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ABSTRACT

We propose a practical method to calculate Zernike aberrations from analysis of a single
long-exposure defocused stellar image. It consists in fitting the aberration coefficients and seeing
blur directly to a realistic image binned into detector pixels. This ”donut” method is different
from curvature sensing in that it does not make the usual approximation of linearity. We
calculate the sensitivity of this technique to detector and photon noise and determine optimal
parameters for some representative cases. Aliasing of high-order un-modeled aberrations is
evaluated and shown to be similar to a low-order Shack-Hartmann sensor. The method has been
tested with real data from the SOAR and Blanco 4m telescopes.

Subject headings: telescopes

1. Introduction

An experienced optician can detect low-order
aberrations by looking at the defocused image of
a point source, and it is trivial to obtain defo-
cused images with modern telescopes equipped
with CCD detectors. Yet, measurements of low-
order aberrations including focus are still made
by indirect techniques, or using special equip-
ment such as Shack-Hartmann (S-H) sensors. As-
tronomers spend significant time in acquiring “fo-
cus sequences” of stellar images, then fitting the
image half-width vs. focus curve with a parabola
to find the best-focus position.

The appeal of estimating aberrations directly
from defocused images is evident. No special
equipment is needed apart from a regular imager.
The aberrations in the true science beam are mea-
sured, including all optics of the instrument but
excluding additional optics of a wave-front sensor.
The amount of defocus is easily adjustable, pro-
viding flexibility.

It was recognized since long time that optical
aberrations cannot be retrieved from a focused im-
age of a point source without ambiguity. How-

ever, combining two images with a known differ-
ence of aberration provides a solution to this prob-
lem, even for non-point sources. The method of
phase diversity which exploits this idea has been
used since the beginning of the 80-s (Thelen et al.
1999). Phase diversity works well when the image
is sampled to the diffraction limit, e.g. in adaptive
optics (Hartung et al. 2003). This is not the case
for conventional astronomical imagery with a pixel
size matched to the seeing. Yet another method
for extracting aberrations from well-sampled fo-
cused images by means of a trained neural net-
work was suggested by Sandler and later tried by
Lloyd-Hart et al. (1992). The authors note that
their method is extremely computationally inten-
sive and has some subtleties. To our knowledge,
this method is not in use nowadays.

The relation of the intensity distribution in a
defocused image to the local wavefront curvature
is described by the so-called irradiance transport
equation (Roddier 1990). This relation is basic to
curvature sensing as used in adaptive optics (Rod-
dier 1999). A commercial software package for
telescope aberration analysis based on the same
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principle has been developed by Northcott1 and
is used at some observatories. This method, how-
ever, is not very practical because it requires two
images with relatively large and equal defocus of
opposite sign.

The need of two images for curvature sensing
has been questioned by Hickson (1994) who shows
that even in the context of adaptive optics a single
extra-focal image is sufficient and provides a better
signal-to-noise ratio with a CCD detector and faint
guide stars, despite scintillation noise. One image
is sufficient for non-ambiguous aberration retrieval
as long as the rays originating from different parts
of the aperture do not cross each other, i.e. for
a sufficiently large defocus that avoids caustics.
The minimum defocus is proportional to the am-
plitude of higher-order aberrations. Ragazzoni et
al. (2000) have used this technique in their ex-
periment.

The intensity transport equation is not valid
for a small defocus, where physical optics must
be used instead. However, this is not an obstacle
for sensing low-order aberrations, as long as they
are small enough, so that a relation between aber-
ration and image intensity remains linear. Bhar-
mal et al. (2005) develop such near-focus sensing
technique for low-order adaptive optics, providing
in their paper several valuable insights into this
problem. However, their method still requires two
images, intra- and extra-focal.

Here we present a quantitative method of mea-
suring optical aberrations from a single defocused
image. Such images often resemble donuts (be-
cause of the shadow at the center caused by the
central obscuration in a Cassegrain telescope), so
we call this technique “donut”. This work is pri-
marily motivated by the need for a simple wave-
front sensing method for the SOAR telescope in
Chile (Sebring et al. 1998; Krabbendam et al.
2004). All numerical examples in the article were
computed for a telescope diameter D = 4.1 m with
a central obscuration 0.24, appropriate for SOAR.
The proposed technique is primarily intended for
active optics, it is too slow for real-time correction
of turbulence.

The donut method is different from standard
curvature sensing. We use physical optics and di-

1Northcott, M.J., The ef wavefront reduction package. 1996,

Laplacian Optics Inc.

rectly fit a model of the aberrated image to the
measured “donut”. The initial approximation is
obtained from the second moments of the intensity
distribution as described in Sect. 3. Then an iter-
ative fitting algorithm presented in Sect. 4, with
further details in the Appendix, is used to refine
the model including higher order aberrations. In
Sect. 5 we evaluate the errors of aberrations mea-
sured by this method and compare it to a low-
order Shack-Hartmann sensor while examples of
actual performance are given in Sect. 6. Finally
we present our conclusions in Sect. 7.

2. Image formation

To begin the presentation of our algorithm we
recall the textbook theory of image formation, e.g.
(Born & Wolf 1968). Let a be the 2-dimensional
angular coordinate in the image plane (in radians)
and x – the coordinate in the plane of telescope
pupil. The shape of the wave-front is W (x) and
the phase of the light wave is φ(x) = (2π/λ)W (x)
for the wavelength λ. Then the intensity distribu-
tion in the image plane I(a) is computed as

I(a) = I0

∣

∣

∣

∣

∫

P (x)eiφ(x)−2πixa/λ d2x

∣

∣

∣

∣

2

, (1)

where P (x) is the pupil transmission function and
the normalization constant I0 is of no importance
here.

In our implementation of the algorithm, the
computation of (1) is carried out using the Fast
Fourier Transform (FFT) on a square numerical
grid of K ×K points (Fig. 1). The linear size L of
the pupil-plane grid should be large enough for a
telescope diameter D, L ≥ D; critical sampling of
diffraction-limited images requires L ≥ 2D. Then
the pixel scale in the image space is λ/L (smaller
than the diffraction limit λ/D) and the size of the

Pupil space
K pixels K pixels K/m pixels

Image (CCD pixels)

D

L

Image (computing grid)

K*  / Lλ

Fig. 1.— Computational grids and scales.
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field of view is Kλ/L. We select a part of the im-
age centered on the star that fits into this field. In
the case of large telescopes the pixel scale is small,
hence we are forced to select a large grid size K
to have enough field, at the cost of slower calcula-
tion. For computational efficiency K has to be an
integer power of 2. The choice K = 256 is good
for a 4-m telescope.

The CCD pixels are normally much larger than
λ/D, hence the resulting image has to be binned
by some factor m. The number of “coarse” CCD
pixels is then NCCD = K/m. Considering that K
is a power of two, both m and NCCD also have to
be integer powers of two. Typically, NCCD = 32
and m = 8. The CCD pixel size is then p = mλ/L.

The wavefront is represented as a sum of
Zernike aberrations up to some number Nz,

W (x) =

Nz
∑

j=2

ajZj(x). (2)

Zernike polynomials in the form of Noll (1976) are
used. Their amplitudes (coefficients aj) are equal
to the rms wavefront variance over the pupil. The
piston term (j = 1) is omitted. Defocused images
(donuts) are obtained by setting the focus coeffi-
cient a4 to some large positive or negative value.

A monochromatic image computed from (1)
contains sharp details of the size λ/D caused by
diffraction. These details are usually not seen, be-
ing smoothed by coarse detector pixels and seeing.
In this case the monochromatic image model also
represents broad-band images, and we can even

Fig. 2.— Mosaic of 8 defocused images with
Zernike aberrations from 5 to 12 (left to right and
top to bottom) of 0.3 µm amplitude. Seeing 1′′,
defocus 3.3 µm. Each image is 7.48′′ wide, 32x32
pixels, D = 4.1 m.

use a value of λ in the simulation which is larger
than the actual wavelength of observation to, in
effect, increase the size of the modeled field.

The blur caused by the time-averaged seeing is
modeled as a convolution with a Gaussian kernel.
The FWHM of the seeing disk ε is proportional to
the Gaussian parameter σ, ε = 2

√
2 ln 2σ ≈ 2.35σ.

The convolution is computed in frequency space
by multiplying the FFT of the image, Ĩ(f), by a
filter

Ĩs(f) = exp(−2π2σ2|f |2) (3)

and doing the inverse FFT. This double FFT is
costly in computing time if done on the full K×K
grid. When detector pixels are smaller than ε, as
is the case of astronomical imagers, a much faster
calculation on a grid of (binned) detector pixels
is justified. Seeing, together with a set of Zernike
coefficients, forms a vector of parameters that de-
fine the donut model. We put the seeing in the
first element of this vector ε = a1, replacing the
useless piston term. An example of donut images
corresponding to first few Zernike aberrations is
shown in Fig. 2.

3. Second moments

First-order moments (centroids) of telescopic
images are widely used for guiding. Here we show
that the second moments are equally useful for
estimating the second-order aberrations, defocus
and astigmatism.

Let Iij be the image of a point source presented
as an array of detector pixels i, j. The coordinates
x and y are measured in pixels. The zero-order
moment I0, first moments xc and yc (in pixels)
and the second moments Mx, My, and Mxy (in
square pixels) are:

I0 =
∑

Iij

xc = I−1
0

∑

xijIij

yc = I−1
0

∑

yijIij

Mx = I−1
0

∑

(xij − xc)
2Iij

My = I−1
0

∑

(yij − yc)
2Iij

Mxy = I−1
0

∑

(xij − xc)(yij − yc)Iij (4)
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Evident combinations of the second moments
relate them to defocus and astigmatism. Indeed,
the defocus should be proportional to the size of
the donut which, in turn, is the average of its size
in x and y. The 45◦ astigmatism a5 causes image
elongation in the diagonal direction and should be
proportional to Mxy, whereas a6 should be pro-
portional to the difference of the image size in x
and y. Thus, we introduce the coefficients A4, A5,
and A6 and express them in angular units (e.g.
arcseconds) with the help of the angular size of
detector pixel p:

A4 = p
√

(Mx + My)/2

A5 = pMxy(MxMy)−1/4

A6 = 0.5p(Mx − My)(MxMy)−1/4. (5)

Next we must find the relationship between
those coefficients and the Zernike amplitudes. In
the case of defocus, this is relatively straightfor-
ward. The second moment of a uniform disk of ra-
dius ρ is readily calculated to be Mx = My = ρ2/4.
On the other hand, the angular radius of the de-
focused image ρ is found as the first derivative
of the wavefront at the edge of the pupil (in the
geometrical-optics approximation),

ρ = a4
8
√

3

D
, (6)

where a4 is the Zernike coefficient of the wavefront.

This leads to A4 = a4(4
√

3)/D. There is similar
linear relation between A5 and a5 with a different
coefficient. We did not derive this analytically, but
rather found the coefficient by means of numerical
simulation, A5 = 0.23a5/D and A6 = 0.23a6/D.

Our simulations show that A5 and A6 are
indeed very good measures of the astigmatism
(Fig. 3). To the first order, they do not depend
on defocus (provided it is larger than the astigma-
tism itself) and on other higher-order aberrations.
On the other hand, the linear relation between
A4 and a4 holds only when the defocus dominates
the seeing blur and pixel size, and there is always
some bias.

Second moments provide an easy and fast way
to evaluate the defocus and astigmatism. To re-
cover the sign of these aberrations, however, we
need to know if the donut is intra- or extra-focal.

Fig. 3.— Focus aberration a4 (top) and astigma-
tism a5 (bottom) measured by moments, as a func-
tion of true coefficients. For the astigmatism, the
defocus of 3 µm is set. Pixel size 0.′′5, seeing 0.′′3,
0.′′5 and 1′′.

The moments are used as a first step in fitting
models to a donut image.

Second moments are finite in geometrical-optics
approximation but they diverge in physical optics
because the intensity of a diffraction spot does not
decrease rapidly enough. Practically, only a finite
number of image pixels is considered, hence the
divergence of second moments is not an issue.

The computation of A4 may be used as a more
efficient means of focusing the telescope than the
traditional focus sequence. Figure 3 shows that a
dependence of the image size on the true focus has
zero slope near a4 = 0, hence the method of focus
sequences (series of images near best focus) has
the lowest sensitivity to focus and the highest sen-
sitivity to seeing variations. By taking one image
sufficiently far from focus and extrapolating back,
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we obtain a better sensitivity and less vulnerabil-
ity to seeing. However, a small bias due to seeing
still remains. This can be eliminated by taking two
images with large defocus bracketing the expected
true focus. Let A+

4 and A−

4 be the focus parame-
ters (without sign) derived from these two images
that correspond to the focus encoder settings F +

and F−, respectively. Evidently,

A+
4 = α(F+ − F0) + δ

A−

4 = α(F0 − F−) + δ, (7)

where F0 is the encoder setting for perfect focus, α
is the proportionality coefficient specific for each
telescope, and δ is the small bias due to seeing,
which we assume to be the same for both expo-
sures. It is possible to determine two unknowns
F0 and δ from this system, so the true focus en-
coder setting is

F0 = (F+ + F−)/2 + (A−

4 − A+
4 )/(2α). (8)

The reason this method is not in common use
at observatories is likely related to the need to de-
termine the value of α for each telescope/detector
combination and the need to have a reliable fo-
cus encoder. However, the method should be
faster and more accurate than traditional focus
sequences. Hopefully, it will become a standard
tool in astronomical imaging.

4. Iterative model fitting

Moments

Difference

Donut image −

small? X

Correction

Inverse matrix

Model image

Interaction matrix

ε ,a ,a ,a ,...
2 3 4

yes no
stop

Initial modelstart

Fig. 4.— Block-diagram of the fitting algorithm.

The relation between the phase aberrations and
resulting image is doubly non-linear. The first
non-linear transformation occurs in the conversion
from the phase distribution φ to the complex light

amplitude eiφ. The second non-linear transforma-
tion is the calculation of the intensity distribution
as a square modulus of the FFT. Thus, it is not
possible to fit a model in a straightforward way,
but rather iterative methods have to be employed.
At each iteration, small differences between the
model and the image are translated into small cor-
rections to the model.

An insight into the fitting process is provided by
the theory of curvature sensing (Roddier 1990).
A defocused image can be considered as being an
approximate image of the pupil where each aber-
ration produces a signal proportional to the local
curvature (Laplacian). Thus, in the limit of small
aberrations, the intensity distribution in the donut
can be represented as the sum of Laplacians of
the Zernike modes with suitable coefficients and
scaling. This provides the required linearization
for deriving the correction at each iteration step.
In other words, a combination of a large known
aberration (defocus) with small high-order aber-
rations leads to an approximate linearization of
the image-formation process with respect to high-
order terms.

The method of modeling the donut is as follows
(Fig. 4). The first estimate of the Zernike coeffi-
cients up to a6 is derived by the method of mo-
ments (we initially set a1 = 0.′′5). At the second
step, the gradients of the model with respect to
each of the parameters are computed as differences
between the model image and images obtained by
varying each Zernike coefficient by a small amount.
These differences are computed for each pixel of
the image and combined in the interaction matrix

H of the size Np ×Nz, where Np is the total num-
ber of pixels in the image and Nz is the number
of fitted Zernike terms. This matrix relates small
variations of the parameters (seeing and Zernike
coefficients) to the variations of the signal – inten-
sities in each pixel. The seeing is considered as an
additional unknown parameter and fitted jointly
with the aberration coefficients.

The matrix H is inverted, so the differences
between the model and the actual image can be
converted into the corrections to the Zernike co-
efficients. The new set of coefficients is the new
model which, hopefully, is a better approximation
of the donut. The process of image formation be-
ing non-linear, we have to repeat this linearized
fitting again and again iteratively until the model
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converges. The algorithm is similar to the closed-
loop wavefront control algorithm used in adap-
tive optics: at each iteration we obtain a better
approximation to the donut. Further details are
given in the Appendix.

The number of “resolution elements” across the
pupil is of the order 2ρ/ε. Thus, if aberrations of
high-order are to be measured, a larger donut ra-
dius ρ is needed. On the other hand, curvature
sensors are known to suffer from severe aliasing,
where un-modeled high-order aberrations distort
the low-order coefficients. Hence, a defocus of
2ρ/ε ∼ n is recommended for sensing aberrations
up to the radial order n. These considerations are
further developed in the next Section.

5. Performance of the donut algorithm

5.1. Aliasing

Fig. 5.— Aliasing coefficients of Zernike astig-
matisms a5 (full line) and a6 (dash). Seeing 1′′,
pixel scale 0.′′23, defocus 2ρ = 3.1′′, modeling up
to Nz = 11.

Suppose we want to measure Zernike coeffi-
cients up to 11 (spherical aberration) by fitting
a model to the donut. To what extent is the re-
sult distorted by the presence of high-order aberra-
tions? Let ak 6= 0 be the amplitude of un-modeled
high-order aberration (k > Nz) which produces
an error ∆aj of the j-th coefficient. The ratio
∆aj/ak is called the aliasing coefficient. Figure 5
plots these coefficients for astigmatism (j = 5, 6).
The a5 term is aliased mostly with a13 and a23

assuming seeing of 1′′. The condition 2ρ/ε ∼ n

is approximately satisfied in this example. How-
ever, if the seeing improves to 0.5′′, the aliasing
coefficient with a13 increases from −0.35 to +2.

Clearly, aliasing can be a problem for a donut
sensor, as it is for any curvature sensor. The ev-
ident solution, though, is to increase the order of
the fitted model until all aliased terms are explic-
itly taken care of. Another way to reduce the
aliasing is to decrease the defocus to the mini-
mum value required to measure a selected set of
low-order aberrations.

For comparison, we studied the aliasing of astig-
matism measured by a 2x2 S-H sensor. We find
that, if the full telescope aperture is used, the
aliasing coefficient of a5 with a13 is +1.4, and
that the aliasing coefficient is even larger for some
higher terms. The aliasing of an S-H sensor can
be reduced by reducing the portion of the aperture
used for a 2x2 sensor or by increasing the order of
the sensor. It is clear, however, that aliasing in a
low-order S-H sensor is of the same order as for
the donut method, with less options available for
decreasing it.

5.2. Detector noise

In some instances it is important to measure op-
tical aberrations with relatively faint stars. The
readout and photon noise may then become an
issue because the light in a donut is spread over

Fig. 6.— The rms noise of the astigmatism co-
efficient a5 for various diameters of the donut
and different CCD pixel scales (indicated on the
plot) under 1′′ seeing. Readout noise 10 electrons,
Nph = 1000.
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many CCD pixels. The problem can be studied by
simulating a series of noisy images and evaluating
the scatter of the measured Zernike coefficients.
However, a much faster analytical evaluation of
the errors is available through the covariance ma-
trix, Eq. A5. We have verified that this method
gives an answer which is consistent with the results
of direct Monte-Carlo simulation.

For a given total number of detected photons
Nph and a given readout noise R, the errors of
measured Zernike coefficients depend on the size
of the donut, the size of detector pixel, seeing and
aberrations. In the following we assume that all
aberrations except defocus are corrected, as would
be appropriate in an active-optics application; if
this is not true, the results would be different.

An example of optimization for measuring a5

under 1′′ seeing is shown in Fig. 6 for a faint star,
when the noise is mostly dominated by the de-
tector readout noise. The optimum pixel scale
in these conditions is about 1′′ and the optimum
donut diameter is about 2.5′′. However, large de-
viations from these optimum values cause only a
minor increase of the noise. The optimum param-
eters depend on the Zernike number, on seeing and
on the flux Nph. A reasonable choice of parameters
can be made to ensure a near-optimum measure-
ment of several Zernike coefficients for a range of
seeing conditions.

Fig. 7.— The rms noise of the astigmatism coeffi-
cient a5 vs. total number of photons Nph for donut
method (2ρ = 2.′′5, pixel size p = 0.′′75, readout
noise R = 10) and for a 2x2 S-H sensor (p = 0.′′75,
R = 10). In both cases seeing is 1′′.

In the case of faint stars when the detector noise
R dominates, the errors of the Zernike coefficients
must be proportional to R/Nph. The calculations
show this to be approximately true up to Nph ∼
10 000 (for our choice of R = 10). At larger flux,
the errors improve only as 1/

√

Nph. However, the
photon-noise errors in the bright-star regime are
so small that they become irrelevant compared to
other errors.

The intensity modulation in the donut increases
with increasing number j (at constant amplitude
aj), because it is roughly proportional to the cur-
vature. Equating the modulation with noise, we
expect that noise propagation decreases with j.
This is indeed the case. One notable exception,
however, is the spherical aberration which can
have an error much larger than other terms of the
same order. We trace this anomalous behavior
to the cross-talk between a11 and seeing. Indeed,
processing of real data shows that the estimates of
a11 and ε are often less repeatable, compared to
other terms.

We compared the sensitivity of the donut
method for measuring astigmatism with that of
a 2x2 S-H sensor and found that their perfor-
mance in the low-flux regime can be very similar
(Fig. 7). The noise was computed by the same
method for both measurement techniques i.e. by
relating errors of pixel intensities directly to the
errors of Zernike coefficients. This should give the
lowest possible error. In practice, aberrations are
normally derived in a S-H sensor from centroids
of the spots, hence with somewhat larger errors.
Naturally, the noise depends on the parameters
such as defocus, seeing, and pixel size, hence in
some situations S-H sensors can perform better
than donut. S-H is to be preferred for measure-
ment of atmospheric tip-tilt errors. The formal
sensitivity of donut to tip and tilt is only slightly
inferior to that of S-H, but at short exposures the
centroids of the donut images will be severely dis-
placed by higher-order aberrations and will not
provide good measurements of tilts.

5.3. Convergence and reliability

The iterative fitting has been tested on different
simulated donut images and always produced the
expected result. However, processing real data is
sometimes more tricky. The interaction matrix H
depends on the aberrations, it changes between
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different images and even during the fitting of one
image. When a large number of Zernike terms is
considered, it is common to encounter low singular
values in H. This means that some combinations
of parameters are not well constrained by the data,
hence the noise will be amplified. Leaving such
combinations un-fitted by rejecting small singular
values does not solve the problem because we may
obtain a good model of the donut image with a
parameter set which is very different from the true
parameters. This happens when significant high-
order aberrations are present, but the defocus is
not large enough, i.e. in the caustic regime.

One way to get around this problem is to de-
termine high-order aberrations separately (e.g. by
fitting a bright-star image with a large defocus)
and then to include them in the model for low-
order fits. Including such pre-defined parameters
(we call them static aberrations) improves the con-
vergence and the fit quality. Low-order fits are
more stable and give reproducible results. How-
ever, the coefficients of low-order aberrations de-
rived in this way depend on the adopted static
aberrations: a different result is obtained from the
same data when a different vector of static aber-
rations is supplied initially.

5.4. Other error sources

In real life, optical aberrations in the beam
change with time because of the instability of tele-
scope optics, the changing refractive index of the
air in the dome, and seeing. Averaging donut im-
ages over a sufficiently long time T (typically 10-
30s) reduces the contribution of variable aberra-
tions only by a factor of

√

τ/T , where τ is the time
constant of the variation. Consider, for example, a
4-m telescope with 5 m/s wind and 1′′ seeing. The
rms amplitude of the random astigmatism caused
by the seeing is 270 nm, according to the formu-
lae of Noll (1976), and its time constant is 0.25 s.
Thus, in a 10-s exposure we expect a random er-
ror of astigmatism of the order of 40 nm, or larger
if the wind is slow and/or some aberrations are
produced by air inside the dome. The statistical
noise can be reduced by taking longer exposures
but may still remain a dominating error source.

If the donut image is blurred in one direction by
imperfect guiding or telescope shake during the ex-
posure, this departure from the ideal model will re-
sult in spurious aberrations, mostly astigmatisms

of 2-nd and 4-th order. Simulations for the case of
SOAR show that a blur of 1′′ causes errors of a6

and a12 of only 20 nm, a smaller blur has negli-
gible effect. Hence the blur is never a problem at
modern telescopes with good tracking.

6. Examples

6.1. Internal consistency

Fig. 8.— Intra-focal (top) and extra-focal (bot-
tom) astigmatic images taken at SOAR on March
6/7 2005 (on the right) and their corresponding
models (on the left). Pixel size 0.′′154, field of view
9.′′85. The exposure numbers are 113 (top) and 115
(bottom).

Several series of defocused images were taken at
the SOAR telescope in March 2005 and processed
with the donut algorithm. One example shown
in Fig. 8 was acquired with a pixel scale of 0.′′154
and 25-s exposure time using a conveniently bright
star. An astigmatism was introduced intention-
ally by de-tuning the actively controlled primary
mirror. Extra- and intra-focal images were fitted
independently of each other with Nz = 28 terms.
At each focus setting, two images were acquired.
The defocus of 3 µm produces donut images of 4.′′2
diameter. The results (Table 1) show a good co-
herence of the measurements, irrespective of which
side of the focus they were taken. The residuals
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Table 1: Some Zernike coefficients (µm rms) measured on SOAR images with artificial astigmatism.
Image Seeing, ′′ a4 a5 a6 a7 a8

113 0.936 −3.704 −1.061 1.205 0.042 0.126
114 0.978 −3.537 −1.165 1.264 −0.006 0.130
115 1.211 3.271 −1.225 1.239 −0.055 0.033
116 1.090 3.028 −1.487 0.852 0.077 −0.242
137a 0.871 −4.668 −1.446 0.133 0.570 0.783
137b 0.851 −4.590 −1.431 0.135 0.555 0.762
137c 0.858 −4.645 −1.426 0.080 0.623 0.783
137d 0.884 −4.853 −1.504 0.185 0.630 0.770

between model and image are from 5% to 9%. The
presence of uncorrected (but well-modeled) high-
order aberrations is evident in Fig. 8.

Yet another test was done by fitting defocused
images of different stars in the same exposure. The
flux in the image 137a is 30 times more than in the
image 137d, yet the Zernike coefficients derived
from these images agree well (Table 1). Here, the
fit has been limited to 11 terms (with static aber-
rations up to a28), because full fitting of 28 terms
did not give reproducible results. This instabil-
ity is apparently caused by significant high-order
aberrations, as seen in Fig. 8.

An estimate of the internal accuracy of the
donut method was obtained by processing several
consecutive images. The rms scatter of the coeffi-
cients for 2-nd and 3-rd order aberrations ranges
typically from 0.05 to 0.15 µm for 60-s exposures.

6.2. Comparison with a Shack-Hartmann

WFS

The donut method has been compared with the
SOAR high-order Shack-Hartmann control WFS
(CWFS) that is part of the active-optics system
used for tuning the primary mirror. The response
of the primary mirror actuators was calibrated in-
dependently by the manufacturer and is ∼ 1.6
times larger than the aberrations measured by the
CWFS.

The donut data were taken with the SOAR im-
ager and binned to the pixel scale of 0.′′154. Three
60-s exposures for each setting were processed in-
dependently, providing an estimate of the mea-
surement errors. The CWFS data are single mea-
surements with 10 s exposure, more vulnerable to
the insufficiently averaged atmospheric and dome
turbulence than donuts. The measurements with
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Fig. 9.— Comparison between donut and CWFS
at SOAR. (a) Astigmatism changes caused by the
telescope motion in elevation as measured by the
CWFS (horizontal axis) and donut (vertical axis).
The data was taken on April 13/14 2006. (b) Two
astigmatism coefficients measured with donut as
the mirror shape is de-tuned with an amplitude of
±1 µm and step 0.25 µm (April 15/16, 2006).

donut and CFWS are sequential as these devices
occupy different focii of SOAR. The Zernike coef-
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ficients obtained with donut were rotated to the
CFWS system by the known angle between these
instruments. Both instruments give Zernike coef-
ficients on the same scale – rms microns of wave-
front aberration.

Figure 9a shows a comparison between the two
sensors as the telescope was tipped in elevation
and brought back. The systematic trend of the 0◦

astigmatism with elevation is evidenced by both
methods, with some offset and scale factor ap-
parent from the linear regression. The scatter of
points around this regression is typical for such
tests and compatible with the internal consistency
of each method.

For another test, the shape of the SOAR pri-
mary was distorted by “dialing in” astigmatism
coefficients in 0◦ and 45◦ with a full amplitude
±1 µm and a step 0.25 µm (these numbers refer to
the primary mirror aberrations as determined by
the manufacturer). The mirror was initially flat-
tened with the CFWS. The result (Fig. 9b) shows
that the donut method measures these aberrations
with a coefficient of ∼ 1.6 (same as the CWFS)
and an offset presumably arising from the fixed
difference of optical aberrations between the focii
of CWFS and imager.

6.3. Mosaic imager at the Blanco tele-

scope

The classical 4-m Blanco telescope at Cerro
Tololo is equipped with the wide-field CCD mo-

Fig. 10.— Variation of the coma coefficient a7

across the field in one of the detectors of the Mo-
saic imager on the Blanco telescope.

saic at its prime focus. The pixel scale is 0.′′27. We
processed donut images extracted from the stan-
dard focusing sequences (exposure time 10 s per
focus setting, maximum defocus 1.5 to 2 µm). Al-
though these data were not intended for the aber-
ration analysis, fitting them with donut models
was quite successful, with a typical rms intensity
residuals of 6% for 28 Zernike terms. The fitting
takes 20–30 s on a 1 GHz PC with K = 256 grid.

Comparing the coefficients of low-order aberra-
tions determined from the first and the last images
in each sequence, we find a typical difference of
0.1 µm or less, i.e. similar to the SOAR data pre-
sented in Table 1. The most likely reason of these
differences is a real slow variation of the aberra-
tions between exposures in the focusing sequence.

We processed the first image of the focusing se-
quence extracted from 11 different stars in one of
the detector segments. These images are simul-
taneous and the scatter of the measured coeffi-
cients in this test was much smaller, from 0.025 to
0.073 µm. Part of this scatter is caused by real
variations of the aberrations across the field. Fig-
ure 10 shows a clear trend in the coma coefficient
a7 as a function of the y-coordinate of the star.

This example shows how a quantitative analysis
of optical aberrations can be done with simplicity,
as a by-product of standard observations. It is
possible to measure aberrations across the field of
a prime-focus camera with a Hartmann mask, but
the donut technique makes this task much easier.
The rms accuracy can reach 25 nm, or λ/25.

7. Conclusions

We have shown that focus and astigmatism can
be evaluated quantitatively from the second mo-
ments of defocused images. One useful application
of this analysis will be a fast and accurate focus-
ing procedure for classical imaging, suggested here
as a replacement of traditional focusing sequences.
Furthermore, donut images can be fitted directly
to a set of Zernike coefficients (complemented with
an additional parameter, seeing), offering a prac-
tical way to measure aberrations and to tune the
optics of ground-based telescopes.

The donut method proposed here is different
from the standard curvature sensing in several as-
pects. First, only one defocused image is needed.
Second, no simplifying assumption of linearity is
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made, hence the defocus may be quite small while
measuring aberrations of significant amplitude –
comparable to the defocus itself. Third, we do
not use the intensity transport equation (Rod-
dier 1990) but rather compute the image model
by a full Fraunhofer diffraction integral using an
FFT. Finite detector pixel size and additional blur
caused by the seeing are explicitly taken into ac-
count. These two effects usually wash out any
traces of diffraction, so the calculated monochro-
matic image is a good model of a wide-band image
as well.

The down-side of the full diffraction image mod-
eling is a slow calculation time (a few seconds for
a 4-m telescope) and a restriction of the modeled
field of view. The donut method will work best for
small defocus values and for measuring low-order
aberrations. On the other hand, classical curva-
ture sensing would be probably a better choice for
high-resolution sensing, where a wave-front map
(rather than Zernike coefficients) is sought.

We plan to apply the donut technique to the
closed-loop control of the SOAR active optics and
to optical characterization of other telescopes at
CTIO. The method seems to be simple and mature
enough to be offered to other interested users. So
far, it is implemented in the IDL language.

We thank D. Maturana, S. Pizarro and H.E.M.
Schwarz for taking defocused images at SOAR,
B. Gregory for processing the images and his valu-
able comments, A. Rest for the help in extracting
the Mosaic data. The comments of P. Hickson on
the draft version of this paper are gratefully ac-
knowledged.
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A. Fitting algorithm

The interaction matrix H relates intensity changes in the detector pixels to the variation of the Zernike
coefficients. The size of H is Np ×Nz elements, where Np is the total number of pixels in the modeled donut
image and Nz is the number of modeled Zernike terms (including seeing which replaces the piston term).
The pixels are re-indexed sequentially, i = 1, 2, ..., Np. The initial vector of parameters a = {a1, a2, ..., aNz

}
is supplied at the beginning, with the first element a1 representing seeing. Our task is to find the estimate
of a that ensures the best correspondence between the model M(a) and the image I. Both model and image
are normalized to keep the sum of pixel intensities equal to one.

We compute H by varying each Zernike coefficient by a small amount ∆aj = 0.5/n radians, n being the
radial order. This choice of decreasing amplitudes ensures that the image variations remain in the linear
regime. The seeing is changed by ∆a1 = 0.′′1. So, a j-th column of H is equal to the normalized difference
between pixel values of the image model Mi that result from changing the j-th term,

Hi,j = [Mi(a + ∆aj) − Mi(a)]/∆aj . (A1)

A large economy of calculation is achieved by saving the complex amplitude at the telescope pupil for a given
model a. When re-calculating the image with just one modified Zernike term aj , we only need to multiply
the saved amplitude by the factor exp[2πi∆ajZj(x)/λ], instead of re-computing all Zernike terms.

The interaction matrix H is inverted in the sense of least-squares (LS),

H∗ = (HHT )−1HT . (A2)

The inversion of (HHT ) is done by Singular Value Decomposition (Press et al. 1992), rejecting weak singular
values below some threshold. This guarantees that poorly measurable combinations of model parameters
do not lead to increased noise. In fact, we progressively decrease the threshold during iterations when they
converge (i.e. when the residuals decrease), but reset it to the original high value (0.05 of the maximum
singular value) in the case of divergence.

The inverse matrix H∗ is multiplied by the vector of intensity differences between the input image I and
the model image M to get the correction of the Zernike coefficients ∆a:

∆a = H∗ × (I − M). (A3)

This equation, however, treats all pixels with equal weight. A somewhat more rigorous approach takes into
account the detector and photon noise, which differs from pixel to pixel. Let the rms detector noise (RON)
be R and the total number of photons in the image (flux) be Nph. The pixel intensities Ii are normalized so
that

∑

Ii = 1. In this case the noise variance σ2
i of the measured intensity in a pixel i is

σ2
i = NphIi + R2. (A4)

A flavor of LS fitting to data with variable and un-correlated noise is known as weighted least-squares. If
the columns of the interaction matrix H and the residuals (I − M) are both divided by σi, the problem is
reduced to the LS fitting with constant noise. The weighted interaction matrix H ′ replaces H in (A2) to
calculate H∗.

The data vector (I − M) normalized by σi has uncorrelated elements with unit variance. Hence the
covariance matrix of the restored Zernike coefficients Ca is simply related to the restoration operator H∗,

Ca = 〈∆aj ∆ak〉 = H∗(H∗)T . (A5)

The variances of the measured Zernike coefficients caused by noise are equal to the diagonal elements of Ca.
This provides an evaluation of the noise component of measured aberrations related to the detector and the
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brightness of the star. In practice, however, we do not use the normalization by σi because it gives high
weight to pixels outside donut and often prevents the convergence.

The quality of the fit is characterized by the relative residuals Q,

Q2 =
∑

i

(Ii − Mi)
2/

∑

i

I2
i . (A6)

The iterations continue until a condition 0.99 Qold < Qnew < Qold is reached, i.e. when the residuals do
not decrease significantly any more. Reasonably good fits have Q < 0.1. To ensure robust convergence, we
add at each step only a fraction of the computed correction, 0.7∆a. If at the next iteration Q increases, the
parameters are not changed at all, but the SVD threshold is re-set to a high value. The interaction matrix
is re-computed only at even iteration steps, to save time.
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