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A formula to compute the index of stellar scintillation detected with a finite spectral bandpass and
with arbitrary aperture is derived. It also applies to the differential scintillation (relative fluctuations
of light fluxes in a pair of apertures), where the effect of finite bandpass turns out to be significant.
The new formula is used for measurements of free-atmosphere seeing and low-resolution turbulence
profile with concentric-ring apertures.

1. Introduction

When a light beam propagates through turbulence, its intensity fluctuates. This phenomenon is known in astronomy
as scintillation or twinkling of stars. Stellar scintillation is an important factor that limits the precision of ground-
based photometry?!.

Statistical analysis of scintillation brings some information on the optical turbulence. Isoplanatic angle in adaptive
optics can be readily estimated from the scintillation index in a telescope with 10-cm aperture? 4. A successful tech-
nique to measure turbulence profile from scintillation of double stars is known as SCIDAR (SClntillation Detection
And Ranging)®. Attempts to measure turbulence profiles from scintillation of single stars were made by Ochs et
al.% and Caccia et al.” Recently, a new method of turbulence profile estimation, Multi-Aperture Scintillation Sensor
(MASS), has been successfully tested®. It is based on single-star scintillation detected with four concentric-ring
apertures of suitable size. From the 4 normal and 6 differential scintillation indices measured with such apertures, a
turbulence profile with a vertical resolution Ah/h ~ 0.5 is reconstructed.

Theoretical analysis of scintillation was done by many authors, as reviewed in Refs. 9, 10. Formulae to compute
the variance of relative light fluctuations (so-called scintillation index) are well known. Differential scintillation index
for a pair of apertures was introduced in Refs. 11, 12. However, all these papers consider the case of monochromatic
light, whereas in real instruments the light is always polychromatic. Analysis of the effect of finite bandpass in
SCIDAR was done by Vernin and Azouit'® who concluded that monochromatic-light theory is a good approximation
for this instrument. Krause et al.® obtained polychromatic response as a weighted combination of monochromatic
responses, which is not quite correct (see below).

The problem of polychromatic scintillation is addressed in this paper. I derive in Section 2 a general expression
for the polychromatic scintillation index that should replace the standard formula for monochromatic case. The
effect of finite spectral bandpass is then evaluated in Section 3; in some cases, e.g. for differential scintillation,
it is significant. The new formula has already found application in the interpretation of the MASS data, more
applications are foreseen. Moreover, a replacement of the sine square term by the square of the imaginary part of
the Fourier transform (FT) of spectral response curve is a general result that may be applied to other problems
of polychromatic light propagation through turbulence. Whenever phase effects are considered, the cos? diffraction
term will be similarly replaced by the square of the real part of FT.

2. Scintillation index for finite bandpass

The classical results of the theory of wave propagation in turbulent media under weak-perturbation (Rytov)
approximation®:'? are used below. Amplitude fluctuations at the entrance aperture of an optical instrument produced
by turbulence are described through the natural logarithm of light-wave amplitude x — a Gaussian random variable
with zero average. It reflects only relative fluctuations, so that source brightness, atmospheric transmission, etc. are
all irrelevant. In the weak perturbation regime the condition x <« 1 is imposed. This condition is usually satisfied for
vertical light propagation through the atmosphere when turbulence is not very strong and zenith angle is moderate.



Let F(\) be the spectral response describing the relative weighting of different wavelengths (a combination of
filter transmission, detector response and source spectral energy distribution). The exact definition of F'(A) depends
on the type of detector: for a photon-counting detector, the response is measured in relative numbers of photons,
whereas for a bolometer the response is defined by the energy distribution. The response must be normalized:

/ FO)AA = 1. (1)

In any instrument the light is averaged spatially in the aperture plane (e.g. by the entrance aperture of a telescope
or by detector pixels). The aperture function W (x) describes this averaging, it is also normalized by definition:

/W(x)dzx =1. (2)

Let I be the detected light flux normalized by its average, so that (I) = 1. It is computed as the square of
amplitude averaged over wavelength and aperture. For weak scintillation (x < 1)

I= / eXENEPNW (x) dA d?x 2 1+ 2 / YN F () dA, (3)

where

X = / X VW (x) d2x (4)

is the spatially averaged (smoothed) amplitude.
The scintillation index s is defined as a variance of the normalized light flux:

s= () — (I =4 / (RODXO)FA)F(Aa)dh dda. (5)

When two apertures W, and W, are considered, the differential scintillation index s; is defined as a variance of
the flux ratio or, for weak scintillation, as a variance of the difference of normalized light fluxes I; and I within the
apertures:

sa= (I — I2)*). (6)

Differential scintillation is analyzed in the same manner as normal scintillation by replacing the aperture function
W with the difference W, — Wy11:12,

The covariance of amplitudes under the integral in Eq. 5 By (A1, A2) = (x(A1)X(A2)) will now be computed for one
thin turbulent layer. As in the standard theory of scintillation'%%12 the amplitude X is represented as an integral
of the Fourier transform (FT) of phase perturbations ¢(f) in a thin layer modified by the propagation (Fresnel
diffraction) and convolved with the aperture function (multiplied by its FT W):

Y0 = / B(E,\) sin(mAzf2) W (£)df. 1)

Here f is the spatial frequency, f = |f|, and z is the propagation distance, also called range (z = hsec for a turbulent
layer at altitude h and zenith angle «y). For differential scintillation W is replaced by Wy — Wo.

The path length fluctuations i(f) are achromatic because the dispersion of air is usually neglected. Phase is
related to path length as ¢(f,\) = (2r/N)I(f). The power spectrum of path-length fluctuations ®; is related to the

refractive-index structural constant C2(z) and the thickness dz of a turbulent layer (e.g. Eq. 7.16 in Ref. 10):



®;(f) = 9.69- 1072 f~1/302 (2)d. (8)
Although ¥ is real, I write the covariance B, as an average product of complex conjugates. Each amplitude is

represented as an integral over spatial frequencies (7), the product of integrals is written as a double integral over
two frequencies f and f':

By (A1, A2) = / (£, A1) F* (£, X2)) sin(wA1zf2) sin(mhazf'”) W(E)W* (£)dfdf. (9)

The average product of phase FTs is related to the power spectrum of path length fluctuations:

(B AN (1, 02) = @i (D)5(E ~ 1), (10

Because of the delta-function, the integral over two spatial frequencies is reduced to the integral over single spatial
frequency. Hence

472
Ao

By (A1, A2) = 9.69- 102C2(2)dz / F1 B3 sin(m Az f?) sin(m Aoz f2) A(f)df, (11)

where A = |[W|? is the aperture factor (for differential scintillation 4 = |W; — W/|?).

For circularly symmetric apertures all terms in Eq. 11 depend only on the frequency modulus f. Thus, the
integration in angle in the frequency space can be made, adding another 27 coefficient and changing the power of
f from —11/3 to —8/3. I put this expression for B,y (A1, A2) into Eq. 5, re-arrange the terms and introduce the
weighting function (WF) @Q(z) that relates the scintillation index s to the strength of turbulent layer:

s = Q(2)Ch(2)dz, (12)

where

Q(z) = 32r° - 9.69-10° /0 - 3B AF)S (2, f)df (13)
and
S(z,f) = / (A Ao) " sin(m 2£2) sin(m o2 f2)F (A1) F(A2)dArdAs
- [ / ALF(A) sin(mAz f2)dA]2. (14)

The simplification of (14) is done by noting that the double integral is in fact a product of two identical integrals
over \; and Ay. Moreover, these integrals resemble the FT F'(k):

F(k) = / dA ATEF()N) exp(2mik)), (15)

where k is the frequency (inverse wavelength). The integrals that enter in the expression for S equal the imaginary
part of the FT of the spectral response function divided by A, which we denote as F;(k). Thus,



S(z, f) = [Fi(=f*/2)]". (16)

It is apparent that S is non-negative. It can be computed numerically for any pass-band function, below I compute
it analytically for a specific F'(\).

When a joint effect of several atmospheric layers is considered, the scintillation index in weak perturbation regime
can be computed as a sum (integral) over all layers:

5= / C2(2)Q(2)dz. (17)

Taken together, Egs. (17), (13) and (16) give the complete formula for polychromatic scintillation index. In the
monochromatic case F(X) = §(A — Xg) and S(z, f) = A~2sin? (7 Az f?), hence the known expression for WF with the
sine square function®!1:12 is obtained. The new formula replaces the sine square term by a more general S(z, f).

3. Evaluating the effect of finite bandpass
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Fig. 1.  Weighting functions in 10° m~*/3 at 500 nm wavelength. (a) Differential scintillation WF's for a pair of 2 cm and

4 cm concentric apertures: solid line — monochromatic, dashed line — bandwidth 100 nm, the dotted line is explained in the
text. (b) Normal scintillation WF's for a 2 cm diameter aperture: solid line — monochromatic, dashed line — bandwidth 300
nm.

In this section, I evaluate the influence of finite bandpass on the scintillation index for a specific “quasi-Gaussian”
spectral response function:

IR (A — )2
F(\) = o oV exp[ 572 .

Strictly speaking, normalization of this function is correct only asymptotically for narrow bandpass, but here I neglect
this small multiplicative error. The FT of F(\)/A is readily obtained from the tables:

(18)

Fik) = /\iosin(27r)\0k) exp(=2n202k?) (19)

and



S(z, f) = A\g? sin®(mhozf?) exp(—m20?2 f4). (20)

Spectral response curves are often characterized by their full width at half-maximum (FWHM) A. For a Gaussian
curve, A = 0v/8In2 = 2.3550. Thus, S is proportional to exp(—1.780z2f*A2%). The final expression for the WF
becomes

Q(2) = 9.62); / ” df f=8/3A(f) exp(—1.7802% f*A?) sin? (w Aoz f2), (21)
0

where 9.62 = 3273 -9.69-10~2. For the monochromatic case (A = 0) it is equivalent to the known formula (e.g. Eq. 3
in Ref. 12).

Intuitively, it is clear that enlarged bandpass will mostly influence differential scintillation index for the smallest
apertures (which pass higher spatial frequencies) and for higher altitudes. In Fig. la the most critical case of
bandwidth influence is plotted, as computed from Eq. 21. For larger apertures the effect of the same bandwidth is
less. For apertures of more than 15 cm in diameter, scintillation approaches geometric-optics regime and becomes
almost achromatic.

4. Discussion

The results presented above might appear strange. After all, scintillation is almost always detected in wide band, and
the practice of SCIDAR measurements seems to confirm that bandwidth is of little importance. Indeed, Vernin &
Azouit!® have estimated the effect of finite bandwidth on the scintillation amplitude. Their method is quite similar to
the one used here. They also consider the covariance of amplitudes like our Eq. (9) but neglect aperture averaging,
which permits to do the first integration over frequency analytically. They show that the relative bandwidth of
A/X < 0.25 is still acceptable, having only small influence on the scintillation amplitude. In Fig. 1b the WF for
normal scintillation and a relatively large bandpass A/A = 0.6 is computed, confirming these estimates.

The different sensitivity of normal and differential scintillation to bandpass is explained by the different spatial
filtering. Normal scintillation index corresponds to a low-pass spatial filter. When this filter is combined with
propagation (the sine square term) and the turbulence spectrum steeply rising toward low frequencies, the net effect
is that the scintillation amplitude is dominated by the perturbations of the size comparable to the Fresnel radius
Vv Az and is little affected by the spectral bandwidth as long as A/A < 1. On the other hand, differential scintillation
index corresponds to spatial band-pass filtering. With increasing range the small-scale perturbations in different
colors become progressively de-correlated, reducing the amplitude of polychromatic differential scintillation.

The analysis presented above shows that simple averaging of the monochromatic WFs multiplied by the spectral
response leads to wrong results. This is precisely the method used in Ref. 3 to account for finite bandwidth in the
scintillometer of Ochs et al.% The scintillometer, like MASS, is based on differential scintillation, hence for high layers
the bandpass effect becomes really important.

The WF of differential scintillation in monochromatic light saturates at high altitudes (Fig. 1a). Hence, the
corresponding scintillation index provides a useful measure of the C? integral and seeing in the free atmosphere!!:4,
This is no longer the case for polychromatic scintillation. However, the situation may be corrected by adding to the
differential index a small fraction of the normal index that increases with altitude. In Fig. 1a the dotted line shows
the sum of the differential polychromatic WF (for 4-cm and 2-cm apertures) with the 0.027 fraction of the normal
WF (for the inner 2-cm aperture); this sum is again practically constant at high altitudes. Hence direct estimation
of free-atmosphere seeing from differential scintillation as suggested in Refs. 11, 12 is also possible with wide spectral
bandwidth. Similarly, the measurement of atmospheric time constant 7y by the differential exposure scintillation is
not inhibited by finite spectral bandwidth: I repeated the calculations presented in Ref. 12 for the polychromatic
case (A = 100 nm) and verified that the estimates of 79 remain valid for real profiles of turbulence and wind.

The WFs in the MASS instrument® are computed with the new formula for polychromatic scintillation. The
spectral response is carefully determined for each star by taking into account its spectral energy distribution. A good
agreement between modeled and measured scintillation indices (both normal and differential) was found, their ratio
being equal to 1 within £5%.
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