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ABSTRACT

HIP 45734 is a quadruple system of 242 architecture located at 68 pc from the Sun. The outer
9" system A,B has a period of ~ 10* yr. The subsystem Aa,Ab is a visual binary with a period
of 20.1 years and an eccentricity of 0.78. Its periastron in 2019.1 was observed spectroscopically,
yielding masses (1.10£0.04 and 0.98+£0.03 M) and orbital parallax, 14.90+£0.37 mas. The masses,
luminosities, and colors approximately agree with evolutionary models of main sequence stars. The
component Aa has a detectable lithium line, whereas in Ab it is absent. The pair Ba,Bb is a single-
lined spectroscopic binary with a period of 0.55552 day and an orbital inclination of ~45° derived by
modeling the rotationally broadened line profile with “flat bottom”. The mass of Bb is ~0.4 M.
The star B is chromospherically active (an x-ray source); its flux is modulated with the orbital period
by starspots, in addition to occasional flares. The system is probably older than ~600 Myr; it does

not belong to any known moving group.
Subject headings:

1. INTRODUCTION

Discovery of a population of young chromospherically
active stars in the solar neighborhood by their x-ray ra-
diation in the 1980s and 1990s stimulated follow—up ob-
servations to determine their physical parameters, ages,
rotation, kinematics, etc. Many of these stars belong
to young moving groups and associations (Torres et al.
2006). However, a large fraction (40%) are old short-
period binaries (Makarov 2003). Recently renewed inter-
est in nearby young stars is stemmed by the search for ex-
oplanets using high-contrast imagers because young self-
luminous planets are easier to detect compared to their
older and cooler counterparts (e.g., Asensio-Torres et al.
2018).

The object of this note is a 9” visual binary discov-
ered by J. Hershel in 1837 and known as HJ 4214. Its
secondary component B is called a “T Tau-type Star”
(Torres et al. 2006), probably because, apart from be-
ing chromospherically active, the stars are located in the
sky close to the Chamaeleon star forming region. How-
ever, the distance, the fast proper motion (PM), and the
radial velocity (RV) make it clear that this pair is unre-
lated to the molecular cloud and only projects onto it.
Common identifications and main parameters of the two
visual components A and B are given in Table 1. The
Gaia astrometry of the star A is affected by its acceler-
ation, leading to a larger parallax error compared to the
star B. The V' magnitudes in Table 1 are calculated from
the Gaia DR2 photometry using the prescription given
on its web site.! The Tycho photometry gives 8.41 and
9.66 mag for A and B, both fainter compared to Gaia.
Simbad gives for A the V' magnitude of the combined
light of A and B, 8.05 mag.

These stars, believed to be pre-main sequence (PMS),
are featured in the large survey of Torres et al. (2006).
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1 See Chapter 5.3.7 of Gaia DR2 documentation at
https://gea.esac.esa.int /archive/documentation/GDR2/.

TABLE 1
MAIN PARAMETERS OF HIP 45734
Parameter A B
WDS J09194—-7739, HJ 4214, KOH 83
Identifiers HIP 45734  TYC 9399-2452-1
HD 81485 RX J0919.4-7738
PM (mas yr~!) —106.8, 68.5 —107.9, 70.8
Parallax (mas)® 14.53 + 0.15 14.66 £ 0.03
Spectral type GT7V KO0IVe
V (mag) 8.31 9.44
G (mag) 8.17 9.24
K (mag) 6.78 7.44
RV (km s~1) 4.9 7.7

bPropcr motion and parallax are from the Gaia DR2
(Gaia collaboration 2018).
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F1c. 1.— Architecture of the HIP 45734 quadruple system (not
to scale).

The equivalent width (EW) of the lithium line in A and B
was measured at 0.06 and 0.05 A, respectively. Covino et
al. (1997) took spectra of HIP 45734 together with other



TABLE 2
PARAMETERS OF THE CCF PROFILES

Parameter Aa Ab B
Amplitude 0.242 0.161 0.053
o (kms™1) 428  4.07  38.7
Amplitudexo (km s~1) 1.03 0.66 2.05
Vsini (km s—1) 4.7 4.0 674

presumably young stars in Chamaeleon with a resolution
of 10,000. They confirmed presence of the lithium line
and noted that the southern star B has emissions in the
He, helium 5876 A and sodium D lines. Broad lines of
the star B resembled a blend, making Covino et al. think
that B is a double-lined spectroscopic binary. However,
no follow-up observations were conducted to determine
the orbit. Desidera et al. (2006) also took high-resolution
spectra of both visual components. They have not seen
B as double-lined, but confirmed the strong Ha emission
in its spectrum and its very high chromospheric activity
index; the Ha emission in A was “much lower”. Think-
ing that B is a double-lined binary, Asensio-Torres et
al. (2018) looked for low-mass companions around it us-
ing high-contrast adaptive optics, but found only a faint
background source at 4”3 separation.

The star A was resolved by Koehler (2001) into a close
binary. Its first visual orbit with a period of 19.8 yr
was computed by Tokovinin et al. (2015). My interest
in this quadruple system is twofold. First, it belongs to
the sample of solar-type stars within 67 pc (Tokovinin
2014), although the Gaia parallax now puts it just out-
side its distance limit. Spectroscopic observations were
conducted to determine the unknown period of Ba,Bb,
complementing the multiplicity statistics in this sam-
ple. On the other hand, the orbit of the interferomet-
ric pair Aa,Ab offered the prospect of measuring masses
of young, possibly PMS, stars to test stellar evolution-
ary models. Both goals are now reached and make the
subject of this paper.

Figure 1 illustrates the architecture of this quadruple
system according to this study. The pair Aa,Ab is a vi-
sual binary with an eccentric 20.1 yr orbit. It is composed
of normal and apparently inactive dwarfs with masses of
1.12 and 1.0 Mg. In contrast, Ba,Bb is a close spectro-
scopic binary with a period of only 0.55 day. The star Ba,
similar in mass to Ab, has a fast axial rotation synchro-
nized with the orbit. Naturally, it is also highly active.
The mass of the spectroscopic secondary Bb is about 0.4
M. Despite the short period, this pair is not in contact;
it is not eclipsing owing to the large inclination.

Observational data and methods are recalled briefly in
Section 2. Then in Sections 3 and 4 the orbits of both in-
ner subsystems are given; the outer orbit is discussed in
Section 5. Section 6 matches stellar parameter to the evo-
lutionary models. A short discussion in Section 7 closes
the paper.

2. OBSERVATIONAL DATA

High-resolution (R ~ 80,000) spectra of the compo-
nents A and B (10 and 15, respectively) were taken with
the CHIRON optical echelle spectrometer (Tokovinin et
al. 2013) in 2015 (Tokovinin 2015) and in 2018-2019, in
the service mode. They cover the wavelength range from
415nm to 880 nm in 53 orders. The spectrograph is fiber-

TABLE 3
COMBINED ORBIT OF Aa,Ab

Parameter Value

20.10 £ 0.29
2019.103 £ 0.004
0.7818 £ 0.0038
0.1405 £+ 0.0019

Period P (yr)

Periastron Ty (yr)
Eccentricity e

Semimajor axis a (arcsec)

Node Q (deg) 21.6 + 0.7
Longitude w (deg) 276.3 + 0.3
Inclination ¢ (degr) 63.0 £ 0.6
Primary amplitude K7 (km s~1) 9.420 £+ 0.042
Secondary amplitude Ko (km s~1) 10.537 £ 0.073
~ velocity (km s™1) 4.813 £ 0.029
R.M.S. residuals (km s—1) 0.05, 0.17
Maa (Mg) 1.1240.04
Mayp, (Me) 1.0040.03

fed by the 1.5 m telescope operated by Small & Moderate
Aperture Research Telescope System (SMARTS) Con-
sortium.? The data analysis closely follows previous work
(Tokovinin 2016a). A cross-correlation function (CCF)
of the reduced spectrum with a binary mask using lines
in the range from 450 nm to 650 nm allows us to mea-
sure the RV and to estimate other parameters such as
the line width and the related projected axial rotation
Vsini. Average parameters of the Gaussian functions
that approximate the CCFs are listed in Table 2. The
rotational velocities were deduced from the width of the
CCF dips for Aa and Ab and determined in Section 4.3
for B. The RVs and their residuals from the orbits are
given below.

The CHIRON spectra show no emissions in the
Bahlmer lines of the component A, while these lines in
the component B are practically absent, being completely
filled by emission. No other emission lines are detectable
in either component.

The positional measurements of the pair Aa,Ab used
for the calculation of its combined orbit are, mostly,
made by the speckle camera at the 4.1 m Southern As-
trophysical Research (SOAR) telescope. The instrument
and data processing are described by Tokovinin (2018).
The latest series of measurements and references to prior
publications can be found in Tokovinin et al. (2019). The
Washington Double Star Catalog (WDS, Mason et al.
2001) was consulted for the published measurements of
the outer and inner resolved pairs. Since the first orbit of
Aa,Ab was computed in 2014, 10 new speckle measure-
ments covering the periastron have been made.

As in the previous papers of this series, orbital ele-
ments and their errors were determined by the least-
squares fits with weights inversely proportional to the
square of adopted errors. The IDL code orbit? was used
(Tokovinin 2016b).

3. SUBSYSTEM AA,AB

The pair Aa,Ab was first resolved by Koehler (2001)
in 1996. It was not measured in the following years,
missing the periastron passage in 1999. The next mea-
surements were made only in 2008 by Vogt et al. (2012)
and in 2010 by Tokovinin et al. (2010). This pair has
been followed by speckle interferometry at SOAR since
2011. The first visual orbit of Aa,Ab with a period of

2 http://www.astro.yale.edu/smarts/
3 Codebase: http://www.ctio.noao.edu/~atokovin/orbit/
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FiG. 2.— Visual and spectroscopic orbit of HIP 45734 Aa,Ab (KOH 83). Left: orbit in the sky (scale in arsceconds, Aa is at the
coordinate origin), center: fragment of the RV curve, right: CCF in 2018.2 with two resolved dips.

TABLE 4
MEASUREMENTS AND RESIDUALS OF Aa,Ab

Date 0 o op 0-Cy,, Ref.2
(yr) ) ") " © (")

1996.2420 173.9 0.1090 0.010 -—1.2 —0.003 K
2008.1329 125.2 0.1070 0.050 6.7 —0.007 \%
2010.0841 133.3 0.1170 0.010 0.5 —0.002 T
2010.0841 132.7 0.1190 0.010 -0.2 —0.000 T
2011.0353 139.4 0.1221 0.002 -0.0 0.000 S
2011.0353 139.7 0.1190 0.002 0.3 —0.003 S
2012.1003 146.8 0.1238 0.002 0.3 0.000 S
2012.1003 145.4 0.1240 0.002 -1.1 0.000 S
2012.1003 146.1 0.1239 0.002 —0.4 0.000 S
2013.1270 153.4 0.1224 0.005 0.2 —0.002 S
2014.0418 159.3 0.1264 0.002 0.2 0.002 S
2014.0418 159.4 0.1263 0.002 0.2 0.002 S
2014.3010 161.4 0.1239 0.002 0.5 0.000 S
2015.1036 166.4 0.1197 0.002 0.1 —0.001 S
2015.9117 172.1 0.1161 0.002 0.0 0.000 S
2016.9577 180.2 0.0983 0.009 —-0.4 —0.005 S
2018.0850 195.5 0.0718 0.005 0.9 —0.003 S
2018.4815 203.4 0.0558 0.002 —0.4 0.000 S
2019.2099 353.9 0.0243 0.009 9.6 0.004 S
2019.3717 12.6  0.0305 0.009 4.9 —0.003 S
2019.3717 8.4 0.0310 0.009 0.7 —0.003 S
2019.8573 30.1 0.0597 0.002 0.6 —0.002 S
2019.9530 31.3 0.0643 0.002 —-0.6 —0.001 S

2 K: Koehler (2001); V: Vogt et al. (2012); T: Tokovinin et al.
(2010); S: speckle interferometry at SOAR;

TABLE 5
RADIAL VELOCITIES OF Aa,Ab

Date 1% (0-C) 1% (0-0C)2
(JD 42400000) (km s~1) (km s~1)

57026.6730 0.54 —0.11 9.48 0.02
57093.7885 0.40 —0.09 9.71 0.06
58193.5840 —3.62 0.01 14.30 0.04
58194.5826 —3.65 —0.03 14.24 —0.02
58195.6018 —3.60 0.03 14.34 0.08
58290.5288 —3.76 0.02  14.48 0.05
58508.7680 4.91 —0.35 4.91 0.59
58546.6049 9.04 —0.10 —0.40 —0.38
58621.5882 13.95 0.04 —5.27 0.09
58800.8457 14.66 0.03 —5.94 0.23

19.8 yr was published by Tokovinin et al. (2015); it is
refined here using both 10 new position measurements
and 10 RVs (Table 3). The position measurements and
their residuals are given in Table 4. All speckle measure-
ments made at SOAR were re-examined and adjusted for
slightly revised calibration parameters of each observing

run, derived from wide pairs as described in Tokovinin
(2018). The errors are assigned based on the data qual-
ity and used for setting weights inversely proportional to
the square of errors. The weighted rms residuals from
the new orbit are 1.4 mas in both directions. The orbital
period is mostly constrained by the first observation in
1996 and the observations of the same orbit segment one
revolution later, in 2015; the updated period is 20.1 yr
(Figure 2).

The spectrum of A taken with CHIRON in 2015 had
blended narrow lines of both components. In 2018 the
lines separated further apart, then closed again and
swapped after passing the periastron in 2019.1. The RVs
of both components determined from the CHIRON spec-
tra and their residuals to the orbit are given in Table 5.
The rms residuals are 0.05 and 0.17 km s~! for Aa and
Ab, respectively; we set the RV errors to 0.07 and 0.15
km s™! to balance the relative weights of the RV and
speckle data in the combined orbit. RVs derived from
the blended CCF dips in 2015 were given a lower weight
by assigning the errors of 0.2 km s~*.

The accurate Gaia DR2 parallax of the star B,
14.6610.03 mas, and the orbital elements yield the mass
sum of 2.1840.09 M. The mass sum error is mostly
produced by the uncertainty of the a®/P? ratio, esti-
mated here by fitting 100 orbits where the input data
are randomly perturbed by their nominal errors. This
method accounts for the correlations between all ele-
ments. For example, the inclination ¢ and the semi-
major axis a are strongly correlated owing to the un-
favorable orbit orientation. On the other hand, the
Gaia parallax error does not contribute substantially to
the overall mass error. The spectroscopic mass ratio
GAa,Ab = 0.894 4 0.007 leads to the individual masses of
1.15 £ 0.05 and 1.03 + 0.04 for Aa and Ab, respectively.

Independently of the trigonometric parallax, the com-
bined spectro-interferometrc orbit leads to the masses of
1.104+0.04 and 0.98+0.03 M, for Aa and Ab, while the
orbital parallax is 14.90+0.37 mas. I adopt the masses
of 1.12 and 1.0 Mg, compatible with both estimates
within their errors. The orbital parallax agrees within
its error with the Gaia parallax of the component B. The
mass measurement from the visual orbit and Gaia paral-
lax is slightly less accurate than the mass measurement
from the combined orbit. If Aa,Ab were a simple binary,
rather than a quadruple, the situation would be worse be-
cause Gaia parallaxes of unresolved close binaries are less
accurate and often biased. This will be corrected in the



507 HIP45734BaBb

v}

F , P=0555d \ ]
'W 20 L \\ P ‘\\ ]
g [\ ]
E [ ]
> \\ / \\

—20F g : 8]
7
—40F %ﬂu\v/ * %EU\
Phase i
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

CCF

0s5F N~ 3
0.4 ‘ ¥ ‘ ]
—200 ~100 0 100 200

Offset [km/s]

Fic. 3.— Radial velocity curve of the subsystem Ba,Bb (top).
The lower plot shows CCF profiles ordered by the orbital phase,
written near each curve; the vertical dotted line marks the systemic
velocity.

TABLE 6
SPECTROSCOPIC ORBIT OF Ba,Bb

Parameter Value

Period P (day) 0.5555195 £ 0.000007
Periastron Tp (JD) 2458195.6005 £ 0.0007

Eccentricity e 0 (fixed)
Longitude w (deg) 0 (fixed)
Primary ampl. K; (km s™1) 53.94 £ 0.43
~ velocity (km s~1) 7.70 £ 0.28
R.M.S. residuals (km s—!) 0.90

future Gaia data releases by incorporating orbital mo-
tion into the astrometric model and using ground-based
measurements to extend the orbit coverage.

I compared the PM anomaly of the star A (difference
between its PM measured by Gaia with the mean PM
derived from the Hipparcos and Gaia positions) given by
Brandt (2018), (1.4, —0.8) mas yr—!, with its value cal-
culated from the orbit of Aa,Ab and scaled by the wobble
factor f = —0.10 (see below), (1.1, —0.3) mas yr—'. The
agreement is satisfactory, considering that the Gaia PMs
can be biased by the orbital acceleration of A.

4. SUBSYSTEM BA,BB
4.1. Spectroscopic Orbit

The component B was considered a spectroscopic bi-
nary by Covino et al. (1997) who believed to have seen

TABLE 7
RADIAL VELOCITIES OF Ba

Date RV (0-C)
(JD ++2400000) (km s~ 1)

57026.6764 23.90 —0.46
57093.7912 —32.58 0.26
57098.7099 —45.15 —-0.01
58193.5867 —30.52 -0.13
58194.5861 33.21 0.73
58195.6047 62.70 1.14
58228.5560 —17.09 —0.69
58232.4904 —36.65 0.44
58284.5209 55.66 —1.23
58287.4749 —32.92 —0.26
58287.4784 —33.95 0.09
58290.5196 45.29 1.78
58546.6081 38.79 —-1.92
58621.5838 30.67 0.05
58800.8497 —40.43 5.36

double lines. My first observation with CHIRON in 2015
(Tokovinin  2015) have shown a strange broad CCF
dip with a flat bottom that resembled blended lines of
two stars. However, further spectroscopic monitoring re-
vealed that the CCF profile has a variable RV without
changing its shape. Therefore, the star B is a single-lined
spectroscopic binary. Some spectra of B were taken with
a resolution of 30,000, sufficient for measuring the RVs.

The CHIRON RVs lead to the unique orbital solution
with P = 0.555 day (Figure 3 and Table 6). Approxima-
tion of the Il-shaped CCF by a Gaussian curve is poor, so
the dip parameters in Table 2 derived from such approx-
imation are inaccurate. I determined the average CCF
profile and tried to fit it to each individual CCF. How-
ever, the resulting RVs were practically identical to the
RVs derived by the Gaussian fits, hence I use the latter
for consistency. The RVs and residuals to the orbit are
given in Table 7. Despite the shallow and wide CCF, the
rms residuals to the orbit are moderate, only 0.9 km s~!;
RV errors of 1 km s~! are assumed. This provides an in-
direct evidence that the secondary component Bb does
not contribute to the CCF. The lower panel of Figure 3
shows CCF's of the component B ordered by the orbital
phase. The CCF shape does not correlate with the phase
and remains approximately constant.

Two crosses in Figure 3 denote the RV of B measured
by Desidera et al. (2006) and the last CHIRON RV mea-
sured in 2019. If these RVs are used to fit the orbit,
the residuals increase substantially. A small drift of the
period would explain this inconsistency, although its rel-
ative value is constrained by the available CHIRON RVs
to within ~1 ppm.

4.2. Variability

Micro-variability with the period of 0.5551 day was
detected by Kiraga (2012) and attributed tentatively to
the component B. Therefore, Ba rotates synchronously
with the orbit. The quoted amplitude of the variability,
11 mmag in V and 27 mmag in I, refers to the combined
light of A and B, hence the actual variability of B is
~2.5x larger. It is presumably caused by star spots.

The Transiting Exoplanet Survey Satellite (TESS,
Ricker et al. 2014) recently furnished accurate combined
photometry of the stars A and B. I downloaded the aper-
ture photometry of the short-cadence sequence provided
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F1G. 5.— Average CCF of the component B (full line) and the
modeled profile of a rotating star (dash) with ¢ = 45° and « = 10.
The image illustrates the model of a rotating star where the color
reflects the RV and the intensity depicts the polar spot without
accounting for the limb darkening. The actual model has a finer
grid and accounts for all effects.

by the TESS pipeline.* Flux variation with the orbital
period of Ba,Bb is obvious (Figure 4). Although the pho-
tometric period closely matches the orbital period, con-
firming the synchronous rotation of Ba, the shape of the
light curve is not constant, reflecting varying distribution
of spots. The variable peak to peak flux modulation cor-
rected for the dilution by the light of A reaches almost
~0.1. Spikes in the light curves show flares in the active
chromosphere of Ba.

Migrating spots affect the line profile of the fast rota-
tor Ba and contribute to the RV scatter. Note that the
CCF of the component Ba (Figure 3) is slightly asym-
metric, being lower on the right-hand side. This asym-
metry does not change with orbital phase and could be
of instrumental origin, given its sub-percent amplitude.
An asymmetry should cause a systematic positive shift
of the RV, biasing the measured center-of-mass velocity
of Ba,Bb.

4.3. CCF Profile and Inclination

The rotation of Ba is synchronized with the orbit. The
RV amplitude, CCF profile, and photometry, considered

4 https://mast.stsci.edu/portal/Mashup/Clients/Mast /Portal.html
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jointly, lead to the estimation of the orbital inclination
iBa,Bb = 45° and the mass of the secondary component,
~0.4 Mg. First, the absolute magnitude My = 5.30
mag and the effective temperature 7T, = 5250 K of the
star B (see Section 6) allow calculation of its radius R
as log R, = 0.5log(L/Lg) — 2log(T./5777). With the
bolometric correction of —0.24 mag appropriate for the
spectral type of B, this formula gives R, = 1.05Rs. The
Ba mass of 1 Mg, is assumed because the luminosities of
B and Ab are equal.

Chromospherically active binaries of RS CVn type of-
ten have “flat-bottom” line profiles when the inclination
is small. Hatzes at al. (1996) explained this fact by the
presence of dark polar spots. To investigate this issue, I
computed the broadening function of a rotating inclined
star by dividing its surface into many small zones and
summing up contributions of visible zones to the line
profile. A plausible quadratic limb darkening (intensity
drop from 1 at the center to 0.32 at the limb) was as-
sumed. To account for possible polar spots, my model
includes the latitude intensity dependence as 1 + « cos ¢
(¢ is the latitude), where oz > 0 means dark polar spots
and o < 0 means polar brightening. The dashed line
in Figure 5 is computed for ¢ = 45° and o = 10, i.e.
11x dimmer at the pole than at the equator. The exact
value of a does not matter when it is large, but small
or zero values do not reproduce the “flat bottom” line
profile. The model qualitatively agrees with the shape
of the CCF profile. However, a small maximum at the
center appears only at inclinations ¢ ~ 20°, which would
imply an unrealistically fast equatorial speed.

The Full Width at Half Maximum (FWHM) of the
CCF profile is 116 km s~!. The FWHM of the modeled
CCF profile equals 2 x 0.86V sini. The proportional-
ity coefficient is almost independent of the inclination:
0.86 for i = 35° and i = 45°, 0.84 for ¢ = 55°. Hence,
Vsini = 58/0.86 = 67.4 km s~!. On the other hand,
the equatorial speed of a star with R, = 1.05Rg and
a period of 0.55 d is 94.7 km s™!, therefore i = 45°.
At this inclination, the orbit gives the secondary mass
of Mgy, = 0.36 Mg if Mg, = 1 Mg is adopted. The
mass ratio is gga,Bn, ~ 0.4. Large inclination implies the
absence of eclipses, as observed.

Another estimate of the mass ratio, independent of or-
bital inclination and almost independent of the assumed
mass of Ba, is obtained by comparison of the orbital
and rotation speeds. For a circular orbit, the RV am-
plitude of the main star Ba is K; = awgsini/(1 + q),
where w = 27/P is the angular speed and a = 3.15Rg
is the orbital radius, computed from the third Kepler’s
law for the mass sum of 1.4 Mg. On the other hand,
Vsini = R.wsini. The ratio of these equations gives
q/(14q) = (K1/Vsini) x (R, /a) or ¢ = 0.36 after sub-
stituting the measured and estimated quantities. The
agreement with the mass ratio derived from the inclina-
tion is convincing.

The CCF profile of the star B is displaced by the or-
bital motion by less than its full half-width. This means
that some areas on the stellar surface move in anti-phase
with the orbit. Indeed, in the phased CCF profiles in
Figure 3, the systemic RV marked by the vertical dotted
line is always within the dip. The center-of-gravity of the
system Ba,Bb is located inside the star Ba at a distance
of aq/(1 + q) = 0.83 Ry from the center. Despite the
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short period, the close binary system is well detached.
The rotation is much slower than the break-up speed of
~400 km s~ 1.

Spots on the rotating star Ba cause variation of its
apparent RV. However, the semi-amplitude of the orbital
motion, 54.93 km s~!, is substantially larger than any
plausible effect of the spots. Moreover, the variable spot
distribution (see Figure 4) would produce an irregular
and variable RV curve, while the actual RV variation is
sinusoidal and coherent on a time span of several years.

5. OUTER ORBIT

The projected separation between A and B is s = 614
au. If the orbit is circular and oriented face-on, s equals
the semimajor axis and the third Kepler law gives a pe-
riod P* =~ 8000 yr for a mass sum of 3.5 M. The orbital
speed is then 27s/P* = 0.5 au yr ! or 2.4 km s~! or 7.3
mas yr~!. If the pair A,B moved with this speed, its posi-
tion would have changed by 1”3 in 180 years elapsed since
its discovery in 1837; such a displacement is measurable.
In fact the pair moved much less, suggesting that the ac-
tual period might be longer and/or the apparent orbital
motion in the plane of the sky is reduced by projection
(Figure 6). The historical micrometer and photographic
measurements recorded in the WDS have large random
and systematic errors and do not help in elucidating the
orbital motion of the wide pair, apart from the fact that
it is substantially slower than expected for a face-on cir-
cular orbit. Modern measurements of A,B by Vogt et al.
(2012) and Tokovinin et al. (2010) also appear somewhat
discordant, likely because of imperfect calibration.

The most accurate measurements of the relative posi-
tion of the stars A and B (where A is the photo-center
of Aa,Ab) are available from Hipparcos and Gaia on a
time base of 24.25 yr. The pair has moved by —37.0 mas
and +20.4mas in the radial and tangential directions,
respectively. In 2015.5 the relative position of A B was
194°13 and 87988. The relative positions of A;B can be
described approximately by a tentative orbit (P = 10%

yr, T = 120, a = 1074, e = 0.2, Q = 1195, w = 295°,
i = 85°). However, the orbit remains essentially uncon-
strained and these arbitrary elements have little value.
According to this orbit, the motion is direct (position
angles increase with time), but the Hipparcos and Gaia
positions, after correction for precession, suggest a retro-
grade (clock-wise) motion.

Gaia measured accurate PMs of the stars A and B;
their difference can throw some light on the motion in
the wide pair. However, the orbital motion of Aa,Ab
with a 20.1 yr period must be subtracted. The photo-
center displacement of A is related to the relative po-
sition of Aa,Ab on its orbit by the wobble factor f =
—q/(1+q) +r/(1+r), where ¢ = 0.89 is the mass ra-
tio and 7 = 10794A™ is the light ratio of Aa,Ab which
depends on the wavelength. In the V and K bands, r
equals 0.59 and 0.70 and f is —0.10 and —0.06, respec-
tively. According to the new orbit of Aa,Ab, in 2015.5
the component Ab moved on the sky relative to Aa
with the velocity of (—15.7,43.2) masyr~! in the R.A.
and declination, respectively. The photo-center velocity
scaled by f = —0.10 is (1.6, —0.3) mas yr—!. The differ-
ence between the PMs of A and B measured by Gaia is
(1.1,—2.3) masyr—!. Therefore, the orbital velocity of B
relative to A was (0.5,2.0) mas yr~!. The tentative orbit
predicts relative motion of (—0.2, 1.8) mas yr~!. The mo-
tion in declination agrees well and matches the historic
trend of decreasing angular separation between A and B
(B moves to the North toward A). The smaller motion
in R.A. is of opposite sign. The discrepancy could be
explained if the star B had another low-mass companion
with a period of a few decades. Yet, no such companion
to B was found by high-contrast imaging (Asensio-Torres
et al. 2018).

The measured difference between the RVs of B and
A is 3 km s7!, of the same order of magnitude as the
expected orbital speed of A,B. However, the center-of-
mass RV of B is likely biased by the asymmetry of its
wide CCF, hence the measured RV difference cannot be
trusted. Qualitatively, it hints that the orbital motion
in the wide pair A,B is directed mostly along the line of
sight, while the motion in the plane of the sky is slower,
as observed.

6. PHOTOMETRY, LITHIUM, AND AGE

As the components A and B are separated by 9",
their individual photometry is readily available. The ra-
tio of the CCF areas of Aa and Ab leads to the mag-
nitude difference AVj, A = 0.73 mag after correcting
for the dependence of the line contrast on temperature.
The latest speckle interferometry gives AVa, o, = 0.58
mag, which I adopt here. The differential photometry
of Aa,Ab by Vogt et al. (2012) is AKa, a1 = 0.34 mag,
while Tokovinin et al. (2010) measured AKa, ap = 0.38
mag and AHp, A, = 0.36 mag. Therefore, the V' and
K magnitude of three resolved components Aa, Ab, and
B are measured. Errors of +0.02 mag in the magnitude
and £0.03 mag in the color index are assumed.

Using the Gaia distance modulus 4.169+0.005 mag and
assuming zero extinction, the components are placed on
the color-magnitude diagram (CMD) in Figure 7. The
components Aa and Ab are located very close to the main
sequence. For reference, three isochrones from Bressan
et al. (2012) for solar metallicity are plotted. The Dart-
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the color-magnitude diagram. The lines are PARSEC isochrones
(Bressan et al. 2012) for solar metallicity and ages of 30 Myr, 50
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by the diamond and triangle, respectively. The arrow corresponds
to the interstellar extinction Ay = 0.2 mag.

TABLE 8
PARAMETERS OF COMPONENTS

Parameter Aa Ab B

V (mag) 881 939 9.44
V- K (mag) 144 166  2.00
M (M) 112 10 1.0
Tog (K) 5900 5590  5250:

mouth isochrones (Dotter et al. 2008) were also tested.
The 1 Gyr isochrone is similar to the PARSEC one, while
the 50 Myr Dartmouth isochrone does not match the
data.

Table 8 gives the measured magnitudes of three re-
solved components, the measured masses of Aa and Ab,
and the effective temperatures deduced from the V — K
colors and isochrones. Gaia gives effective temperatures
of 5760 K for A (close to the average temperature derived
here) and 5242 K for B. The corresponding spectral types
are GOV, G6V, and KOV (Pecaut & Mamajek 2013). Cu-
riously, Gaia found an extinction of 0.45 and 0.32 mag
in the G band, assuming that A and B are single stars.
However, there are no obvious interstellar adsorptions in
the spectrum of A. Given the distance of 68 pc, an aver-
age extinction of Ay = 0.1 mag can be expected.

The colors, absolute magnitudes, and masses of Aa and
Ab match the standard values of the main-sequence stars
of spectral types GOV and G6V, within the uncertainty
of both the data and the isochrones. The areas of the
CCF dips of Aa and Ab correspond approximately to
the stars of solar metallicity. Small triangles in Figure 7
show locations of stars with the masses of Aa and Ab
on the isochrones. The 50 Myr isochrone gives the best
match, while at the 1 Gyr age the stars should be ~0.2
mag brighter than observed. However, an extinction of
Ay = 0.2 mag would remove the discrepancy. On the
other hand, the rapidly rotating star B does not conform
to the standard isochrones.

I do not see the 6708A lithium line in the spectrum of B
because of its fast rotation and correspondingly low line
contrast. The narrow-lined components Aa and Ab are
resolved in the CHIRON spectra. Using the technique

Intensity

HIP 45734A

6707.0 6707.5 6708.0

Wavelength [A]

6708.5

Fic. 8.— Profiles of the lithium lines in the components Ab
(upper) and Aa (lower) are plotted by full lines, displaced vertically.
The dotted lines are fitted Gaussians.

of Tokovinin (2016a), the lithium line in each compo-
nent can be measured separately. Quite surprisingly, it
is absent in the component Ab, but prominent in Aa
(Figure 8). Its equivalent width (EW) is 30£3 mA,
less than 60 mA measured by Torres et al. (2006) from
the unresolved spectrum of A. The component Aa con-
tributes ~0.6 fraction of the flux, so the intrinsic EW of
its lithium line is ~50 mA.

At the age of the Pleiades, ~150 Myr, stars with the
masses of Aa and Ab have strong lithium lines with an
EW of 120mA (Soderblom et al. 1993a). In the Hyades,

the EW is about 80 and 34 mA for stars with B — V of
0.6 and 0.7 mag (Soderblom et al. 1993b). The presence
of lithium in Aa and its depletion in Ab suggest that
this system is substantially older than the Pleiades and
maybe even older than the Hyades. However, lithium
depletion depends not only on the age; this uncertainty
prevents age-dating of HIP 45734 based on lithium. The
isochrones in Figure 7 favor an age of ~50 Myr, but their
dependence on metallicity and the existing uncertainty of
the stellar evolutionary models preclude any firm conclu-
sions. An interstellar extinction of 0.2 mag would place
the stars Aa and Ab on the 1 Gyr isochrone. Moderate
projected axial rotation of the components Aa and Ab,
~4 km s7!, also suggests that these stars are not very
young.

The component B (i.e the combined light of Ba and
Bb) is located above the main sequence. If the small con-
tribution of the star Bb, assumed to be an M3V dwarf,
is accounted for, Ba moves in the CMD to the left by
~0.15 mag, but still remains above the main sequence.
The characteristics of Ba,Bb are reminiscent of post com-
mon envelope binaries, where a main-sequence dwarf is
paired to a white dwarf (WD). The prototypical exam-
ple, V471 Tau in the Hyades, has spectral type K1V,
orbital period 0952, and a DA-type secondary compo-
nent (Vaccaro et al. 2015), readily detectable in the UV.
The above authors established that the mass of the red
dwarf in V471 Tau is close to 1 Mg, contradicting its
late spectral type and the low effective temperature of
5020 K. Obviously, this post common envelope star is
not a normal dwarf. The same may be true regarding
HIP 45734B. The position of V471 Tau in the CMD is
marked by the large triangle.

7. DISCUSSION
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The Gaia distance and proper motion, together with
the systemic radial velocity of A, 4.8 km s~!, correspond
to the heliocentric Galactic velocity vector of (U, V, W) =
(—36.1,—15.9,—12.5) km s~!. This velocity does not
match any known kinematic group of young stars in the
solar neighborhood. For example, the Hyades moving
group has (U,V,W) = (-39, —18, —2) km s~ . The ob-
ject certainly belongs to the Galactic disk. Tetzlaff et al.
(2011) proposed that HIP 45734 could be ejected from
the Tucana-Horlogium association. However, the weakly
bound A,B pair would survive only if the ejection veloc-
ity were less than its orbital velocity (2 km s™!), making
the ejection scenario unlikely.

I looked for potential common proper motion compan-
ions in Gaia. All sources within 3° radius with par-
allax larger than 10 mas were retrieved; none matches
the parallax and PM of HIP 45734. The best candi-
date (09:42:33.853, —76:23:54.03), at 1°84 distance from
HIP 45734, has a PM of (—116.9,65.9) mas yr—!, paral-
lax 11.3 mas, and G = 18.08 mag, hence it is not associ-
ated.

The secondary component in the Ba,Bb system is not
detected spectrally or photometrically. It could be ei-
ther a low-mass dwarf of spectral type M3V or a white
dwarf. In the latter case, the short orbital period of
Ba,Bb is a result of the common envelope evolution,
like in the prototypical binary V471 Tau (Vaccaro et
al. 2015). Another recent example of such object is
Wolf 1130 (HIP 98906), where a late-M type subdwarf is
paired with an unusually massive WD on a 0.5 day orbit
(Mace et al. 2018). Old post common envelope bina-
ries are chromospherically active and often masquerade
as young stars. If the component Bb is a WD, it could
be detected in the UV. In the Galer image of HIP 45734
(wavelength 0.231 pm), the southern star B is brighter
than the star A. However, chromospherically active stars
are also strong UV and x-ray emitters. In short, the
nature of the star Bb remains unknown.

HIP 45734 is an excellent illustration of errors that
could be made if the multiplicity were ignored or over-

looked. A close binary Ba,Bb has a fast rotation and
an active chromosphere and can be mistaken for a young
single star. An unrecognized close unresolved pair Aa,Ab
falsifies determination of stellar parameters using stan-
dard relations (e.g. in the TESS input catalog), while its
Gaia parallax is possibly biased. A wide binary A,B with
a relative motion accurately measured by Gaia lends it-
self to a dynamical analysis of its orbit, but in fact its
motion is strongly biased by the subsystem and the es-
timated components’ masses are also wrong if they are
deemed to be simple stars.

This multiple system is less interesting than originally
thought. It is certainly not a PMS object and is possi-
bly older than the Hyades, although still younger than a
typical age of the Galactic disk.
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