok20100	3	
15440±0231	RDR 6Ra Ph	2 9726	0.1267	126	190.5	2012.000	0.030	331.7	Tok20211	2	+
15462 - 2804	KOH AQCA Ch	18 811	0.1207	136 55	280.7	2022.000	0.353	35 54	Tok20210	2 2	*
16016 7842	NUR 430a,0D	62.0	0.11003	10.00	200.1 156.46	2000.014	0.3114	45	Tok20210	4	*
10010 - 7843	пророст Пророст	50.9	0.301	00.4 50.0	170.40	2004.30 2021_1¢	0.801	40.	T0K20258	4	
10038 + 1406	HUS2265	00.2	0.335	09.0 107.0	1/8.1	2021.10	0.840	343. 250.0	Tok2020e	4	
10271-1205	HU 158	234.3	0.297	107.9	315.1	2000.1	0.682	358.2	10k2022g	4	
16514 - 2450	в 2397	69.6	0.1578	119.0	201.2	2020.4	0.067	250.	Tok2019c	3	

Speckle Interferometry at SOAR

Table 6	(continued)

WDS Desig.	Discoverer	Р	а	i	Ω	T_0	е	ω	Reference	Gr	Notes?
α, δ (2000)	Designation	(yr)	('')	(°)	(°)	(yr)		(°)			
16573 - 5344	SYU 11Aa,Ab	9.104	0.08702	6.6	174.	2023.934	0.5708	333.	Tok2022g	3	
17207 - 0706	A 2593AB	75.5	0.2589	128.9	167.6	1986.9	0.094	48.	Msn2014a	3	
17375 - 3747	B 915AB	128.4	0.278	65.2	314.2	2147.0	0.052	25.	Msn2017a	4	
17387 - 2155	HDS2492	21.48	0.1027	26.9	220.	2006.47	0.392	15.	Tok2023a	3	
17460 - 3435	HDS2510AB	41.5	0.134	64.3	241.4	2012.1	0.298	304.	Tok2022g	3	
$18281 {-} 2645$	HDS2615AB	37.29	0.557	95.6	173.23	1988.66	0.794	84.5	Tok2015c	3	
19474 - 0148	A 2993AB	64.1	0.1396	130.1	174.4	2026.92	0.6880	46.0	Hrt2014b	3	
$20073 {-} 5127$	RST1059	161.7	0.1697	17.8	259.	2014.5	0.275	315.	Mdz2017	3	
23209 + 1643	HEI 88	34.09	0.16872	25.2	120.2	2002.97	0.6365	268.1	Cve2011a	3	
23218 - 1217	HU 95	162.2	0.3994	155.	202.	1943.2	0.374	113.	Msn1999c	4	
23286 - 3821	HDS3342	47.7	0.1175	129.5	305.7	2014.9	0.359	337.1	Tok2019c	3	
23455 - 1610	MTG 5	21.46	0.4192	98.65	9.13	2024.373	0.4761	352.7	Tok2023a	3	