
CHIRON tip-tilt guider

A. Tokovinin, A. Szymkowiak

Version 1.1. April 18, 2013
file: prj/bme/chiron/guider/chiron-guider.tex

1 Introduction

This document presents the tip-tilt guider for CHIRON. This device compensates tracking errors of
the telescope by a rocking plate installed in front of the focus. The plate is tilted in two directions
by stepper motors, displacing the star image in the focal plane. The star is thus kept centered on the
fiber. The position of the star is measured by the acquisition camera GC-650 (650x499 pixels, pixel
scale 0.42′′). The guider corrects star position twice a second.

The rocking plate is a coated window of diameter 40 mm, thickness 6 mm, AR-coated. The range
of image displacement provided by the plate is ±9.5′′ or l = ±5.2 mm for a tilt range of ±14◦1 The
full range corresponds to ±1500 motor steps, with a scale of 6.4 mas/step.

2 Mechanical design

2.1 The structure module

The new structure replaces existing cylindrical interface between the FEM and the GAM door to
which it is attached. Now the FEM is fixed to the door by a cassette-like piece (square 12-cm) with
two 60◦ dovetail corners. On the opposite side, it is pressed by another 60◦ clamp which rotates on
a 1/4” screw. To detach FEM, we loosen the screw and turn the clamp up (counter-clockwise), see
Fig. 1.

The cassette is permanently joined with the square box that interfaces to the existing FEM body.
The rocking-plate assembly is fixed inside the box, with some of its elements (two motors and con-
nector) protruding outside the box through a suitably large hole. The center of the 10x10-cm box
is displaced by 25mm in each coordinate from the optical axis, thus providing space for the guider
elements.

All elements of the guider are attached to a triangular plate which is fixed inside the box by two
M3 screws. For tuning and service, this plate can be removed easily. The round connector and motors
protrude outside through holes in the box.

1Image displacement by a tilted plate of thickness d and refractive index n is, to first order, l = αd(n − 1)/n ≈ αd/3
(for n = 1.5).

1



Casssette plate

Box

Motor

Clamp

Connector

GAM door

Figure 1: View of the Front-End Module (FEM) with the guider.

2.2 Kinematics

The angle of the rocking plate to the optical axis is controlled within ±14◦ in both coordinates by
two miniature stepper motors. Each motor drives the 25-mm lead screw (M3x0.5) and moves the nut
by ±6mm from its central position. Linear motion of the nut is translated into tilts by the kinematic
arrangement illustrated in Fig. 2.

Motor 2

Motor 1Ax
is

 1

Axis 2

Opto−switches

Motor

Lead screw
Nut

Guide

Figure 2: Kinematic principle of the guider.

2



The glass plate is attached by means of a gimbals-like mount tilting around axis-1 and axis-2. The
two orthogonal axes cross at a point which is the center (pivot) of the tip-tilt motion. The axis-2
goes through a “fork” which tilts around axis-1. The axis-2 is solidly connected to the plate mount
on one end and to the two levers at roughly 45◦ angle to it, “anchor”, at the other end. The fork is
spring-loaded, providing contact between the levers and the nuts. When the motor 1 is actuated, the
pivot point and the contact point of the lever 2 remain fixed and form a virtual axis of rotation. The
motor 2 acts in the same way (the kinematics is symmetric). The displacement range of ±6 mm and
the lever length of 21 mm provide maximum tilt of ±16◦ in each direction; the actual range is slightly
less.

The right side of Fig. 2 shows the motor module in detail. Rotation of the nut is prevented by
a “finger” which slides in a guide parallel to the lead screw. The two home and limit opto-switches
QVA11134 define the motion range. They are activated when the nut border crosses the center of each
switch, cutting its beam. The lower (left in the Figure) switch acts as a home sensor and defines the
nut position corresponding to the step zero. Each motor together with its lead screw, nut, guide, and
opto-switches is assembled in a self-contained module which can be connected and tested independently
of the rest. Wires that connect to the opto-switches go through 1-mm holes on the protruding border
of the PCB, to prevent mechanical stress at the solder points. The wires of the motor connection pass
close to the motor body. Figure 3 shows the actual hardware.

Figure 3: View of the guider module from the front side.

3



3 Electronics

EZ17 #1
controller

24V Power Supply

EZ17#2
controller

110V AC in

to motors and opto switches

Lantronix EDS2100 RS485 Port #2

RS485 Port#1

Ethernet

19−pin Ampenol Connector

Figure 4: Block-diagram of the guider electronics.

Power switch

Power
supply

Motor
controllers

24V

#1

#2

Ethernet
24V power

Cable to TT module
19−pin connector

Figure 5: Electronic module

The tip-tilt electronics module (Figs. 4,5) is assembled in a small box and attached to the telescope.
It contains the 24V power supply, two stepper-motor controllers EZ17 from allmotion.com. These
controllers take serial commands on an RS-485 interface. In the tip-tilt electronics box is a Lantronix
EDS2100 interface, which is used in tunnel mode to deliver the serial streams to and from the two RS-
485 ports. We chose to connect each device to its own port (although RS-485 would have allowed us
to daisy-chain both controllers on one port, but at the added expense of a communication bottleneck

4



forbidding simultaneous operations).
The controllers are connected to the guider by a cable that transmits motor currents (4 lines

per motor) and opto-switch signals (5 lines per motor). The round connector has 19 pins, with a
straight-through cable.

The 110 volt cord goes through a DPST switch and a fuse before going to the inputs of the power
supply. Outputs from the PS goes to coax power connector for Lantronix EDS2100 and to the power
pins of the two AllMotion EZ17 stepper controllers. The EZ17s are labelled as 1 & 2 on the board
they are attached to; Serial output 1 of the Lantronix is wired to comm. pins of EZ17#1 Lantronix
tunnel for 1st serial connection is at port 10001 (and 2nd on port 10002).

Conn EZ17# EZ17 pin function | Conn EZ17# EZ17 pin function

|

A 1 Mot 3 winding 1 + | L 2 Mot 3 winding 1 +

B 1 Mot 4 winding 1 - | M 2 Mot 4 winding 1 -

C 1 Mot 5 winding 2 + | N 2 Mot 5 winding 2 +

D 1 Mot 6 winding 2- | P 2 Mot 6 winding 2-

|

E 1 Opto 1 ground | R 2 Opto 1 ground

F 1 Opto 2 opto#1 sensor | S 2 Opto 2 opto#1 sensor

G 1 Opto 3 opto#1 emitter| T 2 Opto 3 opto#1 emitter

H 1 Opto 4 ground | U 2 Opto 5 opto#2 sensor

J 1 Opto 5 opto#2 sensor | V 2 Opto 6 opto#2 emitter

K 1 Opto 6 opto#2 emitter|

The motors are wired as follow

ez17 pin: ribbon color: motor pin:

3 yellow 1A

4 orange 2A

5 red 3B

With the above assignment, negative direction is down towards the plate so EZ17 opto 1 (for
homing) is the lower opto (nearer the plate) for both axes (and opto 2 is therefore used for the ”upper”
limit) For both motors: ∼3200 eighth steps covers full range, so 1500 is approximately mid-range (with
some margin at top to avoid encountering upper limit).

4 Software

The software that controls the tip-tilt module is an adaptation of the existing PCGuider program
done by A. Szymkowiak. It consists of the core module written in C and the graphic user interface
(GUI) written in Tcl/Tk. The new version of PCGuider is called 6.1.0. It can be evoked from the
X-windows menu (mouse right-click in the background) as PCguideTT. The old version which does not
use the tip-tilt module is also available in this menu as PCguide.

5



Figure 6: Graphic use interface of the PC Guider program 6.1.0 with the new menu options.

4.1 User interface

Three new options were added to the "Windows" menu of the main guider GUI (Fig. 6).
The main one is labelled "TipTilt Control". At the top are two radio buttons, to select between

using the tip-tilt mechanism, or to fallback to the old TCS only mode. The next line starts with the
"Query Position" button. The line next to the button will be populated by information indicating
the current position of the stepper motors. This line is automatically updated at a rate programmed
into the GUI (currently 5 seconds). Each position has a colored field to the right which indicates if the
corresponding stepper is in range (green), out of range (red), or has entered a warning area (yellow).
The yellow range is used to trigger the automatic TCS unloading.

The next line starts with the "Move" button, followed by two number entry fields. This is the
position to which the steppers will move if the ”auto restore” feature is enabled, when the guiding is
stopped (or if the button is pressed).

The next line allows for the entry of offsets which are added to the errors to account for guiding
to the sub-pixel level.

Next are two buttons for controlling the ”Auto Restore” feature. This is enabled by default. It
causes the mechanisms to move to the position currently entered next to the move button whenever
the guider goes from on to off (or calculate) mode.

6



After that, are two buttons for controlling the use of the ”Unload to TCS” feature, which is by
default enabled.

At the bottom of this panel, is a button which will fetch the state of the 4 limit opto detectors
(as a list of 4 bits). This is intended only to be used to document the state in the case that trouble
arises, and should not be used in normal operations.

The third new GUI is invoked by the "Binary Box" item. It has two number entry fields labeled
”Sep” (for ”Separation”) and ”PA” (for ”Position Angle”). Under the number entry boxes are three
buttons labelled ”-”, ”0”, and ”+”. When the ”+” button is pressed, the guiding box is moved
according to the offset numbers. (Pressing it multiple times will continue to step away in that direction,
which is not really useful for guiding on a pair of binary stars). The ”-” button takes steps in the
opposite direction. Pressing the ”0” returns the guiding box to the nominal position (292,249) which
is hard-coded in the GUI.

Implementation notes: The nominal position is programmed into the Tcl/TK code, as is the scale
for converting the separation value into guider box offset amounts. The position angle argument is
implemented as counter clockwise in degrees from horizontal (which is not the usual astronomical
convention.

The other new GUI is invoked as the "Tiptilt Maint" item. This is not intended to be used
in normal operations. There are two number entry boxes for changing the x and y gains. There is
a button labeled ”re-home” which will start the stepper controller hunting for the lower limit opto
positions. This is only to be invoked (with guiding off) if one thinks that the positioners have missed
some steps. There is another button, labelled ”Reload posns”, which reads the current positions from
the stepper controllers, and reloads them into the software. Again, this should never be required in
normal operations, and is only intended for use during problem investigations.

4.2 Software design

The software must control the positions of the two stepping motors. The motors are each connected to
an AllMotion EZ17 controller module. These controllers take serial commands on an RS-485 interface.
In the tip-tilt electronics box is a Lantronix EDS2100 interface, which is used in tunnel mode to deliver
the serial streams to and from the two RS-485 ports. We chose to connect each device to its own port
(although RS-485 would have allowed us to daisy-chain both controllers on one port, but at the added
expense of a communication bottleneck forbidding simultaneous operations).

An existing subroutine library was used to open sockets to the two ports in the Lantronix that are
used to tunnel the traffic to and from the serial ports. Once these sockets have been established, the
traffic can be sent and received using standard Unix reads and write.

A small collection of subroutines was written just for operations with the steppers, named ez17.c.
Two are used most commonly in normal operations; ez17 send() which sends a string and waits for
the returned status, and ez17 wait for move() which repeatedly queries the current position of the
selected axis, until two successive readings show that the axis is no longer moving. After opening
up the communications during program initialization, ez17 clear() is used to remove any artifacts
from the streams that sometimes are present after turn-on. There is a routine intended for internal
use only in the library named ez17 get return, which parses the returned string for the standard
header bytes and prints out any error conditions in the returning messages. (Since there can be noise
when an RS-485 bus changes direction, this routine discards any bytes seen before the standard header

7



sequence.)
We decided to integrate the tip-tilt control into the framework of the existing CTIO PCGuider

program, and to keep as much of the existing look-and-feel. The PCGuider functions are actu-
ally handled by a series of tasks written in C, which communicates through Unix RPC calls to the
GUI components, which are implemented in Tcl/Tk. We started with the code as present in the
/usr/local/pcguider6.0 directory in use on the CHIRON guiding computer. The existing routines
took frames from the guiding camera, accumulated the leaky average, passed the data from within
the guiding box to one of the guiding algorithms which calculates the x and y error signals from the
image. In the previous version, these error were sent through a queue to the error task, which then
accumulated a series of corrections, and periodically sent a correction request through a socket to the
TCS. The main change we made was to establish a new queue, and have the errors instead sent to a
new task, which was established to generate commands to the tip-tilt system.

(Most) all of the new code was created in a new module name ttLib.c (In most places, the tip-tilt
variables, keywords, functions and queues are prepended with an initial ”tt”). During startup, the
tt init routine is called to read in parameters, to open the socket connections and to initialize the
steppers. We appended the new TT parameters to the existing configuration file config/ctio60.conf,
and added the routines to fetch the values to the existing paramsLib.c routines. A new file is also
read from the config directory, named tt setup file, which contains commands which will be sent to
both stepper controllers when the program starts. These are used to set various parameters (modes,
velocities, and currents) in the controllers. Then the two controllers are told to perform a ”home”
operation, which causes them to turn in the negative direction until the lower opto switch detects
the entrance of the flag on the rear of the nut that rides on the lead screw. The motors are then
commanded to position the nuts at the ”restore” position, which is approximately in the middle of
their full range.

Once guiding is turned on, the series of error determinations are placed into the ttQueue, where the
tt task starts to process them. It takes the average of all the corrections found in the ttQueue when
awakened, multiplies the average corrections by the loop gains, and adds the requested delta to the
current position. If the new position will remain in the ”green” zone, the command to request those
moves are generated and sent to the controllers. If either of the new positions will take the stepper
into the ”red” zone, the new command is truncated to stop at one step past the red zone boundary.
If the ”auto TCS unload” option is enabled, and the new position falls within the ”yellow” zone, the
stepper motion is skipped, and instead a TCS move is requested by placing the unload step amount
into the (old) errorQueue, so the previously existing program infrastructure is used to perform the
TCS commands.

Three new Tcl/Tk panels were made to control and view the TT operations. These new panels
were added to the "Windows" pull-down menu of the main guider control panel. They are described
elsewhere, but here we will mention some of the aspects of the software written to support them. A
new item was added to the existing parseLib.c routine that dispatches commands received on the
C programs RPC channel. Commands stating with the string "tiptilt" are then dispatched to a
new routine in ttLib.c named parse tt service. Many of the new commands receive and set values
from the Tcl interfaces. There are a few routines to read back (usually parameter values) from the C
to the Tcl worlds, or to request updates to current positions, etc. Two of the new commands actually
cause actions to occur - one moves the steppers back to the ”restore” position (imagined to usually
be the center), and the other, not intended to be invoked in normal operations, can cause the stepper

8



controllers to perform another ”home” initialization.

4.3 Configuration files

Here are some notes about new parameters added to the ctio60.conf file for version 6.1.0 to support
operations of the tiptilt stage.

TT_IP_ADDRS: lantrxa.ctio.noao.edu

The address of the Lantronix EDS2100 in the TT electronics box.

TT_X_IS_1: 0

This is a Boolean which indicates whether motor 1 is associated with the X or Y axis.

TT_X_GAIN: -40.0

TT_Y_GAIN: -40.0

The gains applied to convert calculated error amounts to TT stepper motor deltas. Could be negative
if either movement is ”backwards” from what was assumed when written.

These next eight entries are for setting the ”lower and ”upper” ”red” and ”yellow” limits. If the
guiding attempts to move the steppers beyond the red limits, they will stop at one microstep beyond
the limit (and turn the background of the status field in the GUI to red). Similarly, if the guiding
commands the steppers into any of the region between the yellow and red limits, the status field will
turn from green to yellow, and the terminal bell will start to sound. If the auto TCS unloading is
enabled, the TCS will take a step to move the star so that the stepper should move away from the
red limit as the tiptilt follows the movement of the object after the TCS movement. (The full range
of the steppers is from 0 to approximately 3200; please keep the red limits slightly less than the full
range.)

TT_X_LR: 20

TT_Y_LR: 20

TT_X_LY: 950

TT_Y_LY: 950

TT_X_UY: 2050

TT_Y_UY: 2050

TT_X_UR: 3100

TT_Y_UR: 3100

TT_X_RES_POS: 1500

TT_Y_RES_POS: 1500

9



These are the stepper settings at which the mechanisms will start, and to where it will move back
when guiding is turned off. These populate the positions in the GUI next to the move button. If the
GUI entries are changed, they become the new restore position. For now I am starting these near the
middle of the TT range. If there is a buildup of error in one direction (say, RA) during long exposures,
may want to start with a different offset.

TT\_X\_UNL\_STEP: -1.0

TT\_Y\_UNL\_STEP: -1.0

These are the size of the steps the TCS will take if the steppers enter the yellow region. Could be
negative, if necessary.

TT RATE: 2.0 This is the nominal rate at which TT corrections will be made.
There is also a new file in the config directory, named tt setup file. This contains a list of stepper

controller commands which are sent to both controllers during the program start up sequence. These
set various parameters, such as velocities and currents. (The newline at the end of each command
from this file is changed into the return that the controllers require).

4.4 Specifications of hardware components

Table 1: Hardware components

Device Vendor Part No. Qty Cost, $

Rocking plate TBD TBD 3
Stepper motor www.faulhaber.com AM1020-2R-V-12-250-23 3 270
Lead screw www.faulhaber.com M3x0.5x25 3 incl.
Controller www.allmotion.com EZ17 3 175
Opto-sensor www.digikey.com QVA11134 10 2.12
Connector (cable) www.amphenol.com PT06E-14-19S(SR) 2
Connector (panel) www.amphenol.com PT06SE-14-19P 2
24V/2.1A power supply www.digikey.com SLPower GLC50-24G #271-2306 1

10


