Updated Mar 2021
The SOAR Instrument Support Boxes (ISBs) contain facility calibration units containing both continuum sources for flat fielding and line sources for wavelength calibration.
The wavelength calibration lamps normally used with the Goodman spectrograph are: HgAr, CuHeAr, Ne, and Ar. An Fe lamp is also available.
The comparison lamps can be activated from the instrument GUI by you, or you can ask the Telescope Operator (TO) to do it for you from his technical GUI.
Note that you need to make a slow, substantial mouse click on the particular lamp in order for it to actually get the input and turn on or off (a quick click may make the green light go on or off but not turn on/off the lamp). If in doubt, check with the TO. The Fe lamp is not featured in the GUI and you need to ask the TO to rutn it ON/OFF for you. When obtaining comparison lamps, make sure you are in Spectroscopic Mode and that the TO has put the pickup mirror in.
In Figure 1 at below we show the CuHeAr arc lamp spectra for most of our pre-defined spectroscopic modes. NOTE: the 300 l/mm grating has now been replaced by the 400 l/mm grating.
In Figure 2 below we show the HgAr arc lamp spectra for most of our pre-defined spectroscopic modes. NOTE: the 300 l/mm grating has now been replaced by the 400 l/mm grating.
In the following table containing plots of the comparison lamps made with various gratings and setups. However, for the latest library of comparison lamp spectra, we advise you use the comparison lamp spectra at this link. [6]
Grating | Setup | Lamp | Wavelength Coverage of the Plot |
---|---|---|---|
400 | M1 | HgAr | 3000-7000 (Full range) [7] |
400 | M1 | HgAr | 3000-5000 (Zoom) [8] |
400 | M1 | HgAr | 5000-7000 (Zoom) [9] |
400 | M2 | HgAr | 5000-9000 (Full range) [10] |
400 | M2 | HgAr | 5000-9000 (Zoomed/split) [11] |
600 | UV,Blue,Mid,Red | HgAr | 3600-9000 (6 plots) [12] |
600 | UV,Blue,Mid | CuHeAr | 3600-6500 [13] |
930 | M1 | HgAr | 3000-4500 (Full range & zoom) [14] |
930 | M2 | HgAr | 3750-5500 (Full range & zoom) [15] |
930 | M3 | HgAr | 4750-6250 (Full range & zoom) [16] |
930 | M4 | HgAr | 5500-7200 (Full range & zoom) [17] |
930 | M5 | HgAr | 6400-8000 (Full range & zoom) [18] |
930 | M6 | HgAr | 7250-8750 (Full range & zoom) [19] |
930 | M2 | CuHeAr | 3750-5500 (Full range & zoom) [20] |
930 | M3 | CuHeAr | 4750-6250 (Full range & zoom) [21] |
930 | M4 | CuHeAr | 5500-7200 [22] |
930 | M5 | CuHeAr | 6400-8000 [23] |
930 | M6 | CuHeAr | 7250-8750 [24] |
1200 | M5 | HgArNe | 3600-8700 (7 plots) [25] |
1200 | M1,M2,M3,M4,M5,M6,M7 | CuHeAr | 3600-8700 (7 plots) [26] |
2100 | 650nm (Littrow) | Ne | 6150-6720 [27] |
Useful links:
The KPNO Spectral Atlas Central [28] is a useful resource for comparison lamp spectra
Updated 02 Mar 2021
Goodman RED camera typical DOME FLAT lamp exposure times (for 2x2 binning, 344ATTN3 readout mode)
Mode | Type | Slit | Lamp (%) / Exp (s) | Texp (s) |
ADU |
---|---|---|---|---|---|
400M1 no filter | Spec | 1 | 100 | 7 | 28000 (1) |
400M2 +GG455 flter | Spec | 1 | 100 | 5 | 25000 (1) |
600MID + GG395 filter | Spec | 1 | 100 | 12 | 29000 (1) |
930M2 no filter | Spec | 1 | 100 | 60 | 27000 (1) |
SDSS-g | Img | --- | 30 | 2.5 | 21000 (2) |
SDSS-r | Img | --- | 15 | 1.5 | 24000 (2) |
SDSS-i | Img | --- | 10 | 1 | 27000 (2) |
VR | Img | --- | 10 | 3 | 25500 (2) |
(1) Max ADU count, at red end of spectrum
(2) Average ADU count
Goodman RED camera typical QUARTZ FLAT lamp exposure times (344ATTN3 readout mode)
Mode | Binning | Slit (") |
Lamp (%) / Exp (s) | Texp (s) |
MAX ADU |
---|---|---|---|---|---|
400M1 no filter | 2x2 | 1 | 70 | 3 | 39600 |
400M2 +GG455 flter | 2x2 | 1 | 70 | 1.5 | 34000 |
600MID + GG395 filter | 2x2 | 1 | 70 | 5 | 36000 |
930M2 no filter | 2x2 | 1 | 100 | 3.5 | 29500 |
2100@650+GG455 filter | 1x2 | 0.45 | 100 | 15 | 24000 |
Goodman RED camera typical COMPARISON lamp exposure times (200ATTN0 readout mode)
Mode | Binning | Slit (") |
ARC LAMP | Exp (s) |
400M1 no filter | 2x2 | 1 | HgArNe | 0.5 |
400M2 + GG455 filter | 2x2 | 1 | HgArNe | 0.5 |
600MID + GG395 filter | 2x2 | 1 | HgArNe | 0.5 |
930M2 no filter | 2x2 | 1 | Cu(HeAr) | 120 |
2100@650+GG455 filter | 1x2 | 0.45 | HgArNe | 0.5 |
2100@5577 | 1x2 | 0.45 | HgArNe | 1 |
----------------------------------------------------------------------------------------------------------------------------
Goodman BLUE camera typical DOME FLAT lamp exposure times (for 2x2 binning, 200ATTN0 readout mode)
Mode | Type | Slit | Lamp (%) / Exp (s) | Texp (s) |
ADU |
---|---|---|---|---|---|
400M1 no filter | Spec | 1 | 100 | 7 | 29600 (1) |
400M2 +GG455 flter | Spec | 1 | 100 | 7 | 30000 (1) |
600MID + GG395 filter | Spec | 1 | 100 | 12 | 29500 (1) |
930M2 no filter | Spec | 1 | 100 | 45 | 23600 (1) |
SDSS-g | Img | --- | 40 | 1.5 | 31000 (2) |
SDSS-r | Img | --- | 15 | 1.5 | 24600 (2) |
SDSS-i | Img | --- | 10 | 1 | 22000 (2) |
VR | Img | --- | 15 | 1 | 25000 (2) |
(1) Max ADU count, at red end of spectrum
(2) Average ADU count
Goodman BLUE camera typical QUARTZ FLAT lamp exposure times (200ATTN0 readout mode)
Mode | Binning | Slit (") |
Lamp (%) | Exp (s) |
MAX ADU |
400M1 no filter | 2x2 | 1 | 70 | 2.5 | 30900 |
400M2 + GG455 filter | 2x2 | 1 | 70 | 2 | 31800 |
600MID + GG395 filter | 2x2 | 1 | 70 | 4 | 28700 |
930 M2 no filter | 2x2 | 1 | 100 | 3 | 29000 |
Goodman BLUE camera typical COMPARISON lamp exposure times (for 2x2 binning, 200ATTN0 readout mode)
Mode | ARC LAMP | Exp (s) |
400M1 no filter | HgArNe | 0.3 |
400M2 + GG455 filter | HgArNe | 0.3 |
600MID + GG395 filter | HgArNe | 0.3 |
930M2 no filter | Cu(HeAr) | 90 |
Updated 23 Jul 2020
Here we provide typical focus values for the Goodman instrument. The instrument focus is usually set once per night, and is done as the first step before afternoon calibrations. Note that the focus is dependent on ambient temperature, so values will change significantly from summer to winter, in fact, variations of up to ~500 units could happen from one observing run to another. Also, the depth of focus is roughly 100 units, so focus values within +/- 50 units can be considered consistent with no focus difference.
The BLUE camera focus values should be mostly positive; RED camera focus values are mostly negative.
See how to perform a spectroscopic focus measurement [29].
See how to perform an imaging focus measurement [30].
The following values are representative. In some cases we provide actual measured values obtained on different dates to illustrate the variations; both blue and red cameras are affected by focus variations as a function of temperature. You should perform a focus sequence every afternoon.
Grating | Mode | Camera Temp (C) |
Focus |
---|---|---|---|
400 | M1 | 19 | -300 |
400 | M1 | 16 | -600 |
400 | M1 | 13 | -660 |
400 (+GG455) | M2 | 19 | -990 |
400 (+GG455) | M2 | 16 | -1200 |
400 (+GG455) | M2 | 11 | -1300 |
400 | M2 | 16 | -250 |
400 | M2 | 11 | -690 |
600red (+GG385) | Mid | 17 | -1770 |
600red (+GG495) | Red | 17 | -992 |
600old (+GG385) | Mid | 15 | -1540 |
1200 | M2 | 17 | -700 |
1800 | @700nm | 13 | -825 |
1800 | @660nm | 19 | -460 |
2100 | @650nm | 16 | -200 |
2100 | @650nm | 13 | -555 |
2100 | @650nm | 17 | -376 |
Grating | Mode | Camera Temp (C) |
Focus |
---|---|---|---|
400 | M1 | 17 | 1615 |
400 | M1 | 11 | 1320 |
400 (+GG455) | M2 | 11 | 773 |
600blue | UV | 17 | 1650 |
600blue | Blue | 17 | 1650 |
600old | UV | 11 | 1370 |
600old | Blue | 11 | 1440 |
600old (+GG385) | Mid | 11 | 880 |
600old (+GG495) | Red | 11 | 1350 |
600blue (+GG385) | Mid | 17 | 820 |
600blue (+GG495) | Red | 17 | 1650 |
Filter | Lamps/(%) | Exp (s) |
Camera Temp (C) |
Focus |
---|---|---|---|---|
None | Dome/5 | 0.5 | 10 | -1130 |
B | Quartz/50 | 2 | 19 | -715 |
V | Dome/20 | 0.5 | 10 | -580 |
R | Quartz/50 | 1 | 19 | -1320 |
VR | Dome/25 | 0.5 | 16 | -470 |
VR | Dome/25 | 0.5 | 11 | -814 |
SDSS-u | Dome/20 | 1 | 10 | |
SDSS-g | Dome/20 | 1 | 10 | |
SDSS-r | Dome/20 | 1 | 10 | -700 |
SDSS-i | Dome/20 | 1 | 10 | -900 |
SDSS-z | Dome/20 | 1 | 10 | -1250 |
Dome/20 | 1 | 10 |
Filter | Lamps (%) | Exp (s) |
Camera Temp (C) |
Focus |
---|---|---|---|---|
SDSS-g | Quartz/50 | 4 | 11 | 1100 |
SDSS-r | Quartz/50 | 1 | 11 | 990 |
SDSS-i | Quartz/50 | 0.3 | 11 | 860 |
SDSS-z | Quartz/50 | 0.5 | 11 | 540 |
M. Hamuy led a group at CTIO to obtain observations of 10 secondary spectrophotometric standards from Taylor (1984) [31] and 19 tertiary spectrophotometric standards from Stone & Baldwin (1983) [32] and Stone (1977) [33]. These results were published in two papers:(1) Hamuy et al. (1992) [34] and (2) Hamuy et al. (1994) [35]. The former paper covers wavelengths from 3300Å to 7550Å and the latter paper covers wavelengths from 6000Å to 10500Å. The latter paper also combines both sets of observations and presents AB magnitudes for the 10 secondary standards at 16Å intervals from 3300Å to ~10400Å and for the 19 tertiary standards at 50Å intervals from 3300Å to ~10300Å. The AB magnitudes are converted to flux (erg cm-2 s-1Å-1) using the formula:
AB Mag = -2.5 alog10(Fν) - 48.59 where Fν is in erg cm-2 s-1 Hz-1.
Secondary Spectrophotometric Standard Stars | |||||||||
HR# | Star | RA (J2000) |
Dec (J2000) |
MKType | (U-B) | (B-V) | V | (V-R)KC | (V-I)KC |
718 | ξ2 Cet | 02:28:09.54 | +08:27:36.2 | B9 III | -0.107 | -0.056 | 4.279 | -0.023 | -0.063 |
1544 | π2 Ori | 04:50:36.69 | +08:54:00.7 | A1 V | ... | 0.01 | 4.355 | 0.014 | 0.039 |
3454 | η Hya | 08:43:13.46 | +03:23:55.1 | B3 V | -0.743 | -0.200 | 4.295 | -0.083 | -0.200 |
4468 | θ Crt | 11:36:40.91 | -09:48:08.2 | B9.5 V | -0.18 | -0.07 | 4.700 | -0.023 | -0.063 |
4963 | θ Vir | 13:09:56.96 | -05:32:20.5 | A1 IV | -0.01 | -0.00 | 4.375 | 0.003 | 0.010 |
5501 | 108 Vir | 14:45:30.25 | +00:43:02.7 | B9.5 V | -0.080 | -0.023 | 5.681 | 0.004 | -0.026 |
7001 | α Lyr | 18:36:56.33 | +38:47:01.1 | A0 V | 0.00 | 0.00 | 0.03 | -0.037 | -0.045 |
7596 | 58 Aql | 19:54:44.80 | +00:16:24.6 | A0 II1 | -0.01 | 0.10 | 5.62 | ... | ... |
7950 | ε Aqr | 20:47:40.55 | -09:29:44.7 | A1 V | 0.029 | -0.001 | 3.778 | -0.005 | -0.010 |
8634 | ζ Peg | 22:41:27.64 | +10:49:53.2 | B8 V | -0.24 | -0.09 | 3.40 | -0.037 | -0.079 |
9087 | 29 Psc | 00:01:49.42 | -03:01:39.0 | B7 III-IV | -0.501 | -0.136 | 5.120 | -0.052 | -0.122 |
Tertiary Spectrophotometric Standard Stars | |||||||||||
Star | RA (J2000) |
Dec (J2000) |
Type | (U-B) | (B-V) | V | (V-R)KC | (R-I)KC | PM (RA) (" yr-1) |
PM (Dec) (" yr-1) |
Plots |
1CD-34 241 | 00:41:46.9 | -33:39:09 | f | -0.065 | +0.478 | 11.229 | +0.295 | +0.289 | -0.45 | -0.25 | finder [36]/spectrum [37] |
LTT 1020 | 01:54:49.7 | -27:28:29 | g | -0.186 | +0.557 | 11.522 | +0.361 | +0.364 | 0.33 | -0.21 | finder [38]/spectrum [39] |
EG 21 | 03:10:30.4 | -68:36:05 | DA | -0.661 | +0.039 | 11.379 | -0.093 | -0.064 | 0.00 | -0.30 | finder [40]/spectrum [41] |
LTT 1788 | 03:48:22.2 | -39:08:35 | f | -0.281 | +0.469 | 13.155 | +0.317 | +0.332 | 0.24 | -0.19 | finder [42]/spectrum [43] |
LTT 2415 | 05:56:24.2 | -27:51:26 | ... | -0.215 | +0.400 | 12.214 | +0.267 | +0.293 | 0.30 | -0.18 | finder [44]/spectrum [45] |
Hiltner 600 | 06:45:13.5 | +02:08:15 | B1 | -0.574 | +0.179 | 10.441 | +0.120 | +0.140 | ... | ... | finder [46]/spectrum [47] |
LTT 3218 | 08:41:32.4 | -32:56:33 | DA | -0.574 | +0.220 | 11.858 | +0.096 | +0.111 | -1.10 | 1.34 | finder [48]/spectrum [49] |
LTT 3864 | 10:32:13.8 | -35:37:42 | f | -0.167 | +0.495 | 12.171 | +0.323 | +0.329 | -0.34 | -0.01 | finder [50]/spectrum [51] |
LTT 4364 | 11:45:42.9 | -64:50:29 | C2 | -0.664 | +0.162 | 11.504 | +0.173 | +0.127 | 6.19 | -0.33 | finder [52]/spectrum [53] |
2Feige 56 | 12:06:47.3 | +11:40:13 | sdB8 | ... | -0.13 | 11.06 | ... | ... | -0.007 | -0.007 | finder [54]/spectrum [55] |
LTT 4816 | 12:38:50.7 | -49:47:58 | DA | -0.656 | +0.166 | 13.794 | +0.013 | +0.027 | -0.86 | -0.13 | finder [56]/spectrum [57] |
CD-32 9927 | 14:11:46.3 | -33:03:15 | A4 | ... | +0.349 | 10.444 | +0.324 | +0.014 | -0.004 | 0.007 | finder [58]/spectrum [59] |
LTT 6248 | 15:38:59.8 | -28:35:34 | a | -0.197 | +0.491 | 11.797 | +0.319 | +0.345 | -0.25 | -0.18 | finder [60]/spectrum [61] |
EG 274 | 16:23:33.7 | -39:13:48 | DA | -0.969 | -0.144 | 11.029 | -0.093 | -0.096 | 0.10 | -0.01 | finder [62]/spectrum [63] |
LTT 7379 | 18:36:26.2 | -44:18:37 | G0 | -0.020 | +0.605 | 10.225 | +0.366 | +0.366 | -0.22 | -0.16 | finder [64]/spectrum [65] |
LTT 7987 | 20:10:57.1 | -30:13:03 | DA | -0.670 | +0.046 | 12.230 | -0.062 | -0.078 | -0.43 | -0.24 | finder [66]/spectrum [67] |
LTT 9239 | 22:52:40.9 | -20:35:27 | f | -0.110 | +0.609 | 12.068 | +0.397 | +0.372 | 0.10 | -0.33 | finder [68]/spectrum [69] |
Feige 110 | 23:19:58.3 | -05:09:56 | sdO8 | -1.09 | -0.05 | 11.50 | -0.47 | -0.175 | -0.011 | 0.0 | finder [70]/spectrum [71] |
LTT 9491 | 23:19:35.2 | -17:05:28 | DC | -0.843 | +0.007 | 14.112 | +0.045 | +0.031 | 0.27 | 0.05 | finder [72]/spectrum [73] |
Notes: 1CD-34 241 is mistakenly named LTT 377 in Stone and Baldwin (1983) and Hamuy et al. (1992 & 1994). 2The coordinates of Feige 56 are given incorrectly in Hamuy et al. (1992). |
One of the latest and most complete lists of radial velocity standard stars is that by Soubiran et al. 2013, A&A, 552A, 64 (ADS link [74]):
"The catalogue of radial velocity standard stars for Gaia. I. Pre-launch release."
This catalog contains 1420 stars with data over a baseline of over 6 yr, with an overall stability of about 300 m/s
The data in their Table 4, can be accessed in the CDS service by click on this link. [75]
Links
[1] https://soardocs.readthedocs.io/projects/lamps/en/latest/
[2] http://www.ctio.noirlab.edu/soar/content/goodman-domequartz-flats-and-comps-exposure-times
[3] http://www.ctio.noirlab.edu/soar/content/goodman-spectrograph-typical-focus-values
[4] http://www.ctio.noirlab.edu/soar/content/hamuy-spectrophotometric-standards
[5] http://www.ctio.noirlab.edu/soar/content/radial-velocity-standards
[6] https://goodman.readthedocs.io/projects/lamps/en/latest/
[7] http://www.ctio.noirlab.edu/soar/sites/default/files/Instrument_Plots/400m1_HgAr_3000-7000.pdf
[8] http://www.ctio.noirlab.edu/soar/sites/default/files/Instrument_Plots/400m1_HgAr_3000-5000.pdf
[9] http://www.ctio.noirlab.edu/soar/sites/default/files/Instrument_Plots/400m1_HgAr_5000-7000.pdf
[10] http://www.ctio.noirlab.edu/soar/sites/default/files/GOODMAN/HgArNe_400M2_GG455_full.pdf
[11] http://www.ctio.noirlab.edu/soar/sites/default/files/GOODMAN/HgArNe_400M2_GG455_split.pdf
[12] http://www.ctio.noirlab.edu/soar/sites/default/files/Instrument_Plots/hgar_600.pdf
[13] http://www.ctio.noirlab.edu/soar/sites/default/files/GOODMAN/CuHeAr_600_Blue_full.pdf
[14] http://www.ctio.noirlab.edu/soar/sites/default/files/Instrument_Plots/HgAr_930m1.pdf
[15] http://www.ctio.noirlab.edu/soar/sites/default/files/Instrument_Plots/HgAr_930m2.pdf
[16] http://www.ctio.noirlab.edu/soar/sites/default/files/Instrument_Plots/HgAr_930m3.pdf
[17] http://www.ctio.noirlab.edu/soar/sites/default/files/Instrument_Plots/HgAr_930m4.pdf
[18] http://www.ctio.noirlab.edu/soar/sites/default/files/Instrument_Plots/HgAr_930m5.pdf
[19] http://www.ctio.noirlab.edu/soar/sites/default/files/Instrument_Plots/HgAr_930m6.pdf
[20] http://www.ctio.noirlab.edu/soar/sites/default/files/Instrument_Plots/CuHeAr_930m2.pdf
[21] http://www.ctio.noirlab.edu/soar/sites/default/files/Instrument_Plots/CuHeAr_930m3.pdf
[22] http://www.ctio.noirlab.edu/soar/sites/default/files/Instrument_Plots/CuHeAr_930m4.pdf
[23] http://www.ctio.noirlab.edu/soar/sites/default/files/Instrument_Plots/CuHeAr_930m5.pdf
[24] http://www.ctio.noirlab.edu/soar/sites/default/files/Instrument_Plots/CuHeAr_930m6.pdf
[25] http://www.ctio.noirlab.edu/soar/sites/default/files/GOODMAN/HgArNe_1200M5_GG455_full.pdf
[26] http://www.ctio.noirlab.edu/soar/sites/default/files/Instrument_Plots/cuhear_1200.pdf
[27] http://www.ctio.noirlab.edu/soar/sites/default/files/Instrument_Plots/GHTS_2100_650nm_Ne.2.pdf
[28] http://iraf.noao.edu/specatlas/
[29] http://www.ctio.noirlab.edu/soar/content/observing-goodman#S5c
[30] http://www.ctio.noirlab.edu/soar/content/imaging-focus
[31] http://adsabs.harvard.edu/abs/1984ApJS...54..259T
[32] http://adsabs.harvard.edu/abs/1983MNRAS.204..347S
[33] http://adsabs.harvard.edu/abs/1977ApJ...218..767S
[34] http://adsabs.harvard.edu/abs/1992PASP..104..533H
[35] http://adsabs.harvard.edu/abs/1994PASP..106..566H
[36] http://www.ctio.noirlab.edu/soar/sites/default/files/GOODMAN/Hamuy/cd-34241_dss.pdf
[37] http://www.ctio.noirlab.edu/soar/sites/default/files/GOODMAN/Hamuy/cd-34241_spec.pdf
[38] http://www.ctio.noirlab.edu/soar/sites/default/files/GOODMAN/Hamuy/ltt1020_dss.pdf
[39] http://www.ctio.noirlab.edu/soar/sites/default/files/GOODMAN/Hamuy/ltt1020_spec.pdf
[40] http://www.ctio.noirlab.edu/soar/sites/default/files/GOODMAN/Hamuy/eg21_dss.pdf
[41] http://www.ctio.noirlab.edu/soar/sites/default/files/GOODMAN/Hamuy/eg21_spec.pdf
[42] http://www.ctio.noirlab.edu/soar/sites/default/files/GOODMAN/Hamuy/ltt1788_dss.pdf
[43] http://www.ctio.noirlab.edu/soar/sites/default/files/GOODMAN/Hamuy/ltt1788_spec.pdf
[44] http://www.ctio.noirlab.edu/soar/sites/default/files/GOODMAN/Hamuy/ltt2415_dss.pdf
[45] http://www.ctio.noirlab.edu/soar/sites/default/files/GOODMAN/Hamuy/ltt2415_spec.pdf
[46] http://www.ctio.noirlab.edu/soar/sites/default/files/GOODMAN/Hamuy/hiltner600_dss.pdf
[47] http://www.ctio.noirlab.edu/soar/sites/default/files/GOODMAN/Hamuy/hiltner600_spec.pdf
[48] http://www.ctio.noirlab.edu/soar/sites/default/files/GOODMAN/Hamuy/ltt3218_dss.pdf
[49] http://www.ctio.noirlab.edu/soar/sites/default/files/GOODMAN/Hamuy/ltt3218_spec.pdf
[50] http://www.ctio.noirlab.edu/soar/sites/default/files/GOODMAN/Hamuy/ltt3864_dss.pdf
[51] http://www.ctio.noirlab.edu/soar/sites/default/files/GOODMAN/Hamuy/ltt3864_spec.pdf
[52] http://www.ctio.noirlab.edu/soar/sites/default/files/GOODMAN/Hamuy/ltt4364_dss.pdf
[53] http://www.ctio.noirlab.edu/soar/sites/default/files/GOODMAN/Hamuy/ltt4364_spec.pdf
[54] http://www.ctio.noirlab.edu/soar/sites/default/files/GOODMAN/Hamuy/feige56_dss.pdf
[55] http://www.ctio.noirlab.edu/soar/sites/default/files/GOODMAN/Hamuy/feige56_spec.pdf
[56] http://www.ctio.noirlab.edu/soar/sites/default/files/GOODMAN/Hamuy/ltt4816_dss.pdf
[57] http://www.ctio.noirlab.edu/soar/sites/default/files/GOODMAN/Hamuy/ltt4816_spec.pdf
[58] http://www.ctio.noirlab.edu/soar/sites/default/files/GOODMAN/Hamuy/cd-329927_dss.pdf
[59] http://www.ctio.noirlab.edu/soar/sites/default/files/GOODMAN/Hamuy/cd-329927_spec.pdf
[60] http://www.ctio.noirlab.edu/soar/sites/default/files/GOODMAN/Hamuy/ltt6248_dss.pdf
[61] http://www.ctio.noirlab.edu/soar/sites/default/files/GOODMAN/Hamuy/ltt6248_spec.pdf
[62] http://www.ctio.noirlab.edu/soar/sites/default/files/GOODMAN/Hamuy/eg274_dss.pdf
[63] http://www.ctio.noirlab.edu/soar/sites/default/files/GOODMAN/Hamuy/eg274_spec.pdf
[64] http://www.ctio.noirlab.edu/soar/sites/default/files/GOODMAN/Hamuy/ltt7379_dss.pdf
[65] http://www.ctio.noirlab.edu/soar/sites/default/files/GOODMAN/Hamuy/ltt7379_spec.pdf
[66] http://www.ctio.noirlab.edu/soar/sites/default/files/GOODMAN/Hamuy/ltt7987_dss.pdf
[67] http://www.ctio.noirlab.edu/soar/sites/default/files/GOODMAN/Hamuy/ltt7987_spec.pdf
[68] http://www.ctio.noirlab.edu/soar/sites/default/files/GOODMAN/Hamuy/ltt9239_dss.pdf
[69] http://www.ctio.noirlab.edu/soar/sites/default/files/GOODMAN/Hamuy/ltt9239_spec.pdf
[70] http://www.ctio.noirlab.edu/soar/sites/default/files/GOODMAN/Hamuy/feige110_dss.pdf
[71] http://www.ctio.noirlab.edu/soar/sites/default/files/GOODMAN/Hamuy/feige110_spec.pdf
[72] http://www.ctio.noirlab.edu/soar/sites/default/files/GOODMAN/Hamuy/ltt9491_dss.pdf
[73] http://www.ctio.noirlab.edu/soar/sites/default/files/GOODMAN/Hamuy/ltt9491_spec.pdf
[74] https://ui.adsabs.harvard.edu/?#abs/2013A%26A...552A..64S
[75] http://vizier.u-strasbg.fr/viz-bin/VizieR-3?-source=J/A%2bA/552/A64/table4