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Near-ground turbulence profiles from lunar scintillometer
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ABSTRACT
A simple and inexpensive 6-channel array of photo-diodes, LuSci, can measure weak moon-
light scintillation produced by optical turbulence withinfew hundred meters above the ground.
We describe the instrument, its operation, and data reduction. Measured covariances of lunar
scintillation are fitted to a smooth turbulence profile modelwith few parameters. Complete
recipe for calculating the instrument response (includingthe effects of Moon’s phases) is
given. The robustness of the results relative to various experimental factors and model as-
sumptions is investigated. We give examples of the data and compare LuSci with other turbu-
lence profilers. LuSci finds numerous applications in night-time site testing and monitoring.
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1 INTRODUCTION

Optical turbulence in the terrestrial atmosphere critically influences
the capabilities of ground-based telescopes and interferometers. At-
mospheric distortions can be partially corrected with Adaptive Op-
tics (AO). Design and operation of AO systems and interferome-
ters needs detailed information on the optical turbulence profiles
(OTPs) and other parameters such as atmospheric time constant.
New instruments are being developed and tested to answer this
need.

A large fraction of optical turbulence is typically concentrated
in the surface layer (SL) within a few hundred meters above the
ground. At some sites, such as Dome C in Antarctica, the SL com-
pletely dominates the overall seeing. This is also true for day-time
(solar) astronomy. It has been known since a long time (Codona
1986; Seykora 1993) that weak scintillation of extended sources
such as the Sun or the Moon,shadow bands, is mostly produced
in the SL. Beckers (2001) was the first to use this phenomenon for
measuring the SL turbulence with an array of 6 detectors which
record fast fluctuations of the solar flux. This instrument, called
SHABAR, was used in the site survey for a modern solar telescope
and played a decisive role in the final site selection (Socas-Navarro
et al. 2005).

Moon can be used in a similar way to measure the night-time
SL turbulence, as demonstrated by Hickson & Lanzetta (2004). A
detailed analysis of this method was made by Kaiser (2004) in an
unpublished report. A lunar scintillometer consists of an array of
small detectors. Compared to SHABAR, the task of measuring and
interpreting scintillation has some additional challenges (Moon’s
phases, smaller flux, etc.). Nevertheless, this method delivers robust
estimates of OTP near the ground. In this paper, we study various
instrumental and theoretical aspects of this technique.

⋆ E-mail: atokovinin@ctio.noao.edu

A night-time SL turbulence monitor finds the following appli-
cations:

• Measuring the strength of the SL turbulence and its vertical
distribution to predict the performance of ground-layer AO, as has
been done e.g. for the Gemini-North telescope (Chun et al. 2009).
• Measuring the SL at new or existing sites to predict the see-

ing above a certain level or to determine the height of a telescope
building.
• Translating the measurements of seeing obtained by a site

monitor located in a small tower to the level of the telescope.

Compared to the standard technique of measuring the SL tur-
bulence with micro-thermal probes, a lunar scintillometer, LuSci,
has the advantage of being a direct optical method that is self-
calibrated. It does not require a tower. Other optical methods for SL
turbulence measurements are the SLODAR (Wilson et al. 2009) or
the low-layer Scidar, LOLAS (Avila et al. 2008), but LuSci is much
simpler. Obviously, LuSci works only when the Moon is above the
horizon, which makes it unsuitable for continuous SL monitoring.
It is appropriate for working in campaign mode or for calibrating
other methods, e.g. micro-thermals or acoustic sounders.

We begin by describing the LuSci instrument in Sect. 2. The
method of OTP restoration from the measured signals is developed
and tested in Sect. 3. Examples of LuSci applications are given in
Sect. 4, and conclusions in Sect. 5.

2 THE INSTRUMENT

2.1 Operational principle

The scintillometer consists of a linear array of photo-detectors
pointed at the Moon (Fig. 1). Small fluctuations of the photo-
current are recorded with a time resolution of 2 ms during an ac-
cumulation time of the order of 1 min. Covariances between each
pair of signals(i, j) are computed
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Figure 1. Block-diagram of the LuSci instrument. Fast fluctuations of
moonlight are detected by 6 photo-diodes in linear configuration, digitized,
and recorded in the computer. At large distances where the light cones from
detector pairs overlap turbulence produces correlated signals, at shorter dis-
tances there is no correlation. The turbulence profile is determined by in-
voking models of turbulence spectrum and Moon’s shape.

Bi,j =
1

K

K
∑

k=1

(ζiζj)k, (1)

whereζi = Ii/〈Ii〉 − 1 is the normalised fluctuation of the photo-
currentIi at the detectori, K is the number of signal samples col-
lected during the accumulation time.

Theory (Appendix A) relates the measured covariances to the
distribution of the refractive-index structure constantC2

n(z) along
the line of sight:

B(r) =

∫

∞

0

dz W (r, z) C2
n(z). (2)

The coordinate axisz is directed from the instrument to the Moon,
and the transverse coordinates arer = (x, y). Theweighting func-
tions (WFs)W (r, z) are calculated from the known instrument pa-
rameters, Moon’s image, and statistical turbulence model. The WFs
are measured in m−1/3.

Given the set of measured covariances at a number of base-
linesrl (including the zero baseline, i.e. the variance), Eq. 2 is in-
verted to infer the OTPC2

n(z). Practically, the OTP is represented
by a smooth function ofz with a small number of parameters which
are fitted to the data.

2.2 Hardware

The scintillometer hardware should record small-amplitude fast
fluctuations of the Moon’s flux at several locations. Different engi-
neering solutions are possible to do this. We assembled LuSci from
cheap and readily available commercial components (Table 1).
Copies of the instrument can be made with a minimal amount of
in-house work.

Our instrument has evolved with time (e.g. Rajagopal et al.
2008). Here we describe its current version (Fig. 2). Six individual
modules with photo-diodes and amplifiers are located inside theΠ-
shaped aluminium profile of440 × 102 × 40 mm size with a thin
cover. The distances between the detectors (counting from the top)
are (0, 12, 15, 17, 21, 40) cm, forming a set of 15 non-redundant
baselines from 2 cm to 40 cm. The method also works with smaller

Table 1.Commercial components of LuSci

Component Vendor Model Qty

Photo-diode thorlabs.com FDS1010 6
Amplifier Linear Technology LT1464 6
8-channel ADC cyberresearch.com UMDAS 0802HR 1
Web camera 1/4” logitech.com Quickcam Pro 3000 1
Lens F=25mm edmundoptics.com NT56-776 1
Mount celestron.com NexStar 130-SLT 1

Detectors

Blends

ADC

WEB camera

Mount

Counter−weight

Figure 2. The 6-channel LuSci array fabricated at CTIO.

(four) or larger number of detectors. The choice of the configura-
tion is motivated by the need to sample a range of baselines, form
smallest to largest. Each detector is behind a circular aperture of
1 cm diameter. Baffling prevents grazed reflections from the walls
and restricts the un-vignetted field of each detector to10◦ diameter.
Walls separate the light paths of individual detectors, except for the
closest detector pair where the wall is shorter and the outer holes of
25.4-mm diameter partially overlap.

Signals from the detector modules are wired to the 8-channel,
16-bit analog-to-digital converter (ADC) housed in the same box.
The ADC is connected to the personal computer (PC) via universal
serial bus (USB), which also delivers the power. The power to the
detector modules can be provided either from the+5 V USB line
with an additional DC/DC converter, or by an external stabilised
supply of±15 V. The box also contains a web-camera with a 25-
mm lens, enabling remote pointing and tracking. The field of this
camera/lens combination is about10◦.

The silicon photo-diodes FDS1010 have a square active area
of 10×10 mm2. The responsivity is around 0.65 A/W at 900 nm,
with noise-equivalent power of5.5×10−14 W Hz−1/2 at this wave-
length. We use the photo-diodes with zero bias voltage and trans-
form the photo-current into voltage with a 9.1 MOhm resistor in
the feedback loop (Fig. 3). The full Moon gives a photo-current of
about 90 nA, or a signal voltage of about 1 V. The zero bias helps
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Figure 3. Electronic scheme of the detector module.

to maintain a low dark current (otherwise, at the nominal bias of
−5 V the dark current of 600 nA is larger that the Moon’s signal).

The relative fluctuations of the photo-current caused by scin-
tillation can be as small as10−4 (see below in Figs. 4,5). Direct
digitisation of the signal with 16-bit resolution would be barely
sufficient, provided that the full dynamic range of the ADC is used.
This is why we separate the variable (AC) part of the signal above
0.1 Hz by a high-pass filter and amplify it by 90 times with the
second stage before digitisation. However, the average (DC) level
of the signal must be monitored as well. In the previous 4-channel
versions of the instrument, we recorded the DC signal at the output
of the first stage separately. This is not possible with 6 detectors
and 8 ADC channels, therefore a small fraction of the DC signal
is transmitted by the second stage. The ratio of the amplification
coefficients of AC and DC partsKampl ≈ 45 is determined by the
ratio of the resistors, then measured accurately to confirm, and used
to re-normalise the fluctuations. Overall, the electronics behaves
as though all fluctuations above 0.1 Hz were amplified byKampl

times relative to the average signal level. Of course, all signal tran-
sients are amplified as well, so a stabilisation time of∼30 s after
pointing the Moon is needed before the measurements can start.

The ADC reads all channels sequentially at a rate of 5 kHz.
The signals are averaged by the acquisition software to emulate the
synchronous sampling of all channels at 500 Hz (10 reads in 2-ms
time) and to average any rapid noise. Low-pass filtering in the am-
plifiers also helps to suppress noise outside the acquisition band-
width. There was some concern that the large capacity of the un-
biased photo-diode could smooth the signal. A direct test with faint
light flickering at 110 Hz confirmed that the detector and its elec-
tronics behave like an RC-filter with a time constantτ = 0.36 ms
(3-dB bandwidth 440 Hz).

The amplifier partially transmits fluctuations of the supply
voltages, therefore clean power and good grounding are essential.
In the absence of light, the noise spectrum is flat, with typical rms
around 0.3 mv in the 50-Hz bandwidth. This is close to the esti-
mated Johnson noise of the 9-MOhm feedback resistor and less
than the shot noise of the photon signal (0.9 mV for the full Moon).
We estimate that the electronic and photon noises together con-
tribute less than 1% to the variance of the scintillation signal.

2.3 Software and operation

The software to acquire signals and control the instrument is written
in C++ and works under Windows. It was developed under Visual
Studio 6.0. The configuration of the system is schematically shown
in Fig. 1.

Parameters relevant to the operation and data acquisition are
stored in a configuration file. They include geographical site coordi-
nates, number of channels (six), sampling frequency, accumulation

and averaging time, as well as technical data needed to acquire the
signals and control the mount.

We do not rely on the pointing and tracking capability built
into the mount and use it simply as a two-axis pointing device un-
der computer control. The program calculates Moon’s elevation and
azimuth and points the instrument. The azimuth axis is aligned ver-
tically at installation using the bubble level. The zero points in ele-
vation and azimuth are set by powering the mount with the instru-
ment pointed to the North. Small offsets are introduced to correct
the pointing if necessary. As the required accuracy is only of few
degrees, this procedure works well and permits a “cold start” of the
mount remotely (without human presence) using inclination sensor
and digital compass (or home switch) to initialise the pointing. The
signals of those sensors are read through the free channels of the
same ADC device.

The operation is controlled via a graphic user interface (GUI).
Moon’s image from the webcam is displayed to check or correct the
pointing, if necessary. We are also developing an automatic track-
ing on webcam images.

At the start, the software offsets the pointing in altitude and/or
azimuth to measure the sky background. The sky measurement is
repeated after a certain number of Moon measures are collected.
This way, we monitor the background and electronic offset, to be
subtracted from the Moon’s flux for proper normalisation of the co-
variances. Parameters defining the offsets and the numbers of Moon
and sky measurements are read from the configuration file.

Segments of data of 5-s duration are acquired into the com-
puter memory. Average values of signals, their variances and co-
variances are calculated and stored in a text file, together with the
time stamp. The signal values are stored on the disk as unsigned
16-bit integers in another, binary file. Binary data can be accessed
by means of a pointer which accompanies each text record. The
text file is sufficient for calculating normalised covariances, but the
binary data are used for off-line control: checking random and pe-
riodic noise, temporal power spectra and covariances. New text and
binary files are opened each night.

The data saved on the disk are pre-processed by an IDL pro-
gram which calculates the variances and covariances of the sig-
nals normalised by their average values, as required for the OTP
restoration (Eq. 1). The sky level is subtracted from the measured
fluxes and the AC/DC amplification coefficients are accounted for.
The covariances are averaged over time (usually 1 min) and written
to another file. The same program filters the data, removing erro-
neous measurements. The filtering algorithm approximates the flux
in each channel by a polynomial as a function of time and removes
measurements with flux deviations relative to the fit or flux fluctu-
ations within 1 minute larger than 2%. Such data can be affected
by clouds, pointing failures, etc. Other criteria to select valid data
are low sky background (less than 5% of the Moon’s flux) and suf-
ficient number of valid 5-s data segments within each minute. For
a normally operating instrument, the fraction of valid data in clear
conditions is usually larger than 90%.

2.4 Tests

Various tests can be made to assure the good quality of the data.
Temporal spectra calculated from the saved binary data usually
show a smooth decline with frequency, spanning as much as 4
orders of magnitude (40 dB). In some instances there are narrow
peaks caused either by electronic pickup noise (e.g. at 50 Hz) or by
variable light sources which contribute to the flux (e.g. 100 Hz and
harmonics from the street lights in the cities). No such peaks are
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Figure 4. Temporal covariance between two detectors separated by 38 cm
(full line) and auto-covariance of each detector (dotted and dashed lines).
Data from Cerro Tololo, February 5, 2007. The distance between the detec-
tors was 0.38 m.

seen in the data acquired in the LuSci campaigns at various obser-
vatories. The temporal power spectra of the dark noise are flat.

Figure 4 shows the temporal auto-covariance functions of two
channels and their mutual covariance. The signal variance in all
6 channels is equal to better than 5%, showing that the amplifi-
cation coefficients and flux normalisation are correct. The mutual
covariance is wider than the auto-covariance, and its maximum is
displaced from the coordinate origin by the transit time of shadow
bands moving with the projected wind speed. Slow signal fluctu-
ations also cause “wiggles” in the covariance and are the major
source of statistical measurement errors (Appendix C). Wind ve-
locity near the ground can be estimated by fitting a model to the
temporal spectrum of the signal together with the measured OTP
(Rajagopal et al. 2008).

The covariances decrease with the baseline, as plotted in
Fig. 5. On February 6, 2009, this dependence was smooth, indicat-
ing that the SL turbulence was distributed over altitude. In contrast,
the covariances decline very rapidly on February 12, showing that
most of the SL turbulence was below 3 m.

3 PROFILE RESTORATION

Several approaches can be used to derive the OTP from measured
covariances (inversion of Eq. 2). First, a simple linear method is
outlined. It is replaced now by fitting data to a smooth OTP model
with few parameters.

3.1 Weighting functions

The calculation of covariances and WFs is described in detail in
Appendices A and B. The WFs do not depend on the wavelength,
so there is no need to specify the spectral response of the instru-
ment. At distances larger than 100 m, the WFs depend substantially
on the turbulence outer scaleL0, which is usually not measured
(we assumeL0 = 25 m). Figure 6 plots the WFs for LuSci (1-cm
detectors, full Moon). Signals of a pair of detectors separated by
baseliner become correlated at distancesz > r/θ ∼ 100r where
the cones with Moon’s angular diameterθ start to overlap (Fig. 1).
At somewhat shorter distances, the covariance is slightly negative.
The varianceB(0, z) falls down atz < 3 m because of the finite
detector size.

Figure 5. Covariances measured at Paranal averaged over one night are
plotted versus baseline in full lines for the nights of February 6, 2009 (top
panel) and February 12, 2009 (bottom panel). The asterisks show averaged
covariances calculated from the fitted OTP models.

Figure 6.Weighting functionsW (z) for the 6-element array and full Moon.
Full line – variance, dashed lines – covariances for baselines from 2 cm to
40 cm.

Averaging of scintillation by a detector of diameterd can be
neglected forz ≫ d/θ, in which case the transverse scale of the
covariance is determined only by the projected Moon’s diameter,
r ∼ θz. As shown by Kaiser (2004), the change of variables from
(r, z) to (log r, log z) reduces the integral (2) to a simple convolu-
tion. It is natural to use the logarithmic grid inz for calculations
of the WFs and for restoration of the OTP. The resolution∆z/z
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Figure 7. A set of response functionsR(z) for the 6-element array. The
thick full line shows the sum of all response functions.

should be approximately constant. In this respect, LuSci differs
from SLODAR, where the vertical resolution∆z is constant.

3.2 Linear restoration

It can be guessed from Fig. 6 that a difference between two co-
variances at basesr1 andr2 will provide information on turbulence
located betweenr1/θ andr2/θ because the difference of the cor-
responding WFs will peak in this range. The idea can be developed
further by finding linear combinations of covariances having near-
constant response over some range and near-zero response outside
it. Such combinations can be interpreted as integrals ofC2

n.
We define a logarithmic distance grid ofN = 100 points from

z = 0.3 m to 10 km. The fractional stepǫz = zn+1/zn = 1.11 is
fine enough to capture the details of the WFs. The OTP is repre-
sented by then-element vectorC of C2

n values on this grid, the
WFs – as a matrixW of sizeL × N , whereL is the number of
measured covariancesB. In this discrete formulation, the integral
(2) is replaced by a matrix product

B = W′C, W′

l,n = W (rl, zn)ǫzzn. (3)

Any linear combination of the WFs with coefficientsA =
{al} corresponds to the OTP integralJR with someresponse func-
tion R(z),

JR =

L
∑

l=1

alBl =

∫

∞

0

dz R(z) C2
n(z), (4)

where

R(z) =

L
∑

l=1

alW (rl, z), or R = WT A. (5)

We can find linear combinations of WFs which approximate
some desirable responses. The mathematical details are omitted for
brevity because this method is only of historic and didactic inter-
est. It was used in the early LuSci campaigns (Thomas-Osip et al.
2008). Figure 7 gives an example of response functions for the 6-
element array.

The simplicity of this linear method is appealing. The inte-
gralsJR are calculated directly as weighted sums of the measured
covariances. However, these integrals are defined along the line of
sight, making it difficult to account for the zenith angleγ. If tur-
bulence in the SL is concentrated in thin layers, the measuredJ

should be multiplied bycos γ in order to reduce them to the zenith.
On the other hand, ifC2

n(z) = const, the integrals do not depend
on γ. To complicate things further, the response functionsR de-
pend on the Moon’s phase and baseline orientation. Therefore, the
linear method is now replaced by model fitting.

3.3 OTP restoration by model fitting

Representing a continuous unknown OTP by a coarse model with
few parameters is a kind of regularisation necessary to solve the
inverse problem. One does not expect a miracle, i.e. that the model
would render accurately any profile. Instead, we hope that the
model will reproduce correctly the total intensity of turbulence and
its location. The experience of site testing with SHABAR (Socas-
Navarro et al. 2005) shows that individual OTPs are not very useful,
as they contain excessive information. What is really needed usu-
ally is the measurement of turbulence integrals over specific ranges
within the SL.

The OTP model is specified as a set ofC2
n(Zk) values at

K = 5 fixed pivot points Zk = (3, 12, 48, 192, 768) m (here we
refer to the 6-channel array). To enforce the non-negativity of the
OTP, the model parameters areYk = log10 C2

n(Zk). Values be-
tween the pivot points are calculated by linear interpolation ofYk

on the logarithmic distance grid. This is equivalent to represent-
ing the OTP by power-law segments. BelowZ1 and aboveZ5 the
model OTP is extrapolated by constants equal to its values at the
first and last pivot points.

Linear interpolation is expressed in the compact form by in-
troducing theN × K matrixT of triangular functions:

Tk(zn) = 1 − | log10(zn/Zk)|/ log10(4) (6)

for | log10(zn/Zk)| < log10(4) and zero otherwise. This formula
takes advantage of the fact thatZk+1/Zk = 4. Knowing the vector
of model parametersY, the OTP is calculated simply as

log10 C = TY. (7)

This corresponds to the model covariancesB̂ = W′C. We fit model
to the measurements by minimising theχ2 metric

χ2 =
1

L

L
∑

l=1

[(Bl − B̂l)/B0]
2 + βS, (8)

where the OTP smoothnessS is defined as

S =

K−1
∑

k=2

|Yk − 0.5(Yk−1 + Yk+1)|. (9)

The rationale for this metric is as follows. First, we normalise the
residuals simply by the measured varianceB0 rather than by the
estimated measurement errors ofBl because these errors are not
known, they are mutually correlated and of comparable magnitudes
(Appendix C). Second, we add a smoothness penalty with the reg-
ularisation parameterβ = 10−4. If the restored OTP has a spike of
1 dex (i.e. 10 times), the typicalχ2 will increase by 25%. Regulari-
sation helps to select the smoothest solution among many solutions
compatible with the data.

If an OTP is represented by linear (rather than power-law) seg-
ments between the pivot points, the values at these points can be
found immediately because the unknowns and data are related to
each other linearly. However, the non-negativity and smoothness of
the OTP are not guaranteed. The linear model serves to find pre-
liminary values ofYk which are then used as a starting point in
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Figure 8. Test of modelling errors. The input OTP abruptly changes from
5 10−14 to 10−18 m−2/3 at 24 m. Its integral is plotted in the full line.
The integral of the model OTP fitted to the covariances is plotted in dashed
line.

the minimisation of (8). An even better choice is to use the pre-
viously measured OTP (when available) as a starting point. The
minimisation is done with the AMOEBA method (Press, Flannery,
& Teukolsky 1986). Typically,χ2 ∼ 0.022 is reached (see asterisks
in Fig. 5).

The OTP model consisting of power-law segments can repro-
duce very well smooth profiles such as exponential. When the OTP
changes abruptly, e.g. from high to low level, the fitted model is
necessarily inaccurate. Even in this worst-case situation (Fig. 8)
the turbulence integrals are recovered with errors less than 10%.
When we add to all covariances a large constant to emulate the
effect of transparency fluctuations, the dashed curve in Fig. 8 re-
mains practically unchanged (the constant offset is absorbed by in-
creasing the lastYk without affecting values at other pivot points).
However, the fitted model under-estimates turbulence integrals for
very steep OTPs because it does not allow for strong turbulence in
the immediate vicinity of the instrument. For example, for an OTP
C2

n(h) ∝ h−2.5 the estimated SL integral is only 0.6 of its true
value. Nevertheless,C2

n above 3 m is measured correctly. This bias
can be easily fixed by adding another pivot point at 0.75 m.

The data product of LuSci is a text file. Each line contains
the Julian date of the measurement, air masssec γ, SL seeing, and
fitting errorχ2. Then the values ofYk are listed, followed by the
turbulence integrals up to several user-defined heights. Turbulence
integrals over any height interval(h1, h2) can be easily calculated
from Yk. To do this, we take theZk listed at the beginning of the
file, compute the matrixT on a fine logarithmicz-grid and use
(7) to reconstruct the OTP. The integral is found by summing up
C2

n(zi)∆zi in the interval betweenh1 sec γ andh2 sec γ and mul-
tiplying the result bycos γ. The piece-wise power-law OTP can
also be integrated analytically.

A variant of the pivot-points method has been used in process-
ing the SHABAR data (Socas-Navarro et al. 2005). On the other
hand, Hickson, Pfrommer & Crotts (2008) fitted scintillation co-
variances to an OTP model consisting of two decaying exponents.
This imposes an additional constraint on the modeled OTP which
can only decrease with height.

3.4 Robustness of LuSci results

Consistency. Figure 9 shows an example of the OTPs measured
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Figure 9. Results of the OTP measurement on the night of January 9/10,
2009 at Paranal. TheC2

n values at 5 pivot points are plotted as a function of
time on the upper panel. The lower panel shows seeing in the SL (at 500 nm
at zenith) integrated from the instrument to the heights of 4,16, 64, and
256 m calculated from these OTPs.

during one night. A general tendency of turbulence decreasing with
height is seen, but there are some exceptions. Note the slow varia-
tion of the model parameters with time. This shows that the restora-
tion is not dramatically affected by the random noise and that the
two OTPs measured within one minute from each other are similar.

Sky background measured by offsetting the instrument is
under-estimated because the sky around the Moon is brighter. This
leads to under-estimating measured covariances andC2

n by a factor
(1 − ǫ)2, whereǫ is the fraction of the Moon’s flux scattered by
the sky in the10◦ instrument field and unaccounted for by the sky
measurements. The scattered light cannot exceed the total extinc-
tion, so we can safely assume thatǫ < 0.1. The bias can possibly
be removed by modeling the sky brightness around the Moon, for
now we estimate that it is< 20%.

Choice of the pivot points is not critical. Average OTP at
a given site shows a smooth dependence on height, without any
details nearZk. We tried OTP restoration with different sets ofZk

and obtained very similar results. A version of the algorithm using
six Zk with a ratio of 3 (rather than 4) also works well.

Temporal filtering of the scintillation signal can cause under-
estimation of near-ground turbulence. This effect becomes impor-
tant whenV τ/max(zθ, d), the ratio of the wave-front translation
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Figure 10. Reduction of scintillation variance in 1-cm aperture for wind
speeds of 5 m/s and 10 m/s, wind direction perpendicular to the terminator,
8 days after new Moon.

during exposure timeτ = 2 ms by the transverse wind speedV
to the spatial scale of scintillation, becomes comparable to one or
larger. Maximum effect is observed on the varianceB(0).

The temporal filtering is evaluated by including additional fac-
tor in the calculation of the WFs (Appendix B). The ratio of fil-
tered to un-filtered scintillation variance is plotted in Fig. 10 for the
worst-case scenario: 8 days after new Moon, wind direction perpen-
dicular to the terminator. In this case,C2

n can be under-estimated
by as much as 2 times at close distances, but the effect is small at
z > 10 m. For the full Moon or other wind directions the tempo-
ral bias is even less. When the ground wind speed is known, we
account for it in the calculation of the WFs.

Slow signal fluctuationsare not passed by the low-cutoff fil-
ter (0.1 Hz) and are further suppressed by calculating the covari-
ances on 5-s signal segments. Slow scintillation signal originates at
large distances. The 5-s segments correspond to spatial samples of
50 m (for wind speed 10 m/s), so any missed low-frequency signal
is correlated in all detectors. Small variations of atmospheric trans-
parency cause the opposite effect: all covariances are increased by
same unknown amount.

We evaluated the influence of additive bias on covariances (ei-
ther positive or negative) by numerical simulation. It changes the
C2

n values at the highest pivot point. All WFs atz > 700 m are
essentially identical (Fig. 6), so the bias is interpreted by the fitting
algorithm as high-altitude turbulence and accounted for by adjust-
ing the lastYk. However, this has little influence on the remaining
pivot points. The OTP atz < 200 m measured by LuSci is stable
against additive biases in the covariances.

Finite turbulence outer scaleL0 influences the WFs at large
distancesz > L0/(2πθ) ∼ 40 m (for typical L0 = 25 m). The
effect is essentially the same on all WFs. Changes of adoptedL0

affect only the lastYk, like additive bias on covariances. Taken to-
gether, the unknown outer scale, transparency variations, and high-
pass temporal filtering conspire to compromise measurements of
high-altitude turbulence by LuSci. For the same reason, it makes
little sense to increase the baseline beyond 0.4 m. Attempts to re-
late lunar or solar scintillation signal to the total atmospheric see-
ing have been made (Beckers 2001; Hickson, Pfrommer & Crotts
2008), but other methods of seeing measurements like DIMM are
much more reliable. In joint fitting of SHABAR data and seeing,
the outer-scale effect had to be modeled by an additional free pa-

rameter, “missing scintillation” (Socas-Navarro et al. 2005). In the
case of LuSci, we do not attempt to measure the total seeing.

Kolmogorov turbulence spectrum underlines the definition
of C2

n, the interpretation of scintillation in terms of this parame-
ter, and its further use in evaluating seeing or AO performance. As
this model is only a first approximation of the atmospheric distor-
tions, all results are necessarily model-dependent and approximate
as well. This circumstance is often forgotten. Strictly speaking,C2

n

cannot be defined locally because the model assumes stationarity.
We also neglect the anisotropy of the turbulence spectrum, which
can be substantial near the ground.

The spatial scale of optical distortions which produce lunar
scintillation ranges from 1 cm to 1 m at distances from 1 m to
100 m. These scales encompass the range of the Fried’sr0 val-
ues relevant to optical propagation. The validity of the Kolmogorov
model in this restricted range is of little doubt, while potential devi-
ations of the power-spectrum index from its canonical value−11/3
will have only a mild effect. In contrast, extending the measure-
ment range to smaller or larger scales increases the sensitivity to
the turbulence model. For this reason, LuSci uses 1-cm detectors
and makes no attempt to measure turbulence very close to or very
far from the instrument.

Optical propagation is usually treated in the small-
perturbation approximation (Tatarskii 1971; Roddier 1981). Situa-
tions where this approximation fails are not uncommon. For exam-
ple, interpretation of stellar scintillation in the MASS instrument
fails for scintillation indices above 0.6 and requires semi-empirical
corrections otherwise (Tokovinin & Kornilov 2007). Fortunately,
lunar scintillation is described by the geometric optics and is so
small (so far from the focusing regime) that the small-perturbation
theory works perfectly (Kaiser 2004). Therefore, the relation of the
LuSci signal toC2

n is very well defined. The signal itself is just a
flux variation. LuSci does not need any calibration and measures
the C2

n on absolute scale. It is a good method to calibrate other,
less direct techniques of turbulence profiling.

4 SOME RESULTS

Several LuSci instruments have been fabricated by ESO for the site
selection program of the future European 42-m telescope, E-ELT.
In 2008-2009, these lunar scintillometers were extensively tested at
the Paranal observatory in Chile together with other instruments.

The SLODAR turbulence profiler (Wilson et al. 2009) was
modified to measure the SL turbulence with increased resolution
(Osborn et al. 2010) and operated at Paranal simultaneously with
LuSci in February and April 2009 by J. Osborn and H. Shepherd.
Wide binaries were observed to measure the OTP up to∼60 m
height, in 8 equally spaced bins. In Fig. 11 we compare the turbu-
lence integralsJSLODAR andJLuSci from 6 m height above ground
to the upper limit of SLODAR range (which varied from 52 m to
78 m, mean 65 m) calculated from the SLODAR and LuSci data
matched in time to within 1 min. This comparison avoids the first
few meters affected by the strong local turbulence. The medians
of 2096 integrals are0.64 10−13 and0.47 10−13 m1/3 for SLO-
DAR and LuSci, respectively. These median values correspond to
∼ 0.2′′ seeing, so at Paranal the SL turbulence above 6 m is typ-
ically weak. Large scatter between the two instruments is caused
mostly by statistical difference of turbulence which they sample
on different paths, rather than by measurement errors. The sys-
tematic difference (LuSci integrals are smaller by 30%) is likely
explained by the fact that SL at Paranal is slightly tilted. The SLO-
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Figure 11. Comparison between turbulence integrals measured simultane-
ously with LuSci and SLODAR at Paranal.

Figure 12.Comparison of turbulence integrals in the ground layer measured
simultaneously by the MASS-DIMM instrument and LuSci at Paranal in
February 2009.

DAR observed mostly stars in the southern part of the sky, LuSci
was pointed to the Moon in the North. A small, but significant trend
of the ratiolog(JLuSci/JSLODAR) with the difference in air mass
between the instruments supports this explanation.

Integrated turbulence strength in the ground layer is deduced
by the difference between turbulence integrals measured with the
DIMM and MASS instruments (Tokovinin & Kornilov 2007).
These integralsJMD correspond to a response function which starts
at 6 m above ground (the height of the site monitor) and smoothly
falls to zero between 250 m and 500 m. We model this falling part as
linear in height, but this assumption is not critical becauseJMD is
usually dominated by the first few meters. OTPs measured by LuSci
were converted to turbulence integrals with the same response and
compared toJMD. Figure 12 shows such comparison at Paranal
for February 2009 (6 nights, 110 integrals averaged in common 5-
min. intervals). The correlation and systematic difference are obvi-
ous, with median integrals3.6 10−13 and0.41 10−13 m1/3 for the
MASS-DIMM and LuSci, respectively. The MASS-DIMM mea-
sured turbulence almost an order-of-magnitude stronger than LuSci
and SLODAR.

The difference between MASS-DIMM and LuSci at Paranal
is not constant. For example, the median integrals are closer

to each other in July 2009 (MASS-DIMM:5.4 10−13, LuSci:
2.6 10−13 m1/3 ). The difference becomes smaller or even changes
sign when LuSci integrals are calculated from the instrument level
up, rather than from 6 m above ground. Most likely, the Paranal
site monitor is strongly affected by local turbulence, making wrong
the default assumption that both instruments measure the same
horizontally-stratified OTP. Systematic excess of the DIMM see-
ing compared to the seeing in the VLT is a known feature of the
Paranal observatory (Sarazin et al. 2008). It is not our purpose here
to investigate the SL at Paranal. The point is that the new instru-
ment, LuSci, brings new insights.

5 CONCLUSIONS

Our experience with LuSci and the studies reported here show that
this is a robust and cheap method to measure optical turbulence pro-
file in the first 100–200 meters above night-time astronomical sites.
The OTPs are self-calibrated and derived from the optical propaga-
tion – an obvious advantage overin situ microthermal probes. Com-
pared to masts and towers, remote turbulence sounding by moon-
light is non-intrusive; it does not create additional man-made tur-
bulence and could help to detect such effects in other instruments.
This will be particularly relevant at sites with excellent natural see-
ing, where even a small internal turbulence in a DIMM matters.

After testing at Paranal, the LuSci instruments will be used
in the E-ELT site program. The Giant Magellan Telescope project
also plans to use lunar scintillometers for characterising the SL.
The first LuSci campaign at Las Campanas observatory with a 4-
channel array gave encouraging results (Thomas-Osip et al. 2008).
This early instrument also worked at Paranal in December 2007.
The 12-channel lunar scintillometer built at the University of Van-
couver is deployed at Cerro Tololo since 2006 to study the optimum
height of future telescope domes (Hickson, Pfrommer & Crotts
2008). Our model-fitting was successfully tested on the data from
this instrument, and a good agreement with our 6-channel array was
found during the comparison campaign in March 2009.

A new exciting application of lunar scintillometers will be the
study of intense surface turbulence at Arctic and Antarctic sites.
The simplicity and robustness of this method are the key features
in this application. Such instruments are being developed now.
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APPENDIX A: WEIGHTING FUNCTIONS

Here we give the recipe for calculating the weighting functions
(WFs) which relate OTP with measured covariances (Eq. 2). Sim-
ilar derivations can be found in (Codona 1986; Kaiser 2004; Hick-
son & Lanzetta 2004).

Standard theory of optical propagation through turbulence
(Tatarskii 1971; Roddier 1981) provides expression for the spatial
power spectrum of light amplitude at the ground created by a thin
turbulent layer at a distancez:

Φχ(f , z) = α(2π)2λ−2f−11/3C2
n(z)dz sin2(πλzf2). (A1)

The origin of the coordinate system is at the observer, the axis
z is directed towards the light source, other coordinatesx, y are
in the wave-front plane, corresponding to the 2-dimensional spa-
tial frequency vectorf = (fx, fy) and f = |f |. The light
source is monochromatic with wavelengthλ, local turbulence
strength isC2

n(z)dz, the numerical coefficientα = 0.00969.
This equation is valid only for small amplitude fluctuationsχ =
log[E(x, y)/〈E〉] ≪ 1. To account for the finite outer scaleL0,
additional multiplier[1+(f/L0)

2]−11/6 must be included in (A1).
For an extended incoherent source such as Moon, scintillation

patterns produced by different source elements superimpose, lead-
ing to a convolution with the projected source imageA(x, y, z).
For example, a uniform disk of angular diameterθ projects to a
circle of diameterθz and creates the spatial filter

Ã(f, z) = 2J1(πfθz)/(πfθz), (A2)

whereJ1 is the Bessel function. By definition, the filter is nor-
malised so thatÃ(0) = 1. Filtering by the source and detec-
tor of diameterd limits the effective spatial frequencies tof <
1/max[θz, d]. For the Moon’s diameterθ ∼ 10−2 rad, the argu-
ment under the sine in (A1) is always≪ 1. In other words, the Fres-
nel radius

√
λz is always much smaller than the projected source

diameterθz or the detector sized. Replacing sine with its argu-
ment and going from amplitude fluctuations to intensity fluctua-
tions,Wζ = 4Wχ (hereζ(x, y) is the normalised intensity fluctu-
ation,ζ = I/〈I〉 − 1), we get

Φζ(f , z) = α(2π)4f1/3PA(f , z) C2
n(z)dz, (A3)

PA(f , z) = |Ã(f , z)|2. (A4)

This is the geometric-optics approximation where intensity
fluctuations are produced by the local curvature of the wave-front,

ζ(x, y) = z∇2
xyη(x, y, z) ⊙ A(x, y, z), (A5)

η(x, y) = λ/(2π) ϕ(x, y) being the wave-front distortion,ϕ(x, y)
the phase, and∇2

xy the Laplacian operator overx, y. The intensity
fluctuations are achromatic. The approximation of small perturba-
tions which is essential in (A1) can now be dropped because, as
demonstrated by Kaiser (2004), the intensity fluctuations from an
extended source remain very small and Eq. A3 is still valid even
when the point-source scintillation is strong,χ ∼ 1. The validity
of (A3) under strong scintillation is readily proved by numerical
simulation. Whenχ ∼ 1 for a point source, the light is focused
at spatial scales of the order of Fresnel radius

√
λz or smaller. For

an extended source, these fluctuations are averaged out on larger
scales, where the small-perturbation theory remains valid.

The last step in the derivation of the WFs is to combine the
scintillation spectra produced by all turbulent layers, assumed to be
statistically independent. This leads to

Φζ(f ) = α(2π)4 f1/3 [1 + (f/L0)
2]−11/6

×
∫

∞

0

dz z2 C2
n(z) PA(f , z). (A6)

The outer-scale factor is included here. The intensity covari-
ance at baseliner = (x, y) is calculated by the Fourier transform
(FT) of (A6),

Bζ(r) = 〈ζ(r′ + r) ζ(r′)〉 =

∫

d2
f ΦI(f ) exp(2πirf ). (A7)

By changing the order of integration, we finally obtain the for-
mula for calculating the WF,

W (r, z) = α(2π)4
∫

d2
f f1/3[1 + (f/L0)

2]−11/6

× PA(f , z) exp(2πirf ). (A8)

The spatial filterPA(f , z) combines the convolutions with the
source image and detector averaging. It may also account for the
finite exposure time, as detailed in the next Section. If there were
nof1/3 factor under the integral, the scintillation covariance would
be simply proportional to the auto-correlation of the source. In fact
it resembles the source auto-correlation and falls to zero atr > θz,
with some negative “ringing”.

When going from (A3) to (A6), we made the usual assump-
tion that turbulence can be represented by a combination of inde-
pendent phase screens. This is not a very good approximation in the
case of LuSci where the transverse distancer can be of the same
order as the propagation distancez. We repeated the derivation of
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the spectrum of intensity fluctuations starting from the geometric-
optics formula (A5) integrated along the line of sight,

ζ(x, y) =

∫

∞

0

dz z ∇2
xyn(x, y, z). (A9)

The FT over coordinatesx, y is taken and the spatial variations of
the air refractive indexn(x, y, z) are related to the 3-dimensional
spatial spectrum of refractive-index fluctuations

Φn(κ) = 〈|ñ(κ)|2〉 = αC2
n(z)|κ|−11/3, (A10)

whereκ is the 3-dimensional spatial frequency. The Kolmogorov
turbulence model assumes isotropic and spatially stationary ran-
dom process. By allowing the dependenceC2

n(z), we formally
commit an error. An attempt to constrain or measureC2

n locally
violates the statistical model which defines this parameter! There-
fore, the theory can be approximately valid only in situations where
the dependence ofC2

n on coordinates is smooth, on length scales
much larger than the spatial scales of the problem.

We do not reproduce here the full derivation, which leads
to the same formula (A6) where onlyPA(f , z) is replaced by a
slightly modified spatial filter

P ′

A(f , z) = fz

∫ +1

−1

dǫ Y (ǫfz) (1 − ǫ2)

× Ã[f , z(1 + ǫ)]Ã∗[f , z(1 − ǫ)]. (A11)

The functionY (x) is defined as

Y (x) =
∫ +∞

−∞
da(1 + a2)−11/6 e2πiax

≈ 1.68 exp[−5.55x2/(x + 0.24)] (A12)

It is symmetric, falls exponentially to zero for arguments larger
than one, and its integral equals 1. The numerical approximation
in (A12) is accurate to better than 0.5%.

Analytical arguments and numeric calculation show that the
difference between the exact filter (A11) and its approximation
(A4) is small. The Moon filtering means that the spatial frequen-
ciesf ∼ (θz)−1 mostly contribute to the scintillation. The func-
tion Y falls off rapidly, and the integrand is substantially non-zero
for ǫfz < 1, which leads toǫ < θ ∼ 0.01. Therefore, averaging of
the spatial filter in (A11) occurs over a 1% fraction of the propaga-
tion distance and can be neglected. Some difference is found only
at very low spatial frequencies wherezf ∼ 1, i.e. at spatial scales
comparable to the propagation distance, but these scales make no
effect on scintillation.

APPENDIX B: MOON MODELS

The aperture filter function in (A8) is a product of factors corre-
sponding to the Moon’s image and detector. LetO(ξ, η) be the an-
gular intensity distribution in the Moon’s image, then

ÃMoon(fx, fy, z) =
[∫

dξdη O(ξ, η)
]

−1 ∫

dξdη O(ξ, η)

× exp[2πiz(fxξ + fyη)]. (B1)

For a circular detector of diameterd, the filter does not depend on
z and equals

Ãdet(f) = 2J1(πfd)/(πfd). (B2)

The full filter is

PA(f , z) = |ÃMoon(f , z)|2 |Ãdet(f )|2 Pwind(f , z). (B3)

Figure B1. The top panel shows the scintillation covariance calculated for
the true Moon’s image attM = 7.5 d and its re-scaled difference with
the ellipse model. The low panel plots the maximum and minimum model
errorsE = [Bell(r)−BMoon(r)]/BMoon(0) as a function of the Moon’s
agetM .

The multiplierPwind(f , z) = sinc2[V (z)fτ ] accounts for the av-
eraging of scintillation signal during finite sampling timeτ . Here
V (z) is the vector of the ground wind speed andsinc(x) =
sin(πx)/(πx).

In principle, it is possible to use a collection of Moon’s images
in different phases and, for each observation, select the best match
in phase for calculating the WFs or interpolate. This approach ap-
peared too heavy, so we sought to approximate the Moon’s filter. It
turns out that a uniformly illuminated ellipse can serve to calculate
the scintillation covariance to better than 10%. A more sophisti-
catedmatrix model gives an even smaller error.

B1 Ellipse model

We used the collection of Moon’s images with daily sampling of
phases posted by T. Talbott1. The original 800-pixel images were
re-scaled and re-binned on a 1282 square grid in such way that the
image diameter is always 128 pixels and the terminator is oriented
vertically. The images were placed in a 10242 grid and Fourier
transformed (zero padding increases the frequency sampling). We
normalise the square modulus of each FT to one at coordinate ori-
gin, multiply it by f1/3 and transform back to obtain the scintilla-
tion covarianceBζ modulo a constant coefficient.

Elliptical disk has similarities to the actual Moon’s shape, such
as finite extend and sharp edge. Ellipse is characterised by its rel-
ative diametersδx andδy, for a circleδx = δy = 1. The corre-
sponding filter is

1 http://home.avvanta.com/˜thomast/astro/moonphases.html
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Pell(f , z) =

[

2J1(πx)

πx

]2

, x = zθ
√

(fxδx)2 + (fyδy)2 (B4)

For each Moon’s image, we adjust the parametersδx and δy by
matching the equivalent width of the energy spectra of ellipse and
image. Then the dependence of these parameters on the Moon’s
phase (measured by the timetM from the new Moon in days) is
fitted by smooth curves:

δy = 1.02 − 0.0004 (tM − 14.75)2,

δx = 0.96/[1 + 0.0172 (tM − 14.75)2]. (B5)

The scintillation covariance for an ellipse is calculated in the
same way as for the true image. The difference normalised by vari-
ance,E = [Bell(r) − BMoon(r)]/BMoon(0), is a measure of the
modeling error. As shown in Fig. B1, the largest errors occur near
the first and last quarters. On the other hand, the model is good
within ±5 days from the full Moon. The largest errors are found at
the shortest baselines. The full Moon itself does not have a sym-
metric ACF and the model partially accounts for this:δx < δy at
tM = 14.75.

B2 Matrix model

In this model, we approximate the power-spectrum of the Moon’s
image |ÃMoon(f ′)|2 by a 4-th order polynomial intM fitted at
every pixel of the frequency plane. The normalised dimensionless
spatial frequencyf ′ = fθz is used, so the model does not depend
on the distancez or Moon’s diameterθ. The spectra of real images
are calculated in the same way as above, but on the 40002 pixels
grid and with different padding ratio (Moon’s diameter 670 pixels
or 1/6 of the grid size). Only the central4002 pixels of the spectra
are retained, meaning that the details smaller than 10 pixels in the
original images are smoothed out.

We tried first to fit the polynomials over the full range of
Moon’s phases (tM from 2.4 to 24.6), but found that crescent
phases strongly influence the result and degrade the accuracy near
full Moon. Fitting over the restricted range from 7 to 21 days is
done instead. A set of five400 × 400 matrices of coefficients is
combined with powers oftM to get the Moon’s power spectrum.
The difference between scintillation covariances calculated with
the matrix model and with the real images does not exceed±3%
of the variance on the time interval±6 days around full Moon,
8.5 < tM < 21. The maximum difference in covariances between
matrix and ellipse models is 8.7%.

B3 Numerical details

Calculation of the WFs is the most time-consuming part of the OTP
restoration. We refresh the set of WFs every hour, considering that
the change during this interval is small. The Moon’s power spec-
trum for appropriate phase is calculated on a fixed grid (2562 pixels
for ellipse model or4002 pixels for matrix model) in thef ′ space.
A grid of 100 points inz from 0.3 m to 10 km with uniform log-
arithmic sampling is defined. For eachz, the frequency sampling
in m−1 is found, the detector filterPdet(f ) is calculated and mul-
tiplied by PMoon, turbulence spectrum, and the normalisation co-
efficient. If the wind speed and direction are known, thePwind is
included as well.

The WFs for the set of baselines are computed from the scin-
tillation spectrum by FT. The angle between the vertically oriented
baseline and thex-axis (perpendicular to Moon’s terminator) is a

sum of the parallactic angle and the position angle of the illumi-
nated Moon side. We account for this angle in advance by selecting
the fx axis to be parallel to the baseline and rotating the Moon’s
spectrum accordingly. The scintillation spectrum is averaged over
fy, the FT is done in one dimension.

APPENDIX C: STATISTICAL ERRORS OF
COVARIANCES

The covariances are measured with certain statistical errors related
to the properties of the scintillation signal. Here we show that these
errors are dominated by the slow scintillation produced in high at-
mospheric layers and that covariances at all baselines have strongly
correlated errors. The terminology becomes confused when we talk
about covariances of covariance errors, i.e. 4-th statistical moments
of the signal.

Consider theestimate of covarianceB̂i,j between detectors
i and j obtained by averaging the signals over timeT . The sta-
tistical error of this estimate is related to the covariance between
normalised intensity fluctuationsζi with a time lagt,

Bij(t) = 〈ζi(t
′ + t)ζj(t

′)〉. (C1)

The signal variance isσ2 = Bii(0). Textbooks give formulae
for calculating the variances of statistical estimates. For example,
Eq. 8.95 of Bendat & Piersol (1986) reads

Var[B̂ij ] =
1

T

∫ T

−T

dt (1 − |t|/T )

× [Bii(t)Bjj(t) + Bij(t)Bji(t)]. (C2)

In the following we assume that the averaging timeT is much
longer than the signal correlation time. The auto-covariancesBii

andBjj are, of course, equal, whileBji(t) = Bij(−t). This sim-
plifies Eq. C2 to

Var[B̂ij ] =
1

T

∫

∞

−∞

dt [B2
ii(t) + Bij(t)Bij(−t)] =

σ4τij

T
, (C3)

where we define the time constantτij as

τij = σ−4

∫

∞

−∞

dt [B2
ii(t) + Bij(t)Bij(−t)]. (C4)

These time constants depend on the baselines. The time con-
stant for zero baselineτ0 = τii is a useful characteristic of the sig-
nal variation in one detector. The approximation (C3) is valid for
T ≫ τ0. The relative error of the variance measurement is equal to
√

τ0/T .
For calculating the error of the reconstructed profile, we also

need to know the correlation between the errors at pairs of base-
lines. The scintillation signal contains an important low-frequency
component, thereforeall covariance errors, even those involving
different detector pairs, are correlated.

Let B = B̂ij andB′ = B̂kl be two measured covariances,
where some indices may coincide. The signalsζi are Gaussian, so
the fourth moment is expressed by a combination of the second
moments,

〈BB′〉 = 〈ζiζj〉〈ζkζl〉 + 〈ζiζk〉〈ζjζl〉 + 〈ζiζl〉〈ζjζk〉. (C5)

The correlation (we do not say covariance to avoid confusion)
between two errors is

Cov[BB′] = 〈∆B∆B′〉 = 〈BB′〉 − 〈B〉〈B′〉
= 〈ζiζk〉〈ζjζl〉 + 〈ζiζl〉〈ζjζk〉. (C6)
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Continuing the analogy with Bendat & Piersol (1986), the estimates
obtained over a finite timeT ≫ τ0 will have the error’s correlation

Cov[BB′] =
1

T

∫

∞

−∞

dt [Bik(t)Bjl(t) + Bil(t)Bjk(t)]

= σ4τijkl/T. (C7)

The formula (C7) shows that the correlation between the er-
rors of covariances measured at two baselines depends on the tem-
poral covariances at 4 baselines corresponding to all possible pair-
wise combinations of the 4 detectors involved (where some may
coincide).

The temporal covariancesBij(t) can be estimated from the
data itself, as done by Hickson, Pfrommer & Crotts (2008) (see
Fig. 4). Alternatively, a model of turbulence and wind profiles can
be used to get an idea of the expected errors. One such model
(double-exponentialC2

n(h) profile, wind speed 20 m/s at 45◦ an-
gle to the baseline) leads toτ0 = 0.14 s. All τij are longer than
0.085 s andτijkl are longer than 0.05 s, showing the strong corre-
lation between measurement errors on all baselines. For accumu-
lation timeT = 60 s, the relative error of the variance estimate is
√

τ0/T = 0.05.
It is clear that the errors of the measured covariancesdepend

on the scintillation produced by all layers jointly. Scintillation from
high layers is slow and will dominate the measurement errors, even
if we are interested only in measuring the low-altitude turbulence
with LuSci.

This paper has been typeset from a TEX/ LATEX file prepared by the
author.

c© 2010 RAS, MNRAS000, 1–12


