
CHIRON basic data reduction

A. Tokovinin

Version 3. October 26, 2011
file: prj/chiron/doc/code/chireduce.tex

1

1 Overview

thid
 mkwave

thid_data.xdr

logsheets/

iodspec/

raw/111003/ chi111003.NNNN.fits

chi111003.log

rchi111003.NNNN

ctio.par

logmaker

reduce_ctio4k

addflat

ctio_spec
 getspec
 getarc
 getsky
 remove_cosmics

sorting_hat

getimage
chip_geometry

root directory (/mir7/) code directory (pro/)

thid/wavfile/ ctio_rchi111003.NNNN.dat

thid/thidfile/ rchi111003.NNNN.thid

fitspec/ rchi111003.NNNN.fits

flats/
flats/

chi111003.slicer.sum
chi111003.slicer.flat

orders/ chi111003.slicer.orc

 getflat

 fords
ctio_dord

allreduce

Figure 1: Directory structure of CHIRON data and reduction code.

This document describes the IDL package for reduction of echelle spectra from the CHIRON
spectrograph. The package is based on the REDUCE code by Piskunov & Valenti1 , but departs from
their algorithm in many substantial ways. It was developed by D. Fischer and M. Giguerre. Further
modifications were made by A. Tokovinin in October 2011. Here we consider only basic reductions:
order extraction, flat-fielding, and wavelength calibration. Measurement of precise radial velocities
with iodine (the “doppler code”) is not covered.

Figure 1 gives overall view of data and programs, illustrating also the adopted naming conventions.
All raw and processed files are located in the root directory /mir7/. Raw images (FITS files) are
copied from the data-taking computer ctioe1 at Cerro Tololo to nightly sub-directories raw/yymmdd/
in /mir7/raw. In this document we consider the fictitious night of October 3, 2011 as example. The
raw files are named as chiyymmdd.NNNN.fits, where NNNN is sequential exposure number for this
night.

The reduction code operates as hierarchical scripts that call other scripts or actual programs. The
short top-level script is allreduce, it calls sorting hat once per each observing mode. The scripts
sort data according to the observing mode. Four modes are defined: narrow, slicer, slit, fiber.
Each mode is associated with particular CCD binning, order location, and wavelength calibration.
The sorting hat is calling reduce ctio and other routines. More details are given in Sect. 3.

1Piskunov, N.E. & Valenti, J.A. 2002, A&A, 385, 1095

2

2 Step-by-step

2.1 Log files

The log files, one per night, are created by logmaker.pro and stored in /mir7/logsheets/. The
information is extracted from the FITS headers (change of the header keywords will require adjusting
the code). Example of the logfile is given below. These files are read by the data-processing scripts
using readcol.pro: the header is skipped, and string arrays of observation number, object, mode,
etc. are produced. These arrays are used to select observations in particular mode and to match
them with calibrations. The only calibrations used here are the flat fields (quartz exposures) and the
thorium-argon spectra.

CTIO Spectrograph Observing Log

Observer: Manuel Hernandez Telescope: CTIO 1.5-m Prefix: chi111003

UT Date: 2011, Oct 2/3 Chip: 201 (e2v 4k, 15micron) Foc: 10.2940 mm

Ech: CHIRON Fixed Cross-disperser position Foc FWHM: 2.394

Obs Object I2 Mid-Time Exp Bin Slit PropID Hdr Comments

number Name (y/n) (UT) time

0011 thar y 20:08:20 1.00 3x1 slicer Calib11

0012 thar n 20:11:12 1.00 3x1 narrow Calib

0016 iodine y 20:13:26 2.00 3x1 slicer Calib

0018-0032 quartz n 20:18:32 2.00 3x1 narrow Calib

....

1201 177565 y 23:36:31 1200 3x1 slit CPS

1202 177565 y 23:56:44 1200 3x1 slit CPS

1203 177565 y 00:16:57 1200 3x1 slit CPS

2.2 The parameter file

Different parts of the reduction code need to “know” the location of relevant files and other common
parameters. This information is passed in the structure redpar. It is defined by the parameter file
ctio.par and can be read as >redpar = readpar(’ctio.par’). The values of the parameters can
be changed by editing the .par file. New parameters can be added, but in this case we need to exit
and re-enter the IDL because its named structure definition is “rigid”. On the other hand, it is passed
to programs by reference and can return useful information. Fields can thus change during data
processing are marked vy (8) in the comments, they are imdir, prefix, binning, mode, gain,

ron. These changes are not saved on the disk. Comments or commented lines are allowed. However,
the synthaxsis (colons, commas after values) must be strictly observed.

{redpar, ; named structure, passed by reference

rootdir: ’/mir7/’, ; root directory. All other paths are relative to rootdir

logdir: ’logsheets/’, ; log sheets

3

iodspecdir: ’iodspec/’, ; reduced spectra in RDSK/WRDSK format

fitsdir: ’fitspec/’, ; reduced spectra in FITS format

thiddir: ’thid/wavfile/’, ; wav saved in in *.dat files, not used

thidfiledir: ’thid/thidfile/’, ; thid saved in *.thid files

rawdir: ’raw/’, ; raw files

imdir: ’111003/’, ; yymmdd/ image directory with raw night data (*)

prefix: ’chi111003.’, ; file prefix, will be set by sorting_hat (*)

flatdir: ’flats/’, ; summed flat fields

orderdir: ’orders/’, ; order locations

barydir: ’bary/’, ; code for barycentric correction?

xtrim: [723,3150], ; trim along line (cross-dispersion direction), UNBINNED pixels

ytrim: [611,3810], ; vertical trim (along disp.), UNBINNED pixels 4111 - [301,3500]

readmodes: [’fast’,’normal’], ; readout modes

nlc: [[5.0e-6, 4.3e-6],[4.5e-6, 4.0e-6]], ;non-linearity coefs. [left,right] in fast and normal

gains: [[2.59,2.19], [2.23, 1.92]], ; gain [[l,r]fast, [l,r]norm], el/ADU

ron: 2., ; RON estimate [ADU], to be calculated from bias (*)

gain: 1., ; actual gain [el/adu] (*)

binning: [1,1], ; will contain actual binning [row,col] from the header (*)

mode: 0, ; index of the actual mode (*)

pkcoefs: [38.0,43.890,0.2310,0.002029], ; poly coefs of peak maxima @center y(iord), unbinned

nords: 40, ; number of orders to extract

modes: [’narrow’,’slicer’,’slit’,’fiber’], ; observing modes

xwids: [6,12,6,5], ; extraction width, binned pixels

dpks: [10,7,10,9], ; peak shift for each mode, binned pixels

binnings: [’3x1’,’3x1’,’3x1’,’4x4’], ; binning in each mode, row x column

debug: 0} ; 1 in debug mode, with plots and stops

2.3 Reading the raw files

The raw images contain pre- and over-scan sections for bias subtraction. Presently the readout is
made with two amplifiers, but we plan to switch to 4 amplifiers. All these instrument-specific details
are isolated in two routines, chip geometry.pro and getimage.pro. The first returns the geometry

structure describing readout mode, binning, etc. It is used by getimage for bias subtraction. The
image segments read through different amplifiers are stitched together and returned by getimage as
a single image file. The header can be returned as well in the keyword. The redpar is passed as input
parameter. Presently, the images are trimmed in rows and columns, and this trimming is specified in
the parameter file. Independently of the binning, the same part of the CCD is always selected.

The actual binning of the image is “saved” in redpar.binning. The readout noise (in ADU) is
calculated from the overscan and saved inredpar.ron. for further use. Typically it is 2.3ADU in the
normal readout mode (fiber) and 3.1ADU in the fast readout mode. The right half of the image is
scaled by the ratio of the amplifier gains to reduce the “step” between the two halves (the left gain
then applies to the whole image and is saved in redpar.gain). Non-linearity of the CCD controller
is corrected. The image reading routine is used in different parts of the code (flats, order definition,
extraction). The images are returned without rotation, but in further reductions they are rotated to

4

orient dispertion along the rows by the command im = rotate(im, 1).

2.4 Adding flat fields

First thing done by reduce ctio is the co-addition of the flat fields. The list of flats is passed as array
of image numbers, then addflat is called. Each file is read and processed by getimage, the sum of
flats is saved in the /mir7/flats directory as prefix mode.sum, where the prefix is chi111003 for
our example. The summed quartz frame is used in the script reduce ctio directly (no need to read
it back from the disk). However, when no flat-field is given on input, reduce ctio tries to read the
summed flat for particular night and mode from the disk.

2.5 Order location

The second step is to define the order centers by polynomials orc[ncoef,nord]. For each order
the coefficients describe the order location as y(x), where x is the horizontal pixel coordinate (along
row), y is the vertical coordinate (along column). Incomplete orders that cross lower or upper image
boundaries are discarded. Obviously, the order definition depends on binning and image truncation.

In the present version of the code the 40 orders are “hard-coded”. The edge orders are excluded “by
construction”, so that none of the good orders crosses the image boundary. The orders are defined as
positions of the order centers in the middle of the CCD, approximated by the cubic function of the order
number y(iord) (quadratic is not good enough). The coefficients are given in the redpar.pkcoefs,
in un-binned pixels. The initial peaks are shifted differently for each mode using redpar.dpks. The
wrapper script ctio dord reads the order-definition image (or uses the summed quartz exposure) and
calls fords.

Series of cross-order image cuts (swaths) are used for the order location. Each swath is slightly
smoothed by median filtering, eliminating the cosmic rays (excessive smoothing is detrimental for the
order location). Given the initial (default) peak positions, the algorithm finds actual peak centers
by parabolic approximation of each peak in the (smoothed) swath. It proceeds from the chip center
(blaze peak) to the right and to the left, re-adjusting the peaks in each swath successively (following
the orders). The 2-D array of peak positions is then approximated by 4th order polynomials (as much
as 0.25 fraction of peaks may be missing). The array orc is saved in /mir7/orders/prefix.mode.orc

file, but is not normally needed, being stored in the variable by the script.
Until now, the order positions were re-defined for each spectrum. This caused some wrong re-

ductions for faint stars. In the current version the orders for each mode and each night are fixed,
determined only once from the well-exposed spectrum or summed quartz. The image truncation was
adjusted so that order 0 is not eliminated for the sliced frames. This order is located always at the
same unbinned pixel of the central swath in all modes.

In the debug mode (redpar.debug=1) the program stops at several key points. First, the central
swath and default peaks are plotted. Then the polynomial coefficients for the central swath are printed,
and finally the grey-scale image with order centerd marked with white dots is shown. After pressing
.C, the “slit function” of the central order is plotted (Fig. 2). Order location is particularly delicate
in the slicer mode, when the peaks nearly touch. Nevertheless, the rms error of peaks w.r.t. their
polynomial description is about 0.06 pixels in all modes.

5

0 200 400 600 800

2•104

4•104

6•104

-10 -5 0 5 10
0

1•105

2•105

3•105

4•105

5•105

6•105

Figure 2: Diagnostic plots for order location in the slicer mode. Left: smoothed central swath with ini-
tial peak positions. Right: slit function, with vertical lines indicating the range of peak approximation
by parabola.

2.6 Spectrum extraction

The extraction is done by the script ctio spec:
CTIO spec,prefix,spfname,outfname,redpar,orc,xwid=xwid,flat=flat,nosky=nosky,cosmics=cosmics

It reads the image file and uses the order coefficients given on input. Then the scattered light between
the orders is subtracted by getsky. It samples the image between the orders, adjusts smooth 2D
polynomial and subtracts this contribution from the image. In the current spectra the scattered light
reaches 1.4% of the peak signal in all modes except slicer, where the scattered light is larger.

The spectra are extracted by boxcar average along each order on xwid pixels. This parameter is
pre-set for each mode in redpar.xwids and passed to the extraction routine. The procedure getxwd

can be called for automatic calculation of the extraction width, but it is not used at present. The
extraction program getspec proceeds order-by-order, cleaning the cosmic rays in the process (some
cosmic events remain uncorrected). It calls getarc, mkslitf and optordv. These routines need to
“know” the gain and readout noise, which is taken from redpar and passed further as keyword by
ctio dord The result is an array of [npix,nord] size containing summed counts across order for each
pixel. Optimally extracted spectrum is a by-product of the cosmic-ray routine (see further discussion
in Appendix A).

The extracted spectra (and FITS headers) are saved in the directory /mir7/iodspec/ in binary
format using the custom routine wdsk. They can be read back with rdsk:
> rdsk, sp, ’/mir7/iodspec/rchi111003.NNN’, 1

puts the spectrum in the array sp. To read the header, use 2 instead of 1. A better way would be to
use the standard IDL save/restore functions, as done during wavelength calibration.

6

0 200 400 600 800
0.0

0.5

1.0

1.5

Figure 3: Trace of the quartz exposure row (full line) and the flat field correction derived for this row
(dotted line). The correction is noisy between the orders and is exactly one on the high-slope parts.

2.7 Flat field correction

In the previous version of the code, the flat-field (FF) correction was done by two-dimensional division
of the image. This procedure, used for Keck spectra reduction, works well when the flat-field spectrum
is wider than the stellar spectrum (hence the term “wide flats”). This is not the case for CHIRON.
The algorithm divided each line of the FF frame by its 5-pixel median to remove low-frequency
components (large-scale CCD defects are thus uncorrected). The result is noisy between the orders,
where the signal is low. When the line crosses the order, the signal has a large slope and its 5-pixel
median equals the value in the central pixel. Therefore, the division produced 1 and there is no FF
correction. This is illustrated in Fig. 3.

The FF algorithm was changed to correct the extracted spectra, rather than 2D images. The FF
is extracted, normalized by the fitted polynomial (along the order, not along the line), and used to
correct the extracted spectra. The resulting flat-field array of [ncol,nord,3] sixe contains the FF
correction in the first plane, the extracted quartz in the second plane, and smoothed orders in the third
plane. It can be used to correct spectra for the blaze function of the echelle. The array is saved on
disk in /mir7/flats/chi111003.mode.flat, but not used normally (the script reduce ctio contains
it in a variable).

Figure 4 plots three consecutive orders (20, 21, 22) of the extracted and flat-fielded quartz spec-
trum. The smoothness of the blaze function characterizes the quality of the extraction. A sharp
negative feature is seen in the order 22, ∼5 pixel wide. Such features are present in some other orders
and are caused by the large contaminant particles on the CCD.

7

0 500 1000 1500 2000 2500 3000
0

2000

4000

6000

8000

Figure 4: Three orders 20-22 of the quartz exposure after extraction and flat-fielding. File
chi111003.0034 (quartz, slit).

2.8 Wavelength calibration

The wavelength calibration in ThAr spectra is done after extraction using the program thid.pro or
its automated version auto thid. It is called by the script sorting hat. To do it manually, we issue
the following commands:

> restore, ’/mir7/thid/thidfile/rqa39.5969.thid’ ; thid structre, wvc are the coefs

> rdsk, t, /mir6/iodspec/rqa39.9407.thid’ ; [801,40]

> thid, t, 88., 88.*[6342.,6466], wvc, thid, init=thid.wvc, /orev

Here the previous line identification is restored first: the structure thid. The new exrtacted ThAr
spectrum is read from the disk into array t, and then the interactive procedure thid is called. At
its prompt, type h to see the command options. In the very least, you would type a to mark the
lines automatically (accept three default parameters offered), f to fit the wavelength solution (enter
polynomial degreees in x and y, typically 6), and q or x to quit. The result will be in the array wvc

and in the structure thid.
Previously identified spectra used as initial guess may have different number of pixels because of

the binning. This is taken care of by re-sampling the initial wavelength to match the actual ThAr
spectrum (the order mismatch would be fatal, however). In the debug mode auto thid displays the
residual plots and the 2D spectrum with marked lines. Identification is either correct or totally wrong!
The typical rms of “good” lines after outlier rejection is 0.15 pixels.

The calling script saves thid in the directory /mir7/thid/thidfile/. Further, it used mkwave

to create the wavelength array for each order of [npix,nord] size. It is saved in the directory

8

/mir7/thid/wavfile/ctio*.dat after being flipped vertically (wavelength increases up, to math the
spectra that are also flipped before saving). However, in the latest version of sorting hat the .dat

files are not used, being produced “on the fly” instead.

2.9 Reduced spectra in the FITS format

The sorting hat combines extracted spectra (which were saved in binary format so far) with the
wavelength solutions and writes them, along with the header, into FITS files. The FITS spectra have
format [2,npix,nord]. The first plane contains wavelengths, the second plane – extracted spectrum.
The matching algorithm selects ThAr exposure in the same mode which is closest in time to the science
spectrum. Alternatively, interpolation of the wavelength in time between two ThAr spectra could be
implemented.

3 Automated data reduction

3.1 Reduce ctio

The call is like
reduce ctio, redpar,mode,flatset=flatset,thar=thar,order ind=order ind, star=star

where the keywords flatset, thar, star contain integer arrays with respective exposure numbers.
If flatset is not given, the summed quartz will be read from the disk. It will also be used for the
order location unless order ind is given explicitly. The lists are normally produced by the calling
script sorting hat.

In the debug mode, there are stops to examine input data or intermediate results. Stand-alone
use of reduce ctio helps to debug data reduction. For example, order location in slicer mode can
be checked by calling redice ctio, redpar, ’slicer’, star=[1]. Other essential parameters are
passed through redpar.imdir and redpar.prefix, the summed flat is read from the disk (if it exists
already), and we go directly to fords.

3.2 Sorting hat

This script is typically called as
sorting hat, ’111003’, mode=’slicer’, /reduce, /getthar, /iod2fits

The mode keyword is obligatory. Optional keyword run specifies file prefix for the given night, like
qa39 (before September 20, 2011). However, this is not normally necessary because the prefix will be
found automatically by examining data files for this night. The parameter file is read from the disk
at each call of this script.

First, sorting hat reads the logfile for the night. It is used to select data in the given mode:
quartz flats, ThAr+iodine spectra and science spectra.

The data are first reduced (flag /reduce) by a call to reduce ctio. Then automatic ThAr iden-
tification is performed (flag /getthid). The initial guess here is the most important thing. It can be
given explicitly on input as thar soln=’rchi111003.NNN’. Otherwise, the .thid files for this night
are looked for. Normally they are not yet present. In this case solutions for previous nights are sought
by calling findthid. It reads the last 10 logsheets, determines calibration exposures and looks for

9

corresponding .thid files (the mode is ignored because any mode works as initial guess). If nothing is
found, it returns. Note that wavelength solutions obtained at this step overwrite previous .thid and
.dat files in respective directories.

The last step in standard data reduction is combination of spectra and wavelength solutions in
FITS file (flag /iod2fits). Further operations (doppler code and data distribution) are not active in
the current code.

To reduce all modes for a given night, use the short allreduce script which calls sorting hat for
all four modes.

3.3 Notes on the code structure

Code re-structuring was aimed primarily at increased flexibility and portability by eliminating hard-
coded parameters. Most parameters are assembled in redpar, while the CCD-specific code is encap-
sulated in chip geometry and getimage. Low-level routines that actually do the “number crunching”
should remain as general as possible and should not access the disk files (with the exception of thid
which needs the standard wavelengths from thid data.xdr.

Writing and reading from the disk is reserved for the scripts, mostly (with the exception of
ctio spec). The scripts also “know” about naming conventions.

4 Summary

4.1 Changes to the code

This is the summary of code modifications.

• The parameter file is introduced, eliminating hard-coded parameters from the main reduction
routines.

• Unified image-reading routine is used throughout. It is hardware-specific and should be changed
if the CCD or controller are changed.

• All binning modes can now be reduced.

• The flat-field correction algorithm is modified, now the extracted spectrum is divided by the
extracted FF.

• Summed flats, extracted flat fields and order locations are saved for each night and each mode
in reserved directories, not in the main code directory.

• The script sorting hat is changed, now it can be called once for all data reduction, including
ThAr identification.

4.2 Further work

The following modifications are to be considered:

• Eliminate image truncation to use the full spectral range of CHIRON. This will involve re-
definition of orders. Reduced spectra will contain zero values where there is no signal.

10

• Eliminate bad pixels or columns?

A Some testing

A.1 Spectrum extraction

1500 1520 1540 1560 1580 1600

2.6•104

2.7•104

2.8•104

2.9•104

3.0•104

3.1•104

0 500 1000 1500 2000 2500 3000
-600

-400

-200

0

200

Figure 5: Comparison between boxcar (full line) and optimum extraction (dashed line) for fragment
of order 10 in the iodine spectrum chi111003.1301 (slit mode). The right-hand plot is the difference
between two spectra.

0 500 1000 1500 2000 2500 3000
-0.04

-0.02

0.00

0.02

0.04

1500 1600 1700 1800 1900 2000
-0.010

-0.005

0.000

0.005

Figure 6: Normalized difference between boxcar and optimum extractions for spectrum chi111003.1301.
Left: order 31. Right: order 35, with scaled fractional pixel of the order-center overplotted in dashed
line.

The boxcar extraction implemented in the current code was compared to the optimal extrac-
tion. Optimally-extracted spectrum is produced by the remove cosmics routine, but not used in the

11

getspec. Figure 5 compares a fragment of the iodine spectrum extracted by two methods. The differ-
ence is on the order of 1%, but it has a systematic “wavy” component. This is better shown in Fig. 6,
where the normalized difference (s1 − s2)/s1 is plotted. The period of “waves” equals the interval
where the order crosses vertical pixel boundaries. Further study is needed to see which extraction
method gives less waves. If we select optimum extraction, it should be applied to the flat field as well,
to correct same pixels as in the science spectrum (to the extent that FF and spectrum do not move
vertically).

Another aspect of optimal extraction is lower noise. It was checked on the spectrum of faint star in
fiber mode chi111003.2201. The noise was estimated as rms difference between extracted order and its
10-pixel median. For the average signal of 120ADU the rms was 10.7ADU for the optimally extracted
spectrum and 11.7ADU for the boxcar extraction. The estimated photon noise is

√

120/2.3 = 7.2ADU,
so in this case the noise is dominated by the readout. We conclude that the boxcar extraction does
not cause substantial increase of noise.

A.2 Comparison with the old code

1500 1600 1700 1800 1900 2000

5.0•103

1.0•104

1.5•104

2.0•104

2.5•104

3.0•104

Figure 7: Portion of the extracted chi111003.1401 (iodine spectrum, narrow slit). Line – old code,
crosses – new extraction multiplied by 3.0.

The extracted spectra (both boxcar and optimum) contain summed signal in ADU in each pixel.
This was checked by direct summing of the image. In contrast, the old code gives signal exactly 3x
larger, for unknown reason.

Figure 7 compares old and new extractions (with the factor of 3 artificially eliminated). The
differences are most likely caused by the flat-field correction (the old code is not correcting anything
wider than 5 pixels).

12

A.3 Noise analysis

The program noise.pro can be run to compare the noise in “smooth” orders with its theoretical
value expected from the gain and RON. Select suitable spectrum and order (say order 21), verify the
absence of spectral features by plotting the order, then type > noise, sp[*,21], ron=3, xwid=6,

gain=2.3. If all keywords are omitted, the RON is assumed zero, the default gain is 2.3. The program
approximates the order by a polynomial, calculates relative fluctuations around this smooth curve in
the central 1/3 of the order and displays the power spectrum of these residuals. It reports the average
signal in ADU, relative rms and χ2 values for the total and high-frequency fluctuations (they are same
if the noise is white).

For example, noise analysis of the quartz spectra for the night of October 3, 2011 is given below for
all 4 modes. The mean signal, relative rms, and χ2 are listed for order 0 (faint) and order 30 (bright).
Gain 2.3 is assumed for all modes.

order 0 order 30

Mode File mean rms% chi2 mean rms% chi2 RON xwid

--

narrow 18 763 2.50 0.98 5490 1.02 1.02 3 6

slit 33 790 2.60 1.00 5760 1.00 1.14 3 6

slicer 63 1747 1.71 1.03 13000 0.70 1.15 3 12

fiber 48 4000 1.15 1.19 29500 0.52 1.34 3 5

For faint signal, χ2 is close to one, being dominated by the readout noise. In the strong-signal
regime, the actual gain can be somewhat smaller (due to under-corrected positive non-linearity),
explaining slightly elevated χ2. We tested different flavors of extraction (with or without cosmic
removal, before or after FF correction) and found little difference in the resulting white noise.

5960 5980 6000
0

1000

2000

3000

4000

0.0 0.1 0.2 0.3 0.4 0.5
Frequency, pix^-1

0

5.0•10-7

1.0•10-6

1.5•10-6

P
ow

er

Figure 8: Example of noise analysis. Spectrum of U Oph on 11/09/04 rqa39.9398 wih the slicer. Left:
plot of featureless spectrum in order 22; right: power spectrum of noise in order 22 (mean signal
3276ADU, rms 1.3%, χ2 = 1.17).

13

B Data browser

Figure 9: Spectrum of the bright star HD 20794 (slicer mode). Left: fragment of the raw image
chi111008.1266, right: extracted spectrum in 2D format as displayed by xex. The spectrum of this
G8V star has a very high signal (7E7 in order 21), yet no defects due to CCD blemishes or extraction
are visible.

A small graphic application xex.pro (x-examine) for examining the reduced data is added to the
code. First compile it, >.r xex, then execute it. The GUI can stay open while reducing the data
or doing other work with IDL. The program suggests to access the common block by the command
> common xexcomm to have the spectrum sp and other relevant data “at hand”. The program xex

uses the parameter file defined above and accesses corresponding data directories. It forms the list of
nights by reading the directory /mir7/logsheets/.

The GUI is rather obvious. First, you select the night from the drop-down menu (the last night is
selected by default) and the mode. The lists of stars and ThAr for selected night and mode appear in
the menus. By selecting a star, we see the corresponding line of the log-sheet and access its reduced
FITS spectrum (an error message is printed if the file is not found). Press the Read button to read
the file if the displayed name does not match your selection. Then selected orders can be plotted or
browsed (buttons <, > and menu between them, button Plot). Use 2Dspec to see all orders at once.

14

