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Measurement of turbulence profile from defocused ring images
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ABSTRACT
A defocused image of a bright single star in a small telescopecontains rich information
on the optical turbulence, i.e. the seeing. The concept of a novel turbulence monitor based
on recording sequences of ring-like intrafocal images and their analysis is presented. It
can be implemented using standard inexpensive telescopes and cameras. Statistics of
intensity fluctuations in the rings and their radial motion allow measurement of the low-
resolution turbulence profile, the total seeing, and the atmospheric time constant. The
algorithm of processing the images and extracting the turbulence parameters is devel-
oped and extensively tested by numerical simulation. Prescriptions to correct for finite
exposure time and partially saturated scintillation are given. A prototype instrument with
a 0.13-m aperture was tested on the sky. The RINGSS (Ring-Image Next Generation
Scintillation Sensor) can be used as a portable turbulence monitor for site testing and as
an upgrade of existing seeing monitors.

Key words: site testing – atmospheric effects

1 INTRODUCTION

A live image of a bright star in a small slightly defocused tele-
scope displays distortions caused by the optical turbulence, “see-
ing”. Movies of such images captured by a fast camera can be
interpreted to measure turbulence strength, its distribution along
the line of sight, and the characteristic time scale. Extraction of
quantitative information on turbulence from the fast movies of
ring-like defocused images is the subject of this paper. A turbu-
lence monitor based on this idea consists of a small telescope and
a fast camera; its hardware is standard and inexpensive, while
the major challenge lies in the software needed to process the
movies.

Measurement of the vertical distribution of optical turbu-
lence in the terrestrial atmosphere (OTP – optical turbulence
profile) serves to support operation of modern astronomical ob-
servatories equipped with adaptive optics (AO) instruments and
to characterize new astronomical sites. A classical instrument
to measure the OTP using scintillation of double stars, SCI-
DAR, needs aperture sizes on the order of 1 m and therefore
it is not suitable for testing remote sites (e.g. Klueckers et al.
1998). A Multi-Aperture Scintillation Sensor (MASS) delivers
low-resolution OTPs using scintillation of bright single stars and
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a small aperture of∼0.1 m (Kornilov et al. 2003). Combination
of MASS with the Differential Image Motion Monitor (DIMM,
Sarazin & Roddier 1990) in one instrument attached to a small
telescope has become a standard tool for site testing and moni-
toring (Kornilov et al. 2007). About 35 such instruments have
been fabricated and used in the site characterization projects
(e.g. Scḧock et al. 2009) and for turbulence monitoring at ex-
isting observatories.

MASS records scintillation signals from four concentric
annular apertures using photo-multipliers. This technology be-
came obsolete when fast low-noise panoramic detectors, such as
electron-multiplication (EM) CCDs and scientific CMOS, be-
came available. Moreover, the opto-mechanics and electronics
of the MASS-DIMM instruments are custom-made and difficult
to replicate. Nowadays, MASS-DIMM should be replaced by an
instrument based on solid-state light detectors.

The need to find an alternative to MASS has been gen-
erally recognized. In a master thesis project, Kohlman (2018)
constructed a prototype where the flux in four concentric an-
nuli within a 15-cm unobstructed aperture was measured by a
CMOS camera, emulating MASS. An alternative approach is
adopted by the team at the Pontificia Catolica University in
Chile (Guesalaga et al. 2016); they also record intensity fluctua-
tions at the pupil, but interpret them differently by taking a one-
dimensional Fourier transform in the angular coordinate of nar-
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row rings carved from the pupil images. This approach circum-
vents the problem of centrally obstructed apertures of standard
small Schmidt-Cassegrain telescopes. The instrument is called
FASS (Full-Aperture Scintillation Sensor), and its development
continues (Guesalaga et al. 2020).

Recording scintillation signals at the telescope pupil with a
solid-state detector requires a large optical de-magnification fac-
tor kmagn ∼ 103 to match the small physical size of pixels and
the spatial scale of scintillation. The latter is set by the Fresnel
radius

√
λz = 1.7 cm for a propagation distance ofz = 0.5 km

and a wavelength ofλ = 0.6µm. If the detector pixels projected
on the pupil are much smaller than the Fresnel radius, the num-
ber of photons per pixel received from even bright stars in a short
1-ms exposure time would be small compared to the detector
readout noise. The EM CCDs have a readout noise of less than
one electron (el) and allow noiseless on-chip binning, thus alle-
viating the de-magnification challenge; this option was used in
FASS (Guesalaga et al. 2016). However, noiseless binning is not
possible in CMOS cameras, while their readout noise is about
1 el. Hence, a largekmagn is indeed necessary with a CMOS.
Maximum optical de-magnification is limited by the Lagrange
invariant (the product of surface and solid angle is constant).
Even with a large solid angle at the detector, the maximum an-
gle on the sky (i.e. the field of view) is on the order of an arc-
minute. Therefore, a solid-state scintillation sensor requires an
additional guiding camera to keep the star centred in the narrow
field.

Combination of MASS and DIMM in one instrument
solves the guiding problem (which is done by DIMM), at the
cost of having two parallel systems with separate detectors, ac-
quisition channels, and software. DIMM measures the total see-
ing including the ground layer, to which MASS is insensitive.
This combination is a consequence of the physics of optical
propagation. Phase distortions of optical waves produced by at-
mospheric fluctuations of the air refractive index are partially
converted into amplitude fluctuations (scintillation) only after
propagation. Therefore, any scintillation-based instrument is in-
trinsically insensitive to turbulence near the ground, and only
instruments sensitive to phase distortions (like DIMM) can mea-
sure the total seeing.

In reality, this distinction between a phase-sensitive DIMM
and an amplitude-sensitive MASS is blurred because DIMM is
also affected by amplitude fluctuations to some extent and its
measurements depend on the propagation distance (Tokovinin &
Kornilov 2007; Kornilov & Safonov 2019). On the other hand,
by measuring scintillation in a plane optically conjugated be-
low the pupil, a virtual propagation path is added, making a
scintillation-based instrument sensitive to the near-ground turbu-
lence. This is the principle of a generalized SCIDAR (Klueckers
et al. 1998; Osborn et al. 2018). Strictly speaking, virtual prop-
agation works for an aperture of infinite size because diffraction
on its edges intervenes at a spatial scale of the order of

√
λH

for a virtual propagation distanceH. This is not a problem in
a SCIDAR because in a large-aperture telescope the area near
the edges affected by diffraction is relatively small. However,
in a small telescope the diffraction affects the whole aperture
and must be taken into account explicitly if virtual propagation

is used. Moreover, a defocused pupil image is affected by the
telescope shake, aberrations, and low-altitude (local) turbulence,
whereas a pupil-based scintillation sensor is immune to all these
effects.

Extending the scintillation-based technique to measure the
full seeing is an attractive choice that allows to get rid of the
DIMM. This option is currently explored by the FASS team
(Guesalaga et al. 2020). The pupil image conjugated to some
distanceH below the ground is obtained simply by defocus-
ing the telescope. When the detector is placed at a distance∆ in
front of the focal plane, it is conjugated toH = F 2/∆, whereF
is the telescope focal distance. By using a moderate-sized tele-
scope ofD = 30 cm diameter and conjugating toH of a few
hundred metres, it is possible to select an annular zone in the
defocused image that is not strongly distorted by diffraction and
thus is suitable for Fourier analysis of intensity fluctuations in
the angular coordinate, as in the aperture-conjugated FASS.

On the other hand, when the two apertures with prisms
that produce two images in a classical DIMM are replaced by
a weak conic lens (axicon), a ring-like image is formed at the fo-
cal plane. Such extension of DIMM to the full aperture increases
its sensitivity and eliminates the intrinsic asymmetry of a two-
aperture DIMM. The radius of the ring is a measure of the defo-
cus, and its fluctuations caused by turbulence are directly linked
to the seeing. Moreover, the speed of defocus variation allows us
to measure the atmospheric time constant – an important param-
eter that affects AO systems and interferometers. A turbulence
monitor based on ring images was called FADE (FAst DEfocus)
and tested using a 35-cm telescope (Tokovinin et al. 2008).

The proposed concept is a fusion of previous ideas. It is
based on fast registration of ring-like images, as in FADE. Fluc-
tuations of intensity along the ring (in the angular coordinate)
reflect intensity variation in the annular aperture and are analo-
gous in this sense to FASS. On the other hand, the ring is focused
in the radial direction, and radial motion of its segments gives a
measure of the total seeing, as in DIMM. A descriptive acronym
RINGSS (Ring-Image Next Generation Scintillation Sensor) is
chosen for this concept to underline its descendence from MASS
and FASS.

Propagation of optical waves through turbulent atmosphere
is a complex phenomenon. Moreover, the standard description
of turbulence refers to its idealized statistical model. As a re-
sult, turbulence parameters cannot be defined or measured with
arbitrary accuracy, and all instruments measuring optical turbu-
lence are based on approximations. This point, further elabo-
rated in Tokovinin & Kornilov (2007), is important to bear in
mind. That paper, among many others, lists the definitions of
standard turbulence parameters – the seeingǫ0, the Fried radius
r0 = 0.98λ/ǫ0, the refractive-index structure constantC2

n, etc.

The operational principle of RINGSS is presented in Sec-
tion 2. Its main component – the algorithm to measure turbu-
lence parameters from ring images – is exposed in Sections 3
to 5. On-sky tests of a prototype instrument are covered in Sec-
tion 6 and the choice of instrument parameters in Section 7. Dis-
cussion of this new method in Section 8 closes the paper.
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Figure 1. Principle of the ring-image turbulence monitor. Light from a
single bright star is collected by a telescope with an annular aperture
and some conic aberration. The image is a ring with angular radius r
and angular width ofδr = λ/L set by diffraction, whereL = D(1 −

ǫ)/2 is the width of the aperture annulus. Fluctuations of intensity along
the ring are mostly produced by amplitude fluctuations at the aperture
(scintillation), while deformation of the ring is caused mostly by phase
aberrations. Statistics of these fluctuations enable measurement of the
turbulence profile and seeing.

2 OPERATIONAL PRINCIPLE OF RINGSS

The method of signal analysis developed here is applicable to
three kinds of data: (i) images of annular telescope pupil, (ii)
simple defocused images, and (iii) defocused images sharp-
ened in the radial direction. The last option appears to be the
best choice and is considered here, while the pupil-plane case
(i) is analogous to FASS. The geometry and basic parameters
are introduced in Fig. 1. An annular aperture of diameterD
with a central obscurationǫ has a width ofL = D(1 − ǫ)/2.
The angular width of a focused ring image is set by diffrac-
tion to δr ≈ λ/L (at ǫ > 0.5). The ring angular radius is
rring,rad ≈ D(1 + ǫ)/(4H), whereH = F 2/∆ is the con-
jugation distance of the detector (H = ∞ at the focal plane)
andF is the efective focal length. By selecting a larger defocus
∆, we get a smallerH and a larger ring, with less photons per
pixel.

A defocused image in a small telescope with annular aper-
ture is heavily affected by diffraction and, therefore, is a poor
representation of the pupil image. When the wavefront is conic,
rather than spherical, the ring is focused in the radial direction
and becomes sharper. Figure 2 compares these situations. The
maximum signal in the radially focused ring is∼3× larger than
in the similarly defocused image. Only when the aperture is a
narrow annulus (i.e. with a largeǫ), the distinction between conic
and spherical wavefronts within the aperture becomes negligibly
small. A practical way to obtain a nearly conic wavefront is to
combine defocus with a small spherical aberration of opposite
sign. The spherical aberration compensates the curvature of the
defocused wavefront within annular aperture and renders it al-

Ring

Defocus

Figure 2. Comparison between the focused ring produced by a conic
wavefront and an equivalent defocused image. The curves showcuts
through the images (D = 0.13 m, ǫ = 0.5, H = 0.4 km).

most conical. As shown by Tokovinin et al. (2008), an excellent
approximation is achieved when the ratio of rms spherical to
rms defocus aberrations is 1:10. Such condition can occur when
a positive lens is used as a focal reducer.

The linear size of the detector pixelp and the need to
collect enough photons per pixel favor a short effective focal
lengthF . A defocused image approximates the pupil with a de-
magnification factorkmagn ≈ H/F . Hence, for a givenH, a
smallF is needed to get a largekmagn. This can be achieved by
a focal reducer – an achromatic positive lens placed in front of
the detector. The lens also produces spherical aberration of cor-
rect sign to make a conic wavefront. On the other hand, the need
to sample the ring in the radial direction by at least two pixels
restricts the minimum focal length toF/D > (p/λ)(1 − ǫ), or
F/D > 2.4 for p = 2.9 µm, λ = 0.6 µm, andǫ = 0.5.

The RINGSS concept is generic and independent of the in-
strument parameters chosen to illustrate it. Most numerical ex-
amples in this paper refer to a telescope of 0.13 m diameter with
ǫ = 0.5 and a detector conjugated toH = 400 m, resembling
the actual prototype described below. Optimum sampling of the
rring ≈ 25′′ radius ring atλ = 0.6µm calls for the relatively
coarse pixels of1.9′′, hence a radius of∼13 pixels.

A ring image is used to compute severalsignalsam as sums
of the products of the pixel valuesIi and themasksMm,i, nor-
malized by the total fluxI0:

am = I−1
0

∑

i

Mm,iIi. (1)

This formulation is very general. It applies to a DIMM instru-
ment where the signalsa are spot centroids and the masks are
defined accordingly. A Fourier transform of the image can also
be viewed as a particular case of (1) whereM is a complex ex-
ponent and the signalsa also are complex numbers.

Use of the Fourier transform for statistical analysis of ran-
dom intensity distributions appears to be a natural choice. How-
ever, the scintillation pattern in a small telescope is truncated by
its aperture, and the spatial power spectrum of the intensity dis-
tribution at the pupil is a heavily aliased version of the intrinsic
power spectrum of the infinite scintillation pattern. Fourier anal-
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ysis of scintillation in an annular aperture avoids aliasing when
polar coordinates(r, θ) are used. This idea, first implemented
in FASS (Guesalaga et al. 2016), is exploited here. The Fourier
transform of a ring image in the angular coordinate is a set of
complex signalsam for angular frequenciesm = 0, 1, 2, . . .
that correspond to (1) with masks

Mm(r, θ) = fr(r)e
imθ. (2)

Here,fr(r) is the radial weight needed to reduce the impact
of noise in image pixels outside the ring image or pupil. The
maximum angular frequencym is set by the Nyquist limit, i.e. at
least two pixels along the ring per period. This leads tommax =
πrring, with the ring radius in pixels. A typical valuerring = 10
pixels corresponds tommax ≈ 30.

The mean square modulus of the angular signals computed
for a series of images is calledangular power spectrum(APS)
Sm, in direct analogy to the standard power spectrum:

Sm = 〈|am|2〉 =

N
∑

j=1

Wm(zj)Jj . (3)

The right-hand side of (3) relates the APS to the optical tur-
bulence profile (OTP), represented by a collection ofN dis-
crete layers at distanceszj from the instrument with turbulence
strengthJj = C2

n(zj)dz in each layer. Turbulence integralsJ
are measured in m1/3; a seeing of1′′ (at 500 nm wavelength)
corresponds toJ = 6.83 × 10−13 m1/3. The seeingǫ0 and the
Fried radiusr0 are common turbulence parameters uniquely re-
lated toJ for a given wavelength (e.g. Tokovinin & Kornilov
2007). An infinite turbulence outer scale is assumed throughout
this paper because at the small spatial scales relevant here the
outer scale effects are negiligible.

Equation (3) assumes that each turbulent layer gives its in-
dependent contribution to the APS, proportional toJj with a
coefficientWm(zj) called weighting function(WF). This as-
sumption holds in the weak scintillation regime. Modelling the
combined effect of turbulence by a linear combination of effects
produced by all layers is the cornerstone principle of all turbu-
lence monitors, without exception. In the case of a DIMM, for
example, the WFs are often assumed to be independent ofz and
the DIMM signal is related to the total turbulence integral, i.e. to
the seeing.

The APS atm = 0 is the normalized variance of the total
flux, also called scintillation index. With increasingm, the APS
isolates a band of increasing spatial frequencies from the scintil-
lation spectrum. As the characteristic scale of the scintillation is
of the order of

√
λz, a small-scale scintillation (i.e. largem) is

produced mostly at smallz, while a large-scale scintillation cor-
responds to a largez. A set of WFs plotted in Fig. 3 illustrates
their dependence onz andm: S10 is mostly sensitive to turbu-
lence within 1 km, whileS1 measures mostly the distant turbu-
lence. Owing to the differentz-dependence of the WFs, equation
(3) can be inverted, solving for a set of turbulence integralsJj

that match the measured APSSm. This is the common opera-
tional principle of MASS, FASS, and RINGSS. The differences
between them are in the input signals and in the WFs.

In addition to measuring the OTP from scintillation,

Figure 3. Weighting functions for the APS fromm = 1 to m = 10.
Instrument parameters:D = 0.13 m, ǫ = 0.5, H = 400 m, polychro-
matic light (a star of effective temperature 7500 K).

RINGSS provides an alternative estimate of the seeing from the
differential image motion, as in a DIMM. This extra benefit is
not available when the telescope is simply defocused without
radial ring sharpening. Radial deformations of the ring are es-
timated similarly to the angular coefficients, i.e. by summing
products of pixel values and masks. The ring is divided into
eight45◦ sectors and the radius in each sector is computed by
the centroid algorithm a with suitable radial mask (eq. 4 below).
The rationale for computing radii by sectors is twofold. First, it
gives four DIMM-like signals of longitudinal distances between
opposite sectors (sum of their radii) for measuring the seeing.
Second, it allows to determine the position of the ring centre
from the difference between the opposite radii. This provides a
robust way to centre the ring in each frame.

Summarizing, the operational principle of RINGSS is sim-
ilar to that of MASS and FASS. Series of ring images are
recorded and processed to extract the angular signalsam and
the sector radii. The variances of these quantities are interpreted
in terms of the turbulence profileJj by solving a system of lin-
ear equations with appropriate WFs. The two key components
of RINGSS are the algorithms for computing the signals and the
calculation of the WFs; they are covered in the following Sec-
tions. These algorithms were verified using both simulated and
real data.

3 IMAGE PROCESSING

Series of consecutive ring images (image cubes) are processed
to determine angular signals (or coefficients)am, sector radii
rk, and several additional parameters such as background, ring
radius, noise estimates, etc. The image cubes can be recorded
on a disk by the acquisition software or passed to the processing
pipeline directly without saving, as done typically in a DIMM.
Series of signals extracted from the image cubes are then used to
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Figure 4. Spatial masks applied to the 64×64 pixels ring images. The
first panels show three cosine filters, the last panel is a sum of the sector
masksFk, each multiplied byk to distinguish the sectors.

compute statistical moments (variances and covariances) needed
for the OTP measurement.

3.1 Calculation of the signals

Spatial masks have the same size as the image frames, e.g.
64×64 pixels. The masks for computing the real and imagi-
nary (cosine and sine) parts of the angular signalsam are given
by eq. 2. The radial maskfr(r) equals one for all pixels with
radii within the mask half-width∆r from the ring radiusrring

(in pixels) and zero otherwise. A smooth (e.g. Gaussian)fr(r)
was tested, but the simple sharp radial cutoff works quite well.
The default choice is∆r = 1.5δr, whereδr is the full width
at half maximum (FWHM) of the ring, i.e. its thickness. Using
a smaller mask width decreases the noise, but produces biased
results (e.g. under-estimated seeing), as demonstrated by simu-
lations, while a wider mask increases the noise without affect-
ing other parameters. Figure 4 illustrates the cosine masks with
m = 0, 5, 20.

For measuring the ring radius, we divide it intoNsect = 8
radial sectors, each sector covering45◦ in angle. For a sector
k, the maskFk = fr(r) within the sector and zero otherwise;
it measures the total signal (flux) within the sector. The mask
Rk = rFk estimates the ring radius in this sector:

rk =
∑

i

Rk,iIi/
∑

i

Fk,iIi. (4)

3.2 Centring the rings

Each frame must be centred and the background must be sub-
tracted before computing the products of pixel values and masks.
Also, the ring radius and width must be known to define the
masks. The parametersrring andδr can be fixed for a given in-
strument, but currently they are estimated ‘on the fly’ from the
average first 50 frames of the image cube, to reduce the noise.
The background is also estimated from the average image as the
median value of all its pixels outside1.5rring.

Centring of each frame is a critical part of the algorithm.
The sector radii computed by (4) give an estimate of the residual
ring offsetsdx (similarly dy) as

dx = (2.3/Nsect)
∑

k

rk cos θk, (5)

whereθk are the angles of the sector centres, and the proportion-
ality coefficient 2.3 was determined by processing artificially

Figure 5. Comparison of the average centred ring image in the proto-
type instrument (left) and the simulated undistorted image with matched
parameters (right).

shifted images. The offsets determined from the current frame
are applied to centre the following frame, so accurate tracing of
the ring motion is achieved. This algorithm was found to be very
robust.

The frames should be centred within a fraction of a pixel.
When the centring is done only within one pixel (by integer im-
age shifts), the estimated centres are biased to integer values, so
the curves of displacement vs. frame number computed for sim-
ulated image cubes with ring motion are distorted. Moreover,
integer shifts introduce a sub-pixel jitter of the otherwise static
ring and cause fluctuations of the differential sector radii and
the angular signals that exceed the photon-noise errors at high
flux. Fractional sub-pixel shifts by bilinear interpolation were
tested to fix this issue. However, interpolation introduces corre-
lation between pixels and affects the shape of the noise spec-
trum, damping it at high frequencies. Finally, sub-pixel shifts by
Fourier transform are implemented. Unlike interpolation, they
do not distort the noise statistics.

Re-centred frames are summed up (averaged) and saved for
off-line examination. Figure 5 compares the average re-centred
image from a real instrument with the ideal diffraction image.
Note the similarity of the diffraction structure, e.g. the faint in-
ner ring and a small spike at the centre. The real average ring is
wider, being affected by distortions under a2′′ seeing. Its non-
uniformity in azimuth is caused by small residual optical aber-
rations of the telescope, in particular coma and astigmatism.

To compute the radii forNsect = 8 sectors and 31am

complex signals for0 < m < mmax = 30, a total2Nsect +
2(mmax + 1) = 78 masks are needed. Calculation of all sig-
nals is implemented as a matrix-vector product. Pixel valuesIi

in a 64×64 frame (after centring and background subtraction)
are arranged in a single 4096-element vector, and all masks are
combined in a 78×4096 mask matrix. However, with a sharp ra-
dial mask, only the pixels inside the mask are used. This reduces
the dimension of the mask matrix from 4096 to∼1000 elements
per line and speeds up the calculation. For example, processing
a cube of 64×64×2000 format on a laptop takes 1.06 s with the
full matrix and only 0.44 s with the reduced matrix.

Processing of the image cube results in a matrix of the sig-
nals and returns additional parameters such as the ring radius and
width, its average centre (useful for automatic guiding), back-
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ground, flux, and the factorsν needed to estimate the noise (see
below).

3.3 Noise estimation

Without turbulence, the ring image is static (it only moves as a
whole owing to the telescope tracking errors), but the signals still
fluctuate because of the photon and readout noise. Comparison
between analytic estimates of the noise variance and the variance
computed on simulated cubes is a good test of the algorithm.
The noise variance (bias) must be subtracted from the measured
APS and from the variance of the differential sector motion for
correct estimation of the atmospheric parameters.

Let Ii be the pixel values in photo-electrons. Their variance
is Ii +R2, whereR is the readout noise in electrons, assumed to
be equal in all pixels. To estimate the APS of the noise (i.e. the
variance of the angular signals), the mask values in eq. 1 must
be divided by the normalization factorNph = 〈

∑

i
fr(r)Ii〉,

i.e. the photon flux within the radial weightfr(r), typically a
0.9 fraction of the full flux. Then, taking advantage of the uncor-
related pixel noise, we sum their contributions to the variance
and express the result as

Snoise = 〈|a|2noise〉 = ν1/Nph + ν2(R/Nph)2, (6)

where the factorsν1 andν2 characterize the contributions of the
photon and readout noise, respectively. They depend on the ra-
dial maskfr(r) and on the ring shape, but do not depend on the
flux and readout noise:

ν1 = (1/Nph)
∑

i

f2
r (ri)Ii,

ν2 =
∑

i

f2
r (ri). (7)

Here the fact that〈|a|2noise〉 is the sum of the cosine and
sine variances is used, eliminating the dependence onm: the
theoretical noise spectrum is flat. The sense of the noise factorsν
is very clear whenfr(r) takes only values of 1 or 0. Thenν1 = 1
andν2 is the number of pixels with non-zero weight,Npix. The
noise variance is then(1+RNpix/Nph)/Nph. The second term
in the brackets is the ratio of the readout noise to the average
number of photons per pixel. When this ratio is≪1 (which is
the typical situation in practice), the photon noise dominates,
otherwise the readout noise is the main contributor to the noise
variance of the signals.

The noise variance of the differential sector motion (in pix-
els) is computed in a similar way by replacing in Eq. 7 quanti-
ties f2

r (ri) with f2
r (ri)(ri − rring)

2. The factorν1r expresses
the variance due to the photon noise and is approximately equal
to the square of the ring radial rms width (FWHM divided by
2.35) in pixels. The factorν2r is larger thanν2 because the cal-
culation of radius weights pixels in proportion to(r − rring)

2

and effectively increases the relative importance of the read-
out noise. For example, in a simulated data with a sharp radial
mask of the width∆r = 1.5δr, the noise factorsν1, ν2, ν1r, ν2r

are1.0, 631, 1.02, 1952, respectively. The four noise factors are

computed during the image cube processing using the average
re-centred image to estimateIi.

Static ring images distorted only by the noise (with optional
motion of the ring as a whole over the detector) were simulated
and the resulting data cubes were processed by the algorithm
described above. Variances of the angular signals and of the dif-
ferential sector motion were found to match the noise estimates
very well, within 10 per cent or better. Furthermore, noise es-
timates were checked using physical simulation of a static ring
image projected on to the camera. The number of photons varied
by varying both the illumination and the exposure time. Again, a
good agreement between the estimates and the actual measure-
ments was found.

It is instructive to compare the noise variance with the ex-
pected scintillation variance. Them = 1 WFs in Fig. 3 increases
by two orders of magnitude with increasing propagation dis-
tance, but them = 10 WF peaks at∼ 5 × 108 m−1/3 at small
distances and decreases further out. A weak turbulent layer at
the ground withJ = 2.1 × 10−13 m1/3 (0.5′′ seeing) would
produce an APS ofS10 ∼ 10−4. It equals the photon noise for
Nph = 104 which, in our prototype instrument, is a flux from
a V ∼ 2 mag star in a 1-ms exposure. Therefore, subtraction
of the noise bias is critical for correct measurement of the weak
turbulence near the ground by scintillation, whereas the signal
at smallm, dominated by the high-altitude turbulence, always
largely exceeds the noise. Anyway, the photon noise in RINGSS
is much smaller than in MASS, where its calculation and sub-
traction is even more critical.

4 WEIGHT CALCULATION

Calculation of the theoretical WFs needed to interpret the signal
of RINGSS is a vital part of the proposed technique. A WF of
any turbulence monitor is computed by the standard method as
the integral of the product of the turbulence phase power spec-
trumΦϕ(f), the propagation filterP (f), and the instrument fre-
quency filterQ(f ):

W =

∫

d2
f Φϕ(f)P (f)Q(f ), (8)

wheref is the two-dimensional spatial frequency andf is its
modulus. The phase power spectrum is radially symmetric and,
for Kolmogorov turbulence, is given by the standard formula
(Tatarskii 1961; Roddier 1981)

Φϕ(f) = 0.00969(2π/λ)2f−11/3J, (9)

where the turbulence integralJ = C2
ndz should be set to one in

order to compute the WF. The propagation filter for scintillation
in monochromatic light,

P (f) = sin2(πλzf2), (10)

is also radially symmetric. Its generalization to polychromatic
light is given by Tokovinin (2003). In the case of MASS, the
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Figure 6. Frequency filtersQm(f) for the annular aperture withǫ =
0.5. The inserts show the cosine filters form = 4 andm = 8. All filters
are normalized to the same integral. The frequency axis is in arbitrary
units.

instrument filter is the square modulus of the Fourier transform
of the aperture function, normalized to the unit area.1

When the scintillation is recorded at the pupil, as in FASS,
the functionfr(r) in eq. 1 corresponds to the aperture transmis-
sion, and the instrument response filter for the APSSm has an
analytic expression

Qm(f) =

(

2π

∫

∞

0

fr(r)Jm(2πfr)rdr

)2

, (11)

which is the square of them-th order Hankel transform of the
aperture functionfr(r). Figure 6 shows how aperture-plane fil-
ters with increasingm isolate different spatial frequency bands.
These signals are analogous to the differential scintillation in
MASS that also senses a certain frequency band of the scintilla-
tion power spectrum, cutting out both low and high spatial fre-
quencies.

The ring images are sensitive to both amplitude and phase
fluctuations at the pupil. At large propagation distances, the am-
plitude fluctuations dominate, and the WFs of RINGSS and
aperture-conjugated FASS are very similar, as shown below.
However, at small distances the phase fluctuations cannot be ne-
glected. Phase and amplitude fluctuations at the pupil are mu-
tually correlated and are subject to different instrumental fre-
quency filters. It is thus not possible to treat phase and ampli-
tude separately; instead, their joint effect on the signal variance
should be evaluated. The propagation and instrument filters are
interwined, so the combined response filterPQ in eq. 8 is com-
puted.

One obvious way to tackle the problem is by numerical
simulation. However, the WFs estimated in this manner contain

1 In a DIMM, the instrument filter is not axially symmetric, while the
propagation is often neglected (Kornilov & Safonov 2019).

Turbulence spectrum

Exposure
blur

Response
filter PQ

  fπ
2 2

Propagate z

λSpectrum F  (  )λ

U(m,z)W(m,z)

Vτ

ε

Image Mask m

φ

Instrument: D,  H, pixel

F (x),    F  (x)    χ

f −11/3

λ0

Figure 7. Flow chart of the analytic WF calculation. Blue boxes are
2D arrays in the spatial frequency domain approximating the turbulence
spectrum and various frequency filters. The WFs are estimated as inte-
grals (sums) over the frequency. The functionsU(m, z) are defined in
Section 5.1.

statistical noise and their calculation is not fast, especially for
polychromatic light where each wavelength must be treated sep-
arately; the polychomatic signalam is the average of monochro-
matic signals weighted by the spectral responseFλ.

The analytical formula describing a small-signal response
of a general turbulence sensor comes to the rescue. This formula,
given in the Appendix of Tokovinin & Kornilov (2007), has been
applied in the past to the analysis of DIMM and FADE. Small
fluctuations of the signala derived from the product of the image
and maskM(x), as in eq. 1, equal

∆a =

∫

d2
x Fϕ(x) ϕ(x) +

∫

d2
x Fχ(x) χ(x), (12)

wherex is the spatial coordinate at the pupil plane,ϕ(x) and
χ(x) are small phase and amplitude wavefront distortions at the
pupil, and the functionsFϕ(x) andFχ(x) represent the instru-
ment response to phase and amplitude, respectively. They equal
the imaginary and real parts of the auxiliary quantityA(x) given
by

A(x) = 2 (λ2I0)
−1 E(x)

∫

d2
x

′ E∗(x + x
′) M̃(x′/λ)

= 2(λ2I0)
−1 E [E∗ ⋆ M̃ ], (13)

whereE(x) is the unperturbed complex amplitude of the light
waves at the pupil and̃M(x′/λ) is the Fourier transform of the
mask. A defocused image corresponds to the quadratic wave-
front, E(x) = exp(ic|x|2), while for the ring image the wave-
front is conic,E(x) = exp(ic′|x|). Arbitrary aberrations can
be accounted for by including them inE.

The formula (13) looks complicated, but its implementa-
tion is straightforward. The functions are represented by arrays
of 5122 points (or 10242 points in the case of larger apertures).
Integrals are replaced by sums, and the convolution between
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E∗ andM̃ is computed via product of their Fourier transforms.
The flow chart of the WF calculation is shown in Fig. 7. For
a unit mask,M̃(x′/λ) is the Dirak’sδ-function timesλ2, and
the response degenerates intoEE∗/I0, i.e. the normalized pupil
transmission function. The corresponding signala is the normal-
ized fluctuation of the total flux, and its variance isS0. The func-
tionsFϕ(x) andFχ(x) are computed separately for the cosine
and sine masks at a givenm, and the corresponding frequency
filters are summed in the calculation ofPQ.

A turbulent layer at the pupil contains only phase distor-
tions (no scintillation). In this case, the variance of the signal
〈∆a2〉 is estimated as the integral of the product of the phase
power spectrumΦϕ and the spectral filterPQ = |F̃ϕ|2. How-
ever, after propagation, the amplitude and phase fluctuations are
modified, and they are, generally speaking, correlated. We can-
not apply the phase and amplitude filters separately, but have
to ‘propagate’ them back to the turbulent layer using eq. (A10)
from Tokovinin & Kornilov (2007):

PQ(f ) = |F̃ϕ(f ) cos(πλz|f |2)− F̃χ(f ) sin(πλz|f |2)|2.(14)

This quantity is the frequency filter applied to the phase power
spectrum. The integral of their product is the WF for the
monochromatic light.

Figure 8 shows how well the monochromatic WFs com-
puted analytically match the results of numerical simulation
(crosses) in the case of weak turbulence (small-amplitude scin-
tillation). The same code works for estimation of the WF for a
defocused image (suffice to modify the unperturbed amplitude
E, replacing the conic wavefront by the spherical one) and for
the APS of the pupil-plane scintillation. For a turbulent layer
at 4 km, all three WFs are very similar because intensity fluc-
tuations in the ring or in the defocused image resemble the in-
tensity distribution at the aperture. However, the response of an
image-plane sensor like RINGSS to a turbulence at 250 m is
much stronger because scintillation at the pupil plane after such
a short propagation is very small, while phase distortions pro-
duce a measurable effect on the ring in the image plane.

The non-monotonous dependence of the WFs onm at small
z (see the lower panel of Fig. 8) is related to the fact that the
scintillation power spectrum is proportional tosin2(πλf2z),
with zeroes atf2

n = n/(λz). The signalam isolates spatial
frequencies aroundπD(1 + ǫ)/(2m) in the pupil plane (see
Fig. 6). By setting the propagation distance toz + H, we find
that the minimum of the WF that corresponds to the first zero
of the scintillation spectrum should occur atmmin ≈ πD(1 +

ǫ)/[2
√

λ(z + H)]. This crude estimate matches the actual lo-
cation of the WF minima reasonably well.

In the case of polychromatic light, the scintillation spec-
trum is damped at spatial frequencies larger than1/

√
λz

(Tokovinin 2003). An analytical expression in that paper was
developed for a quasi-Gaussian spectral responseFλ(λ) propor-
tional to(λ/λ0) exp[−(λ − λ0)

2/2σ2] with σ = ∆λ/2.35. In

Figure 8.Comparison of the monochromatic WFs of RINGSS computed
analytically (solid black line) and by numerical simulation (crosses). The
dashed green line is the WF for a defocused image and the dash-dot
magenta line is the WF for the pupil-plane scintillation.

such case, the cosine and sine terms in (14) are multiplied by the
damping factor2 exp[−(1.78/2)(∆λ)2f4z2].

For an arbitrary spectral response, the cosine and sine terms
in (14) are replaced by the response-weighted sums, e.g.

cos(πλz|f |2) → C
∑

k

(Fλ,k/λk) cos(πλkz|f |2). (15)

The normalization constantC = 1/
∑

k
Fλ,k/λk is chosen to

get the unit value of the cosine at zero spatial frequency. This
expression is accurate when the spectral response is indeed a
set of discrete wavelengths, as in the simulations. When a con-
tinuous response is represented by a set of discrete values, the
sum in eq. 15 shows ‘ringing’ at high frequencies. The ring-
ing is suppressed by including the additional damping factor
exp[−1.5(f2δλz)2], whereδλ is the step of the wavelength
grid. The WF calculation for an arbitrary spectral response was

2 The coefficient is1.78/2 because the damping factor is applied here
before taking the square modulus of the frequency filter.
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checked by supplying a quasi-Gaussian response and comparing
the result with the analytical formula.

The functionsFϕ(x) and Fχ(x) (response to phase and
amplitude) also depend on the wavelength. This circumstance is
neglected here, and they are calculated for the mean wavelength
λ0; only the propagation terms account for the spectral response.
Simulations show that this approximation works well.

The WFs plotted in Fig. 3 are calculated for the spectral
response of the prototype instrument and a stellar spectrum ap-
proximated by a black-body of 7500 K temperature. At angu-
lar frequencym = 10 andz = 4 km, the polychromatic WF
is 5.3 × 107 m−1/3. The corresponding monochromatic WF in
Fig. 8 is5.0 × 108 m−1/3, almost an order of magnitude larger.
This example shows that the effect of spectral response is strong
and must be accounted for accurately. However, a set of poly-
chromatic WFs for black-body temperaturesT from 4000 to 104

K can be approximated by linear functions oflog T with an rms
accuracy of 5 per cent, sufficient for practical purposes. The in-
fluence of the stellar spectrum on the WFs can be reduced by
choosing a narrower spectral response of the instrument.

The response coefficient of the differential sector motion
in RINGSS is computed by the same algorithm, only the mask
functions are different. This coefficientCr is normalized to ex-
press the differential sector motion varianceσ2

2r (variance of the
sum of radii in opposite sectors in square radians) in one sector
in λ/D units forD/r0 = 1,

σ2
2r(D/λ)2 = Cr(D/r0)

5/3, (16)

in analogy with the DIMM response coefficients (Tokovinin
2002). The left hand side of (16) is a dimensionless analogue
of the APS, and the right hand side can be viewed as a WF
by recalling thatr−5/3

0 = 0.423(2π/λ)2J and settingJ = 1.
Neglecting for the moment the weak dependence ofCr on the
propagation distance, the measuredσ2

2r can be converted into
the approximate seeingǫ0 by the formula

ǫ0 = 0.98
λ

r0

≈ 0.98

(

σ2
2r

4Cr

)3/5
(

D

λ

)1/5

. (17)

In fact, the response of both RINGSS and DIMM depends on
the propagation distancez. For the instrument considered here,
Cr = 0.061 atz = 0 andCr = 0.043 atz = 16 km. The effect
of spectral bandwidth is negligible.

Remember that the WF calculation uses the small-signal
approximation where the phase and amplitude fluctuations are
much less than one. The validity of this regime is explored in
the following Section by means of simulation.

5 MEASUREMENT OF TURBULENCE PARAMETERS

The statistics of the measured coefficientsam and rk and the
knowledge of the WFs are the two main ingredients needed
to estimate the turbulence parameters – seeing, turbulence pro-
file Jj , and the time constant. Bias introduced by the detector
noise is estimated using the results of Section 3.3 and subtracted.
However, the reduction of variance owing to the finite expo-

sure time and the deviations from the weak-scintillation regime
should be corrected in order to get unbiased results.

5.1 Temporal response of RINGSS and the atmospheric
time constant

The analysis of temporal effects in this Section closely follows
the work by Kornilov (2011). He introduced the quadratic ap-
proximation of the APS dependence on the integration (expo-
sure) timeτ , valid when the wavefront shift during the exposure,
V τ , is less than the scintillation spatial scale (V is the wavefront,
or wind, speed). The main expression from the Kornilov’s work
relates the signal varianceS(τ) for a finite exposure timeτ to its
zero-exposure varianceS(0) by the first-order quadratic formula

Sm(τ) ≈ Sm(0) − πτ2

6

∫

C2
n(z)V 2(z)Um(z)dz. (18)

Here C2
n(z) is the turbulence strength in m−2/3, V (z) is the

wind speed, andUm(z) (U-functions) are analogous to the nor-
mal WFs. The U-functions, measured in m−7/3, are computed as
integrals of the product of the turbulence power spectrum and the
square modulus of the spatial filter, but with the additional mul-
tiplicative factor ofπ2f2 (Fig. 7). The WF calculation code de-
veloped here can account for the signal averaging due to a linear
blur of V τ metres and can optionally compute the U-functions
together with the normal WFs.

The signal of MASS is sampled continuously. In CMOS
cameras, the pixels are read sequentially during each time inter-
val τ by a ‘rolling shutter’, causing a pixel-dependent shift of
the sampling sequence. This minor effect is neglected here. The
Kornilov’s theory operates with the variances of the signals and
their covariances with a time lag of 1, assuming a regular tem-
poral sampling with the cadenceτ . Temporal covariances with
larger lags are not needed. LetC1,m = 〈am,ia

∗

m,i+1〉 be the
covariance of the signalam with a lag of one sampling interval
andSm = 〈|am|2〉 – the variance (assuming zero mean). Then
the correlation coefficientρm = C1,m/Sm is the measure of the
speed of signal variation. It is close to 1 for slow (well-sampled)
signals, but can be small or even negative when the signal varies
faster than the sampling time. It follows that the signal variance
for double exposure time isSm(2τ) = Sm(τ)(1 + ρm)/2.

Reduction of the signal variance for double exposure time
γ12 = S(2τ)/S(τ) = (1+ρ)/2 (the indexm is omitted here) is
used to estimate the signal variance with zero exposure, i.e. the
factor γ01. The analytical WFs show than when the exposure-
time reduction is not too severe (i.e. when the blurV τ is small),
the two factors are proportional with a coefficient of 0.4 (Fig. 9).
The resulting correction to the zero exposure is

Sm(0) ≈ Sm(τ)/(0.8 + 0.2ρm). (19)

The correction is very good atρ > 0.2 and still acceptable at
ρ > 0, which implies the maximum exposure-correction factor
of 1/0.8=1.25.

The calculation shows that with a 1 ms exposure time, the
reduction of the WFs can be substantial, especially at largem.
For example, atz = 1 km andV = 10 m s−1, the correlation

c© 2020 RAS, MNRAS000, 1–17



10 Tokovinin

Figure 9.The signal attenuation ratio for the double and single exposure
γ12 is compared to the signal attenuation for the single and zero expo-
sureγ01 for the spatial blurs of 1 cm (plus signs, wind speed 10 m s−1

for 1-ms exposure time) and 2 cm (crosses) and variousm. The line is
1 − γ01 = 0.4(1 − γ12).

coefficientρm drops to zero atm = 14 and becomes negative at
largerm. At z = 16 km andV = 20 m s−1, the zero correlation
is encountered already atm = 6. However, the correlation coef-
ficientsρm measured so far experimentally are above 0.6 for all
m. Contrary to the simulation, the fastest signals are those with
smallm. This happens because fast and high atmospheric layers
are the main contributors to the small-m signals, while at large
m the signal comes mostly from the slow turbulence closer to
the ground.

The temporal variation of the RINGSS signals is used to
estimate the atmospheric time constantτ0 = 0.31r0/V̄ , where
V̄ is the turbulence-weighted effective wind speed. Although the
standard theory uses the meanV 5/3 as a measure of̄V , the sec-
ond moment of the wind speedV2 is more relevant for the per-
formance of AO systems and interferometers (Tokovinin et al.
2008):

V 2
2 = J−1

∫

C2
n(z)V 2(z)dz, (20)

whereJ =
∫

C2
n(z)dz is the turbulence integral. The corre-

sponding atmospheric AO time constant isτ0 ≈ 0.31r0/V2.
The effective wind speedV2 does not depend on the turbulence
strength,r0, andλ, and is a more meaningful parameter thanτ0.

The difference between (20) and (18) is in the factorsU
under the integral. The idea of Kornilov is to combine several
U-functions with coefficientsCU

k such that
∑

k

CU
k Uk(z) ≈ 1, (21)

i.e. to remove the dependence on the propagation distancez.
Then eq. (18) can be transformed to get

V 2
2 ≈

∑

m

CU
m∆m, (22)

where the right-hand side contains the measured quantities

∆m = 6
Sm(2τ) − Sm(τ)

4τ2 − τ2
= Sm(τ)(1 − ρm)/τ2. (23)

The coefficientsCU
m are found by solving eq. 21, following the

Kornilov’s recipe. In other words, we look for a linear combina-
tion of the U-functions that is approximately independent ofz.
The first tests indicated that signals withm of 2 and 4 have very
small coefficientsCU

m, whilea6 anda7 are the strongest contrib-
utors. Therefore, the set of U-functions used for the wind estima-
tion in RINGSS is restricted tom = [1, 3, 6, 7, 8, 9]. The corre-
sponding coefficientsCU

m are[9.8, 8.8, 20.2, 19.0, 17.5, 14.6]×
10−15 in one representative case. The resulting linear combina-
tion of the U-functions deviates from one by less than 0.1 at
z > 1 km but falls to zero at the ground. Although RINGSS
is sensitive to the turbulence near the ground, its estimate of
the effective wind speed refers mostly to the free atmosphere,
as in MASS. The U-functions and the coefficientsCU

m depend
strongly on the spectral response and are re-computed together
with the WFs.

5.2 Saturation correction

The theory of all scintillation-based turbulence sensors (SCI-
DAR, MASS, FASS, RINGSS) is based on the small-signal
(weak scintillation) approximation that is not quite fulfilled
in the real conditions. The spatial spectrum of a strong
(semi-saturated) scintillation differs from the theoretical (weak-
scintillation) spectrum by containing more high-frequency
power and less low-frequency power. As a result, the APSS(m)
increases at largem, imitating a low-altitude turbulence, and
the seeing is over-estimated (over-shoots). This effect was ex-
tensively studied in the case of MASS, and its partial correction
based on numerical simulations was developed by Tokovinin &
Kornilov (2007). The idea is to transform the measured APS to
the values that would be obtained without saturation and then
to apply the standard linear profile restoration algorithm. This
strategy is studied here for RINGSS, and it is also applicable to
the pupil-plane sensors like FASS.

Figure 10 compares the theoretical (weak-scintillation)
weighting functions (WFs) with the results of simulations for
monochromatic light to illustrate the impact of the increasingly
strong scintillation. For a turbulent layer at 4 km, the classical
effect is observed, namely decrease of the power at low fre-
quencies (smallm) and its increase at intermediate frequencies,
m > 5. The cross-over occurs atm = 4. Note that atm ∼ 20
the impact of saturation becomes smaller. For a layer at 1 km,
the overall scintillation is smaller, and the effect of saturation
is moderate below the cross-over atm = 8. However, the WF
minimum atm = 11 is progressively filled. If the effect of sat-
uration is expressed by the ratio of the simulated and theoretical
WFs, there is a strong spike aroundm = 11, reaching a factor
of two. Summarizing, there are two distinct effects of saturation:
(i) progressive transfer of power to intermediate frequencies at
largez and (ii) partial filling of the WF minima at smallz. The
second effect is specific to RINGSS and is not present when the
scintillation is measured at the pupil; it is presumably caused by
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Figure 10. Comparison of the analytic WFs (solid line) with the WFs
from numerical simulation for seeing values from0.2′′ to 2′′ (see the
legend box) and a single turbulent layer at 4 km (top) and at 1 km (bot-
tom).

the interplay between the phase and amplitude distortions. This
second effect, however, can be neglected in practice because at
those frequencies the WFs are an order of magnitude smaller
compared to their maximum.

The strength of the scintillation is characterized by the total
intensity variance (the Rytov number)s2

0 (Roddier 1981)

s2
0 = 19.12λ−7/6

∑

j

Jjz
5/6

j . (24)

The weak-scintillation regime is valid ats2
0 ≪ 1, while s2

0 ∼ 1
is the regime of strong (semi-saturated) scintillation. This situa-
tion is sometimes encountered in practice. The maximum Rytov
variance for the plots in Fig. 10 is 0.80 and 0.25 forz = 4 km
andz = 1 km, respectively. The parameters2

0 is not measured
directly, but the sum of APS,Stot =

∑

m
Sm, is a valid substi-

tute because the proportionalityStot/s2
0 ≈ 0.4 holds according

to the simulations.
A large set of monochromatic simulations was carried out

to develop an approximate correction of semi-saturated scintil-

lation, following the MASS prescription (Tokovinin & Kornilov
2007). Each simulation involves two layers with distances rang-
ing from 0.5 km to 16 km, selected randomly from a fixed loga-
rithmic distance grid with a step of

√
2. Turbulence integralsJ

in these layers are chosen randomly to produce the Rytov vari-
ance from 0.05 to 1. The measured APSSm is compared to the
theoretical APSStheo

m calculated from the WFs, i.e. correspond-
ing to the unsaturated regime. Their ratio is approximated by the
formula

Sm/Stheo
m ≈ 1 +

5
∑

k=1

Zm,kSk, (25)

where the sum includes a restricted number of terms fromk = 1
(thek = 0 term is not used) to 5. The translation of the measured
APS to the quasi-linear one is the inverse of the right-hand part;
it approaches one when the scintillation tends to zero.

The set of linear equations (25) is solved by the least
squares method to find the coefficientsZm,k, called Z-matrix.
Two subtleties are relevant. First, only the simulation results
with the Rytov variance from 0.05 to 0.7 are used and the cases
with the lowest layer at or below 1 km are excluded from the
‘training set’ used to findZ. Second, the inversion of the system
matrix of the least-squares problem is done by the singular value
decomposition with rejection of singular values below10−3 of
the largest singular value, to avoid the noise amplification. Typ-
ically, 3 singular values are rejected.

The matrix correction was determined for allm from 1 to
20 that are used in the profile restoration. Figure 11 gives two
representative plots. The quality of the correction is estimated
by the rms of the ratioScorr

m /Stheo
m computed separately for the

training set and for the full set. Overall, the correction works
quite well, and the rms residuals for the training set are between
0.05 and 0.09, depending onm. The largest impact of the satu-
ration and, correspondingly, the largest correction, is found for
m = 9, and the smallest one form = 1 andm = 2.

Looking at Fig. 11, one notes that form = 8 the correction
works very well not only for the training set, but also for the full
set; the rms for the full set is within 0.1. However, form = 12
some blue asterisks are well above one, while the rms for the
full set, 0.23, is almost as large as 0.31 without correction. These
deviant points correspond to the cases with layers below 1 km,
where the minima of the WFs are filled (see Fig. 10, bottom).
This phenomenon is not corrected by the current algorithm and
for this reason the low-z cases are removed from the training set.
The mixture of two different phenomena related to strong scintil-
lation complicated the development of the saturation correction
algorithm for RINGSS.

Another, smaller set of monochromatic simulations was
made to emulate 1-second image cubes and to test the saturation
correction. Without correction, the seeing deduced from the re-
stored turbulence profiles is systematically over-estimated, while
the seeing computed from the differential sector motion is under-
estimated (Fig. 12). The ‘overshoots’ are caused by the partially
saturated scintillation. The energy spilled to a higher spatial fre-
quency is interpreted as coming from a lower but stronger layer,
and the seeing is over-estimated. The restored OTP is shifted to
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Figure 11. The ratio of the uncorrected to the theoretical power
Sm/Stheo

m (crosses), the ratio of the corrected power for the training
set (red squares), and the same ratio for the remaining cases (blue aster-
isks) are plotted againstStot for m = 8 (top) and form = 12 (bottom).

a smallerz, compared to the input OTP. These effects are also
observed in MASS.

The seeing deduced from the differential sector motion is
under-estimated (under-shoots) for two reasons. First, the de-
cline of the response coefficientCr(z) at large propagation dis-
tances is not taken into account because the distance to turbu-
lence is not known a priori without measuring the OTP. This
effect is corrected for by applying the profile-weighted coeffi-
cient in eq. 17 to compute the seeing. Secondly, even after this
correction, the seeing estimate declines with increasing scintilla-
tion approximately as1−0.78Stot. The division by this empiri-
cal factor brings the seeing estimated from the differential sector
motion into agreement with the input seeing. Saturation correc-
tion also removes the overshoots, and, after the correction, both
pluses and asterisks in Fig. 12 align nicely along the diagonal
(this trivial plot is not reproduced here).

The Z-matrix correction is a semi-empirical solution to the
turbulence profile restoration for a moderately saturated scintil-

Figure 12.Processing of the simulated image cubes: the seeing deduced
from the turbulence profiles restored from the APS (crosses)and esti-
mated from the differential sector motion (asterisks) is plotted against
the true simulated seeing, with the straight line corresponding to equal-
ity. The saturation is not corrected.

lation. This regime is frequently encountered in practice, and
the correction seems to be necessary; otherwise, the seeing and
free-atmosphere seeing become over-estimated. However, these
overshoots remain modest (mostly within 10 per cent) and can
be considered as tolerable, especially at good sites. After all, tur-
bulence parameters are always measured with a varying degree
of approximation. The latest version of the MASS data reduc-
tion software (Kornilov & Kornilov 2011) does not correct for
the saturation and is prone to overshoots.

The phenomenon of saturated scintillation is generic, but
the correction matrix depends on the instrument parameters. A
tool to estimate the Z-matrix from simulations for an arbitrary
instrument will be developed by adaptation of the existing code.
Qualitatively, the effect of saturation (decrease at smallm and
overshoots at largem) remains the same for any instrument; it
was first noted in MASS.

5.3 Turbulence profile restoration

The turbulence profile is modeled by 9 layers at fixed distances,
with 8 layers on a log-spaced grid at 0.125, 0.25, . . . , 16 km and
the first layer at the ground. This crude model is similar to the
one used in MASS, except the additional low layers. Turbulence
located between the fixed layers is attributed to the adjacent lay-
ers, while its total strength is estimated with a relative error not
exceeding 10 per cent. Hence, the crudeness of the distance grid
does not contribute substantially to the errors. Thez-grid can be
optimized in the future.

The OTP, i.e. the 9 values ofJj , is the least-squares solution
of eq. 3. To avoid negativeJJ , the non-negative least squares
method is used, as done by Kornilov & Kornilov (2011) for
MASS. The system of equations is over-determined when more
than 9Sm values are used. The estimated noise bias is subtracted
from the measured APS. Them = 0 term (the full variance) is
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2020−08−08 02:15  Antares

Seeing 1.1"   FA seeing 0.5"

Figure 13.Example of the OTP fitting to the APS computed from a real
2-s data cube. Squares – measured APS, dashed line – fitted model.

not used because it is not well measured from the short data
cubes, being dominated by the slow signal variation, and poten-
tially is affected by variable transparency. The high-order terms
with m > 20 are also not used because they contain little useful
signal. The exposure-time correction (eq. 19) is applied, and the
range ofm is further restricted to terms with non-negative cor-
relation coefficientsρm, but always includes terms up tom = 9.
This restriction was never necessary for the real data, where all
20 Sm values fromm = 1 to m = 20 are fitted because they
have positiveρm. Apart from the exposure time, the APS values
are corrected for the saturation using the Z-matrix (eq. 25).

Figure 13 gives an example of the OTP restoration using
real data. A typical relative rms difference between the measured
APS and its model is∼0.1. Turbulence profiles determined from
the successive 2-s records show a similar structure.

The profile restoration is accompanied by the calculation
of the effective wind speedV2 using the pre-computed set of
CU coefficients and applying eq. 22. The wind speed determined
from the simulated data matches the input speed, while the real
data show a good consistency between successiveV2 estimates.

The total seeing is initially estimated from the differential
sector motion by eq. 17 using the coefficientCr computed for
z = 0; the 4 estimates of the differential varianceσ2

2r from the
8 sectors are averaged and the estimated noise is subtracted. Af-
ter the OTP is determined, these estimates are corrected for the
propagation and for the saturation. The two estimates of the to-
tal seeing obtained independently, one from the APS (i.e. from
the sum ofJj) and another from the differential sector motion,
should agree mutually, providing an overall control of the mea-
surement procedure and biases. Figure 12 illustrates the lack of
such agreement when the scintillation is strong and the biases
are left uncorrected.

6 PROTOTYPING

This study is devoted mostly to the algorithms and software
needed for the turbulence measurement from ring images. How-
ever, testing these algorithms on real data is essential to prove
that they actually work and to find potential caveats.

Figure 14.Photo of the RINGSS prototype.

A crude prototype RINGSS instrument (Fig. 14) was as-
sembled based on the Celestron Nexstar SLT-130 reflecting
Newton telescope withD = 0.13 m and central obscuration
ǫ = 0.45, defined by a mask behind the secondary mirror (other
values ofǫ were also tested). The spiders holding the secondary
mirror are so thin that their shadows are not seen in the ring im-
ages. The effective focal distance was shortened twice, from the
native 0.65 m to 0.35 m, by placing an achromatic doublet lens
with a focal distance off = 50 mm atf/2 distance in front of
the camera. The lens also provides a spherical aberration needed
to get sharp rings for a defocus of 1.06 mm that corresponds to
the conjugation distance ofH = 400 m. A yellow filter cuts off
the blue light short-ward of∼450 nm.

The detector is a monochrome CMOS camera ZWO
ASI290MM used mostly for amateur astrophotography.3 The
pixel size is 2.9µm, format 1936×1096 pixels (size 5.6×3.2
mm), readout noise∼1 el, maximum quantum efficiency (QE)
0.80. The detector is a back-illuminated CMOS chip IMX290
from Sony, uncooled. The high QE and the low noise specified
by the vendor were confirmed by our independent characteriza-
tion of this camera. The conversion factor from ADU to elec-
trons (in the 12-bit mode) is3.6 × 10−G/200, whereG is the
camera gain setting. WithG = 300, the conversion factor is
0.11 el/ADU and the readout noise is 1.0 el in most pixels (a 3×
larger noise is found in a 0.2 per cent fraction of pixels, which is
typical for other scientific CMOS cameras). The spatial unifor-
mity is very good, with a pixel to pixel sensitivity variation of
0.3 per cent rms.

The pixel scale of the prototype is1.7′′, so the full field of
view is about 0.5◦; the typical ring radius is 12 pixels or20′′. Im-
age cubes of 64×64×2000 pixels with 1 ms exposure per frame
were acquired using theASICap software from ZWO. A stand-
alone acquisition software for Linux is under development. Fig-
ure 15 compares a series of the actual ring images with simulated
rings (see also Fig. 5).

Test data were acquired with this prototype at the sea level

3 https://astronomy-imaging-camera.com/product/asi290mm

c© 2020 RAS, MNRAS000, 1–17



14 Tokovinin

Simulation

2020−09−13 00:13 Altair

Figure 15.Top: five ring-like 64×64 images recorded with the prototype
instrument (ring radius 13.1 pixels, estimated seeing1.6′′). Bottom: five
images from a simulated data cube with similar parameters.

Table 1.Main instrument parameters

Parameter Formula

Ring radius (rad) rring,rad = D(1 + ǫ)/(4H)

Ring radius (pixels) rring = D(1 + ǫ)F/(4Hp)
Ring thickness (rad) δr = 2λ/[D(1 − ǫ)]
Pixel scale (rad) p/F

Optimum focal ratio F/D ≈ p(1 − ǫ)/λ
Intrafocal distance (m) ∆ = F 2/H

in La Serena, Chile (access to the Cerro Tololo observatory was
closed due to the COVID-19 pandemic). The seeing is poor by
the astronomical standards, but some data with a moderate level
of scintillation were nevertheless obtained. One example is il-
lustrated in Fig. 16. The data were taken during two short pe-
riods separated by 2 hours (the second set begins at the sam-
ple 32). The conditions were stable, the estimated wind speed
was around 6 m s−1, and the scintillation was small,Stot ≈
0.1. During each period, the instrument was pointed toα Aql
(V =0.76 mag, spectral type A7V), then toγ Aql (V =2.70 mag,
K3II) and back. Crosses in Fig. 16 indicate the star change. The
average flux from these stars in 1-ms exposures was3.1 × 104

and7.7×103 el, respectively. Despite the flux variation by a fac-
tor of 4, the change of star does not seem to affect the measured
seeing. The WFs were calculated for the effective temperature
of 7500 K corresponding toα Aql. The mismatching color of
γ Aql does not seem to affect the results strongly. Note that each
measurement is obtained from the image cube of only 2 s dura-
tion.

7 INSTRUMENT PARAMETERS

In this Section, some considerations on the RINGSS instrument
are given. The parameters of the prototype are adequate for tur-
bulence monitoring, but are they chosen optimally?

The main parameters (telescope diameterD, focal length

Figure 16. Data from the prototype instrument taken on 2020-09-12.
Top panel: the total seeing estimated from the OTP (solid line) and from
the differential sector motion (dashed magenta line), as wellas the free-
atmosphere seeing above 0.5 km (dotted green line), vs. samplenumber.
Blue crosses indicate the flux in arbitrary units to show the change of
stars. Bottom panel: OTPs for the same night; the width of eachband
corresponds toJ = 2 × 10−12 m1/3.

F , central obscurationǫ, conjugation distanceH, and pixel size
p) are mutually related. The formulae are given in the text above
and repeated in Table 1 for convenience. If the optimumF/D
is selected to sample the ring width by 2 pixels, this leads to the
formula for the ring radius in pixels that does not depend on the
physical pixel size:

rring ≈ D2(1 − ǫ2)/(4λH). (26)

For a fixed 2-pixel ring width, the total number of illuminated
pixels is proportional torring, hence toD2. The total flux is also
proportional toD2, so the number of photons per pixel remains
constant ifǫ andH do not change. However, in order to limit
the size of the image cubes, it is advisable to increaseH when a
largerD is chosen.

A larger aperture collects more photons, produces sharper
ring images, and thus substantially reduces the noise of differen-
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tial image motion measurement. Implementation of the RINGSS
concept withD = 0.2 − 0.3 m is certainly feasible, although it
requires a larger size of the image cubes (see above). The Kol-
mogorov turbulence spectrum is dominated by the large-scale
features; as a result, the amplitude of the wavefront distortions
increases asD3/5 and the signal to noise ratio in an instrument
like RINGSS, DIMM, or FADE also increases withD. However,
the use of the full aperture in RINGSS and the modern light de-
tectors with a low noise and a high QE allow us to measure the
seeing with smaller apertures (compared to DIMM) with a rea-
sonably low noise. Calculation indicates that withD = 0.1 m,
the noise of the differential sector motion using aV = 2.5 mag
star is equivalent to a0.16′′ seeing, so the noise bias is still
moderate and easily accounted for. AtD < 0.1 m, the noise in-
creases quickly and the seeing measurement by differential sec-
tor motion becomes questionable, unless very bright stars are
used and the seeing itself is large. The aperture ofD ∼ 0.1 m
also matches the Fresnel radius of high-altitude turbulence and
is large enough for OTP measurement by scintillation in MASS,
FASS, or RINGSS.

Calculations show that the ring thickness is minimum at
ǫ ≈ 0.45, and such central obscuration is optimal for measuring
the differential sector motion. A relatively wide aperture annulus
averages the small-scale scintillation, reducing the WFs at large
m in comparison with a narrower (largerǫ) annulus. However,
the increase in the photon flux almost compensates for the loss
of the scintillation signal, so the central obscuration ofǫ ∼ 0.5
is good for measuring both the differential sector motion and the
scintillation. In FASS, the scintillation is measured in narrow
annular zones chosen inside the aperture (or in the defocused
image) to avoid spatial averaging, while in RINGSS the scintil-
lation is averaged in the radial direction.

The choice of the conjugation distanceH (or, equivalently,
the ring radius) is driven by the compromise. A smallH (large
ring) gives access to the small-scale scintillation (largem), but
its amplitude is also quite small. By increasingH, we get a
stronger scintillation from the ground layer and a larger number
of photons per pixel in a smaller ring. By setting the minimum
ring radius ofrring = 10 in (26) and assumingǫ = 0.5, we
getD = 7.3

√
λH, or 7 Fresnel zones across the pupil for the

propagation distanceH. So, to keep a fixed ring radius of 10
pixels, we need to increaseH in proportion toD2: 0.5 km for
D = 0.13 m and 2 km forD = 0.25 m.

Strong turbulence is typically encountered near the ground.
Fluctuations of the ring images caused by the ground-layer tur-
bulence can also be strong, violating the small-signal approx-
imation. This problem is investigated in Fig. 17 by numerical
simulation for the case of very poor2′′ ground-layer seeing. At
smallH (blue lines), the agreement between the analytical and
simulated WFs is quite good, but it becomes worse for the larger
H, especially at largem. The minima of the WFs become pro-
gressively filled, which is typical for semi-saturated scintillation
(compare with Fig. 10). At the same time, the WFs increase with
H.

Resuming, the choice ofH ∼ 0.5 km for our prototype
appears to be optimal. A smallerH results in the decreased sen-
sitivity to the ground-layer turbulence and in a lower number of

D=0.13m

D=0.25m

Figure 17.Weighting functions for turbulence at the ground and differ-
ent conjugation distancesH (see the legend box). The full lines are ana-
lytical calculations, the dashed lines are derived by simulation assuming
a 2′′ seeing and the monochromatic light ofλ = 600 nm. The top plot
refers to an aperture ofD = 0.13 m, the lower plot toD = 0.25 m,
both forǫ = 0.5.

photons per pixel, while for a largerH the ring radius would be
too small. A largerH should be selected for a larger aperture.
A good compromise might be to selectH ∝ D, in which case
rring ∝ D also. The exact value ofH is not critical as long as
it is not very different from the optimum. However,H must be
accurately known for correct calculation of the WFs. In practice,
the telescope focus should be controlled to keep the ring radius
at the desired value.

Keeping a constant defocus (hence a constant ring radius)
is also important for getting sharp (diffraction-limited) ring im-
ages. As noted above, a conic wavefront is obtained when the
spherical aberration and defocus have opposite signs and their
rms amplitudes are in a 1:10 proportion. The spherical aberration
is defined by the optics, so this optimum ratio corresponds to the
specific value of the defocus. Once theH is chosen, the optical
design of the system should provide the required amount of the
spherical aberration. In the prototype, this is achieved by choos-
ing the focal-reducing lens and the de-magnification factor. Suit-
able commercial achromatic lenses can be found to provide the
desired amount of spherical aberration and focal-distance reduc-
tion for almost any feeding telescope, but some residual chro-
matic aberration might be present as well. A custom lens de-
sign would solve this problem. Instead of using a commercial
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telescope, RINGSS can be fed by a single concave mirror with
suitable focal distance and conic constant, delivering achromatic
ring images without any lenses.

The optics of a real instrument is never perfect. The most
likely aberrations are astigmatism and coma. I studied biases in-
troduced by the coma and found that a coma up to 2 radian rms
is acceptable. The absence of coma is readily controlled by the
uniformity of the ring images (see Fig. 5). Careful optical align-
ment of the feeding telescope and the stability of this alignment
are required for RINGSS.

8 DISCUSSION

The new concept of a site monitor emerging emerging from this
study is attractive for several reasons. First, its hardware is based
on readily available commercial components and is relatively in-
expensive, within the reach of an amateur astro-photographer.
Second, the telescope aperture needed to monitor the seeing is
reduced from the typical 20-30 cm to 10-15 cm. A smaller tele-
scope can use a smaller mount and can be housed in a smaller
enclosure; the cost reduction and the increased portability are
evident. The relatively large pixels of RINGSS and the short ex-
posure time reduce its sensitivity to the wind shake, compared
to a standard DIMM.

While the hardware is simplified, more burden is placed on
the software. Its main component is the image-processing tool
for measuring the angular intensity variation in the ring images
and the fluctuations of their radii. The second key element is the
tool to compute the WFs that depend on the instrument parame-
ters and on the spectral response. Once the WFs are known, the
estimation of the turbulence profile is trivial, but, as in any see-
ing monitor, attention should be paid to the correction of biases.

Are the results of RINGSS reliable? This is the fundamen-
tal issue for any turbulence monitor. Scintillation sensors are
‘self-calibrated’ because intensity fluctuations that they record
are related to the turbulence parameters by a well-established
theory, at least in the weak-scintillation regime. In the case of
MASS, departures from this regime must be corrected for, and
accurate account of the spectral response is needed; both issues
are equally relevant for FASS and RINGSS. Moreover, RINGSS
measures the signal close to the image plane, not at the pupil.
This makes little difference for a distant turbulence, but a large
difference for the near-ground turbulence. However, RINGSS
also estimates the seeing by the alternative method of the differ-
ential sector motion that is a variant of a DIMM. The agreement
between these two independent estimates of the same quantity
gives some assurance that both are correct. A similar agree-
ment between MASS and DIMM is observed when turbulence
is predominantly high; for RINGSS such agreement should al-
ways hold and is a sign of the correct data processing. The re-
sults of RINGSS are anchored to the turbulence theory to the
same extent as they are for the alternative turbulence monitors,
and in this sense they are reliable. Experimental comparison be-
tween turbulence monitors, preferably based on different princi-
ples, is a useful way to check their biases. However, the idea of
‘calibrating’ one monitor against another is misleading because

none gives totally unbiased results, while the biases depend on
many factors, rendering such calibration meaningless. A recent
comparison campaign of FASS is reported by Guesalaga et al.
(2020).

The number of shortcuts and approximations needed to in-
terpret the signal of RINGSS is impressive. However, similar ap-
proximations are involved in any turbulence monitor (although
not always recognized explicitly), and the atmospheric theory
itself is only approximate. This point is further discussed by
Tokovinin & Kornilov (2007) in relation to DIMM and MASS.
To give an example, the ‘golden standard’ of turbulence profil-
ing, SCIDAR, uses analytical monochromatic WFs that neglect
pixel and exposure-time averaging (however, see the recent pa-
per by Butterley et al. 2020), while the deviations from the weak-
scintillation regime are also ignored (Osborn et al. 2018).

The ability to measure the total seeing, a crude turbulence
profile, and the atmospheric time constant is all that is needed
for a portable site-testing turbulence monitor. RINGSS is devel-
oped with this application in mind. It can also serve as a regular
turbulence monitor at the existing observatories, replacing the
aging MASS-DIMM instruments.

The RINGSS concept is flexible. It can be applied to both
larger and smaller apertures. Existing DIMMs can be converted
into RINGSS turbulence profilers by replacing their cameras and
software. The concept will also work for defocused images with-
out radial sharpening; however, the number of photons per pixel
would be reduced and the alternative seeing measurement by the
differential sector motion would be lost. RINGSS with a detec-
tor conjugated to the pupil becomes an incarnation of FASS with
only a minor difference (the annular aperture is integrated radi-
ally in RINGSS but split into narrow rings in FASS).

Historically, the differential image motion was, on one
hand, easily related to the seeing theoretically and, on the other
hand, technically feasible to measure in the 1980-s and later (at
that time, detectors and computers for fast recording of scintil-
lation were either not available or complex). The development
of MASS was enabled technically by the progress in electron-
ics and required a matching effort in theory to interpret its data.
Nowadays, detectors and computers are cheap and powerful,
providing hardware solutions for FASS, FADE, RINGSS, etc.
The emphasis is on the theory needed for correct interpretation
of their signals and on the associated software.
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