Scripting reference

CTIO 60 inches Chiron

CHI60S-3.1

La Serena, January 2011

Chiron scripting reference / CTIO 60 inches Chiron CHI60S-3.1 1

Contents

INEFOAUCTION. ...ttt st b e b et e et e e e st e s bt e bt e beesab e e e mbeesnteesanaeens 3
Chapter 1: The WIADPETS.......coviiiriiieietereeeee ettt sttt ettt a s et sre st n e e eeneenanes 4
1.1 Brief internal deSCIIPION.ccveitietieieeieeiesteesteesteete et e st e steebeesseesaesseesseessaenseessesssesssenseeseenseensesnnseeas 4
L2 CHIRON......etiete ettt ettt et et et s bt e bt e st et et e e bt e st e st en b e beebeeseesbenbeeaseanseesnbeenseesaseans 5
L.3:dNe OF DHE ...ttt b ettt s b e bt et et et s bt e bt et et e st e e nbeesateens 5
LA 1amMP OF LLAMP. ...ttt ettt b et ettt s et e s bt e bt ettt e et e saeeebaeesanees 6

LS ECS OF TICS ...ttt b b et et b e e bt e h et e e b e e bt es b et e sbesbeebb e e bt e sabeebeenaneens 6
LoD PNttt ettt ettt ettt ettt et e st e e ta e et e et e et e e beerbeenteeateeae e ba et e enbeenae e st ensee st ensaenteenreeennres 6
1.7 PANVIEW INIACTOS. ... eeuveenvienrienteeuteserenteesteeteesesstesseesseeseessesssesssesseeseenseensesssesssesseenseensessnssesssseesssseessnsees 7
Chapter 2: the sockets and the protocol behind the SCEeNES...........cccuereeriieiiieiiieierieriee e 8
2.1 THE PIOLOCOL ... ettt ettt et e e st e bt et et e et e satesae e beenseenbesstesseesseenseenseensesanesnsseesnnnes 8
2.1.1 COMMANAS. ...ttt ettt bt sttt s bt e bt et e s e b e s b e e bt e st et e sbeebe e st et et e nbeesaneas 9

2.1.2 RESPOMSES. ...evviuieiieiieieeieeteeitesttestt e bt e bt e beeatesatesutesatesseensesaseestesatesste st enseenseessesnsesatanseesnseesnneas 9

2.1.3 ASYNCHIONOUS MESSAZES. ...cuveeuveeurerrrerirerteerieeteetestestesseesseesessessesssesssesseessesssesssesssesssesseessesssens 10

2.2 HANAIINE Tttt sttt ettt ettt et st e st e bt et et e e st e satesbeebeesasbeesnbbeesnbeeesnneeas 10
Chapter 3: EXAMPIES......cooviiiiiiieieeieeiesttei ettt ettt ettt sat e st e st e e bt esbeestesabesseeseenseensesnsesnsenasenseanes 12
3] Rttt et b e e b e et be e saneeree e 12
B2 Lt h e bt h et b e bt e a et e bt e bt e bt e ate e beeeabeeneenaneens 13
Appendix A: available COMMANGS..........ccueririiiiiiiire ettt 16
ALT TSttt ettt bbb e b e e bt e b et e bbbt et et e e e sh e b bt et nenae e ee 16
ALZTLAMP ..ottt ettt h e bt bttt e bt bt h e et et e b e bt en e et e beebeeheententenees 16
ALZTODCELL ...ttt ettt ettt et a e sttt e e e s bttt b e bttt et b e ae e nee 17
AL SLICER ...ttt ettt h e h e a et bt bt e a e et et e bt e he et et e bt e bt et et e e naeeenne 18
ALS FOCUS ettt ettt et a et et e s bt e st e st et e b e e st e st en b e b e ebeeatent et e seebeeneentenseannne 19
ALO PAN (DANVIEW) ..ttt ettt ettt et at et b e e bt et e st e s atesbe e s bt e beebe et e sabesanenaeeas 20
RETETEIICES.ttt ettt et et s ht e sae e bt et e et e eabesatesae e beennee 24

Chiron scripting reference / CTIO 60 inches Chiron CHI60S-3.1 2

Introduction

The following document is a reference to the CTIO 60 inches CHIRON scripting. It provides a way of
understanding the tools that allow to make scrips to handle the complete CHIRON/CHIRTEMP
applications.

Scripting is an alternative way to the GUI for handling the Chiron software. It has the advantage, or the
potential, for building much more complex tasks than the GUI. It provides also a way of pretty much
“automate” a good part of the work.

When using a script, if the GUI is opened (as it will usually be) it will show what the software is doing,
so the GUI is still useful to have a feedback on what is going on.

The scripts will talk directly to the application, not to the GUI; the GUI runs “in parallel” to the scripts,
in the sense that they both talk to the main application, and the GUI knows and reflect the activities only
because it receives -as the normal operation of the GUI- asynchronous messages.

All the application is ascii-commands driven, which means that everything can be done with scripts
-taking images, handling lamps and temperatures, even moving the telescope-

The philosophy is simple: the user can use any script he likes. There are no constrains in the
language or the scripting type. This is possible because the software receives the commands in raw
tep/ip sockets, so:

a) any language than can handle a socket would do (scripts like python, pearl, tcl, and any compiled
programming language)

b) The software provides wrappers that can be called as any system call, which make possible for
scripting languages that cannot handle sockets as easily to also handle the system (csh, bash, cl, etc)

Since these wrappers are provided, a language like python can also use them instead of handling the
socket directly (just by making a simple OS system call to these wrappers). This makes possible, of

course, to send a command manually using any terminal.

Note: the term “app_root” that will appear repeatedly in the next pages is, for this
application, /home/observer. Also, in the commands syntax description there will appear some symbols:

< >: encloses a mandatory field

[]: encloses an optional field, or a field that may or may not be present

Chiron scripting reference / CTIO 60 inches Chiron CHI60S-3.1 3

| : separates valid options for a command

Chapter 1: The wrappers
1.1 Brief internal description

We will explain a bit how the wrappers work; this is not needed for the maker of scripts. We will explain
it just for the ones that like to know the implementation details. For those who are not interested in these

details, please skip this and go directly to 1.2

In the bin directory specific to the Chiron application (/app_root//apps/CHIRON/bin) there is a binary
called “sendsockemd”. This is a small binary that, when called, opens a socket, sends the given argument
to that socket, wait for the response and when received, print the response out, in the standard output -the
screen. Finally it closes the socket channel.

The Chiron software has a device which its only job is to listen for tcp/ip messages, send those messages
into the SML-world (internal protocol of the application) and then transmit the response back into the
tep/ip socket. This device is called SYNCDEV (see CHI60S-2X, software architecture).

Every time the application is started (“start CHIRON) it creates, on the fly, a csh script called CHIRON,
on app_root/apps/bin

This is the main and primary wrapper, because it allows to talk to any device, or part of the application. It
is a very simple script, and looks similar to this:

#! /bin/csh -f

#This script is automatically generated

#Any edition to this file will be lost!

set command = """

while ($#argv > 0)
set command = " $command $argv[1]"
shift argv

end

/home/observer/apps/bin/sendsockemd -h localhost -p 1325 ""$command' -t 40000
The service port “1325” here, is read directly from the SYNCDEYV configuration file. So as it is easy to

see, it just passes to “sendsockemd” any argument given. All the other wrappers are based on this one,
and they are, actually, not really necessary.

Chiron scripting reference / CTIO 60 inches Chiron CHI60S-3.1 4

1.2 CHIRON

This is the first and primary wrapper. It allows to send any command to any available device. The syntax
for the commands is:
CHIRON <device> <command> <args>
where
device: any available device in the application:
o PAN: detector and temperature commands (PANDEV)
LAMP: lamps commands (ECHLAMP)
TCS: Telescope Control System (TCS) commands (TCSCT60DEV)
IODCELL: Iodine Cell motor commands (IODCELLDEV)
SLICER: Slicer motor commands (SLICERDEYV)
o FOCUS: Focus motor commands (FOCUSDEV)
command: any command for the specified device

O O O O

The response syntax is:
<DONE | ERROR> [message]

or the requested information

For examples, please see chapter 2. For the detailed commands for each device, see Appendix A or
CHI60S-2.X document, with the detailed description of each device.

1.3 dhe or DHE

This is a wrapper for all the PAN (or DHE: detector head electronics) commands. The syntax is:
dhe <command>[args ...]
where

command: any available PAN (and panview) command (see Appendix B for panview commands)

This is the same as

CHIRON DHE <command> [args ...Jor
CHIRON PAN <command>[args ...]

Chiron scripting reference / CTIO 60 inches Chiron CHI60S-3.1 5

1.4 lamp or LAMP

This is a wrapper for all the LAMP commands. The sytax is
lamp <command>[args ...]
where

command: any available LAMP command

This is he same as

CHIRON LAMP <command>[args ...]

1.5 tcs or TCS

This is the warpper for all the TCS commands. The syntax is
tcs <command>[args ...|
where

command: anay available TCS command

This is the same as:

CHIRON TCS <command>[args ...]

1.6 pan

This wrapper talks directly to panview, actually bypassing the application itself. This is not bad just
because panview sends async. Messages to the application, so the application will know anyway. Using
“pan” is the same as using.

The syntax is
pan <command> [args ...]
where

<command>: any available panview (PAN) command. See Appendix A for a summary of the most

useful panview commands.

Chiron scripting reference / CTIO 60 inches Chiron CHI60S-3.1 6

Using this wrapper produces the same effect as using:

CHIRON PAN <command> [args ,,,]

1.7 panview macros

Panview has the capability of handling simple macros. A “macro” is basically a set of valid commands,
one per line, that are executed in order, just as if they were sent through the command line. Panview can
then read the macro file, execute all the commands in it, and then return with a final, unique response.
The macro files are identified by the extension “.mc”. The file can be specified using an absolute path or
a relative one. If using a relative path, it will assume as the “basepath” a default macros directory defined
in its configuration file. If the macro in the default directory, then just giving the name is enough. To
invoke the command execution:

pan appmacro <macro_name> Or
CHIRON PAN appmacro <macro_name>

For example
pan appmacro speed_fast

will look for the macro file called speed_fast.mc on the default macro directory.
The default macro directory in this application is SHOME/panview/fpas/_chiron/config/DETECTOR.

The command

pan appmacro /home/observer/bin/mymacro

will actually execute the macro mymacro.mc on /home/observer/bin

The macros can be called recursively (I.e, inside a macro there can be another macro call). Using macros
is an easy way of saving time. Of course an alternative is writing a script instead of a macro. Another
option, usually better, is a combination of both (scripting and macro calling). See the Chapter 3 for
examples on this.

Also, the Chiron software implements important functions through macros and scripts. See CHI605-6.0
on panview setup

Chiron scripting reference / CTIO 60 inches Chiron CHI60S-3.1 7

Chapter 2: the sockets and the protocol behind the scenes.

This chapter may be useful only to those who would like to skip the wrappers and handle the sockets
directly. This allows for a more efficient handling (it is possible to have more than one action at a time,
while with the wrappers this is it possible.

For those who are not interested in the internals of the protocol and are not planning to handle the

sockets directly, please skip tis chapter and go directly to Chapter 3: Examples

2.1 The protocol

The protocol that we will describe here is the general protocol of the commands and the messages
between the devices; handling the socket directly requires having a basic knowledge of this protocol.

We are not talking here about SML, but just the command / response syntax.
First, some terminology.
e Command: a requested action

e immediate response: the immediate response sent in return of a command. This response should
not last more than about 5 secs to be received

e (Callback: this is a later, final response for commands that take long time in finishing (like
exposing an image or offset the telescope). This are then messages associated to an original
command

e asynchronous messages: these are messages not associated to any specific command, but
spontaneously generated, usually to indicate “abnormal” conditions, like an alarm, etc

The protocol has two communication channels:

a) command / response: this is a bidirectional channel. Here the client send the command and receives the
immediate response

b) asynchronous: this is a unidirectional channel, from server to client. Here are returned the callbacks
and also the asynchronous messages.

There are two types of commands:
a) short commands: the requested action is finished when the response is returned

b) long commands: the requested action will take some time, so it is first returned an immediate response,
and then a callback when the action is actually done. See point 2.1.2 (responses)

Chiron scripting reference / CTIO 60 inches Chiron CHI60S-3.1 8

The system implements two tcp servers, in two different ports (command/response and asynchronous).
The client will use the asynchronous channel to receive only -any message going from the client to the
server in the asynchronous channel will be ignored. Both servers support multiple clients.

2.1.1 Commands

The command syntax is

<device> <command> [args ...]

where

device: device to which the command is directed
command: command to send

args: optional command arguments

The available devices for this application are: PAN, TCS and LAMP. In Appendix A and B are the lists
of the available commands for each device. This is also on document ECH60S-2.0 (software
architecture). In Chapter 3 there are some examples

2.1.2 Responses

The response syntax is

short commands
on success: DONE | <requested information>

on error: ERROR <error_message>

long commands

on success:
e immediate response: OK <estimated_action_time_in_msecs>
e callback: DONE [message] (<device:<command>>)

on error

Chiron scripting reference / CTIO 60 inches Chiron CHI60S-3.1 9

e immediate response: ERROR <error_message>

e callback: ERROR [message] (<device:<command>>)

For the long commands, then, it is first returned an “OK” with an estimation of the time it will take to
finish the action. This number could be used by the client toimplement their own timeout mechanisms,
although this is not recommended since the system has already timeouts included, and it should, normally
return the timeout error. The final callback is received throuhg the asynchronous channel with the device
and command reference at the end. Example

DONE image_Done (DHE:EXPOSE)

Note that the PAN commands may return the ID as “DHE” (Detector Head Electronics).

2.1.3 Asynchronous messages

The syntax for the callbacks was explained below,so here we will explain the truly asynchronous
messages (not associated to a command):

ASYNC <message> [<< ID]

The message will always start with the ASYNC key (remember that in this channel also the callbacks are
received,and those will never start with this key). Then it will come the body of the message, and at the
end it may appear the ID of that who generated the message. The only one that, in general, will add its ID
1s panview (so, messages coming from PANDEV)

2.2 Handling it

So, now that we know the basics, the client that want to handle the system directly (without the provided
wrappers) will need to open two sockets, one to the command/response server port and one to the
asynchronous server port. It will need to send the command and parse the immediate responses in the
first,and handle the async. Messages and callbacks in the second. The actual service ports in use are in

app_root/apps/CHIRON/config/DEV_SYNC.cfg

Chiron scripting reference / CTIO 60 inches Chiron CHI60S-3.1 10

(this is also explained in CHI60S-2.0). Inside this file, the keywords are

[COMMS]
port=<command/response port>
asyncport=<asynchronous port>
blockport=<blocking port>

The “blocking port” is an special port that “blocks” the long commands. It basically hides all the
command/response/async. Protocol; when the client sends a command -even if it islong- the server will
block until the action is done. This allows a much easier handling, but of course the truly asynchronous
messages are ignored -lost-. This is indeed the port that the wrappers use, so no need of multiple
sockets handling if using this port. The disadvantage is that it is of course less efficient, since the client
needs to wait for the action to be finished before requesting a new one (so things like moving the
telescope while the data is being read cannot be done using this port or, for the same reason, using the
wrappers).

Note that any of this ports can be set in the config file as environmental variables, allowing more
flexibility in the handling of the system.

Chiron scripting reference / CTIO 60 inches Chiron CHI60S-3.1 11

Chapter 3: Examples

This chapter provides short examples on scripting.

3.1 csh

Csh is a very common scripting language. It is easy to use when an easy operations are required. A very
simple example is the following script, build to set the system in a very specific operation mode. The
script is called “geom_Iodine”

#!/bin/csh -f
echo ''setting detector size ..."
pan appmacro set_roi full
echo "'setting detetcor binning ..."
pan appmacro set_binning 3 1
echo "'setting detector speed ..."
pan appmacro speed_fast
echo "'positioning slicer motor to slicer position ...""
CHIRON?2 SLICER MOVE slicer
set pos = "CHIRON2 IODCELL get iodine’
if ("$pos[2]"' == "OFF"" |l "$pos[2]'' == "OUT"") then
echo ""moving iodine cell IN ..."
CHIRON2 IODCELL set iodine IN
else
echo "'iodine cell already IN'"'
endif
echo ''setting geometry mode ..."'
pan dbs set geom_mode lodine STR

pan dhe async GUIUPDATE geometry lodine

Chiron scripting reference / CTIO 60 inches Chiron CHI60S-3.1 12

This script is used to set the software in “iodine” mode. Note that the script calls some panview macro
(speed_fast, set_binning and set_roi).

The last line is just so the GUI gets updated (updates itself when it receives that command)

It get obvious by now that any scripting language can be used by calling the wrappers. We will still see
another example, in CL

3.2CL

CL is the scripting language from iraf. Using it has the advantage of acquiring and reducing (using iraf
tasks) without the need of calling outside languages (acquiere and reduce in iraf). Of course this can also
now be done using pyraf, which allows to use pythin language and yet being able to call iraf tasks (and
python tasks!). The following example is just cl iraf scripting. It uses an iraf task called “socksend” to
send the command to the application (through a socket). The following script can takes biases, darks and
flat (calibration) as specified

echcal.cl

procedure echcal()

bool bias {"'vyes", prompt='"Take bias images?''}
int biasnum {"'5", prompt=""Number of bias images'"}
bool flat {"'ves", prompt='"Take flats?''}

int flatnum {"'5", prompt=""Number of flats''}

real flatet {"'50.0"", prompt=""camera flat exposure time''}

string lamp {"QUARTZ'", enum="QUARTZITH-AR', prompt=""Lamp to use
"}

bool dark {"'no", prompt=""Take dark images?''}

int darknum {"'5", prompt=""Number of darks''}

real darket {''300.0", prompt=""camera dark exposure time''}

begin
int timeout = 200000000

Chiron scripting reference / CTIO 60 inches Chiron CHI60S-3.1 13

printf ("\n")

printf ("'Please make sure that the dome is dark\n'')
printf ("<ENTER> to continue\n'')

soksend.host = get_arcinfo.ssvrhost

soksend.port = get_arcinfo.ssvrport

if (bias) {

printf("'Setting title to Bias\n"')
soksend(command=""DHE set image.title bias'’)
printf("'Setting type to Bias\n'"")
soksend(command=""DHE set obs.obstype bias'’)
printf("'Setting basename to Bias\n'')
soksend(command=""DHE set image.basename bias'")
printf("'Setting exposure time to 0.0\n'")
soksend(command=""DHE set obs.exptime 0.0'"")
printf("'Setting number of bias images to %d\n'"’, biasnum)
soksend(command=""DHE set obs.nimages "' // biasnum)
soksend(command=""DHE expose'’, timeout=timeout)

/

if (flat) {

printf("'Setting title to domeflat\n'')
soksend(command=""DHE set image.title domeflat'’)
printf(''Setting type to Calibration\n"')
soksend(command=""DHE set obs.obstype Calibration'')
printf("'Setting basename to flat\n'")
soksend(command=""DHE set image.basename flat'')
printf(''Setting exposure time to %5.1f\n"", flatet)
soksend(command=""DHE set obs.exptime "' // flatet*1000)
printf("'Setting number of domeflats to %ed\n" flatnum)
soksend(command=""DHE set obs.nimages "' // flatnum)

printf('"Turning %s on\n'"', lamp)

Chiron scripting reference / CTIO 60 inches Chiron CHI60S-3.1

14

soksend(command=""LAMP set "' // lamp // ' on"')
soksend(command=""DHE expose'’, timeout=timeout)
printf('"Turning %s off\n'', lamp)
soksend(command=""LAMP set "' // lamp // "' off"")

/

if (dark) {

printf(''Setting title to dark\n"')
soksend(command=""DHE set image.title dark'’)
printf("'Setting type to dark\n'")
soksend(command=""DHE set obs.obstype dark'’)
printf(''Setting basename to dark\n'')
soksend(command=""DHE set image.basename dark'')
printf("'Setting exposure time to %5.1f\n"", darket)
soksend(command=""DHE set obs.exptime "' // darket*1000)
printf(''Setting number of darks to %d\n'", darknum)
soksend(command=""DHE set obs.nimages "' // darknum)
soksend(command=""DHE expose'’, timeout=timeout)

/

soksend(command=""DHE set obs.obstype object'’)
soksend(command="DHE ASYNC SEND UPDATE"")

end

The task “soksend” just sends, through a socket, the specified command to the software

Chiron scripting reference / CTIO 60 inches Chiron CHI60S-3.1

Appendix A: available commands

The description of this commands can be found on the ECH60S2.0 document, in a device-by-device
description. Here we will just present a quick reference. In the examples, the “>” symbol represent just
the line prompt of the terminal (as if typed manually)

A.1TCS

info: gets the current information

example:

> CHIRON TCS info

A2 LAMP
list
gets the list of available names (lamps, manual switches, motor)
example:
> lamp list
> name= QUARTZ
name = TH-AR
name = SW_TH-AR
name = SW_QUARTZ
name = MOTOR

set <TH-AR | QUARTZ > <on | off>
example:
> lamp set QUARTZ on
> DONE

Chiron scripting reference / CTIO 60 inches Chiron CHI60S-3.1 16

get <TH-AR | QUARTZ | SW_QUARTZ | SW_TH-AR | MOTOR>
example:
> lamp get QUARTZ
>ON
status
shows the status of the device and of all the available “names” in it, as “name <on | off> status”
example:
> lamp status
>IDLE
TH-AR OFF OK
QUARTZ ON OK
SW_QUARTZ OFF OK
SW_TH-AR OFF OK
MOTOR ON OK

A.3IODCELL
list
gets the list of available names (iodine cell, manual switch)
example:
> CHIRONE IODCELL list
> name= [ODINE
name = SW_IODINE

set IODINE <in | out>
example:
> CHIRON IODCELL set IODINE in
> DONE

Chiron scripting reference / CTIO 60 inches Chiron CHI60S-3.1

17

get <IODINE | SW_IODINE>
example:
> CHIRON IODCELL get IODINE
> ON

status

shows the status of the device and of all the available “names” in it, as “name <on | off> status”

(on=IN, off=0UT)
example:
> CHIRON IODCELL status
>IDLE
IODINE OFF OK
SW_IODINE OFF OK

A.4 SLICER
HOME
starts a homing procedure of the slicer motor
example:
> CHIRONE SLICER HOME
> DONE HOME

READ position
reads the current position (in mm)
example:
> CHIRON SLICER read position
>2.4213 mm

Chiron scripting reference / CTIO 60 inches Chiron CHI60S-3.1

18

MOVE <position>

move to the specified position (in mm) or predefined position:

examplel:
> CHIRON SLICER MOVE 2.8
> DONE MOVE

example2:
> CHIRON SLICER MOVE slit
> DONE MOVE

A.5 FOCUS
HOME
starts a homing procedure of the focus motor
example:
> CHIRONE FOCUS HOME
> DONE HOME

READ position
reads the current position (in mm)
example:
> CHIRON FOCUS read position
> 16.5221 mm
MOVE <position>
move to the specified position (in mm)
example:
> CHIRON FOCUS MOVE 18.8
> DONE MOVE

Chiron scripting reference / CTIO 60 inches Chiron CHI60S-3.1

19

A.6 PAN (panview)

This is a very long list. Following there is a quick summary. Any of this commands can be invoked using
the “pan” or “CHIRON PAN” wrappers:

example (very first listed command):
> pan set obs.exptime 5000
>DONE

The following list describes briefly the command and parameters available for the detector controller
electronics. For a more detailed description on the parameters, please see the complete DHE command
list

Here is presented only a reduced list to setup observations and observe. The low level and engineering
commands are not listed. NIR-related commands are also not listed

The meaning of the used symbols is:

< > : holds a parameter which is necessary (mandatory)

[]: holds a parameter which is optional

| : separates possible values for an enumerated type.

A.3.1 Observation setup
SET / GET (dhe set / dhe get)

All the following parameters can be set or read, unless specifically stated.

obs parameters

alternates Lo
complete command description example
"short"
obs.exptime <uint | exposuretime, exposure time in msecs, or secs if dhe set obs.exptime
float> [[s]] exptime specified ([s]) 22.0 [s]

. . number of images to read in the next dhe set obs.numreads
obs.numreads <uint> imagestoread

sequence 2
write_to_disk,))) .
obs.autowrit <on | off> - writes the images to disk or not dhe set autowrite off
autowrite
dhe set obs.observer
obs.observer <string> | - observer field (for image headers)
Burrus
obs.obstype <string> type obstype field (for image headers). dhe set obs.obstype

Chiron scripting reference / CTIO 60 inches Chiron CHI60S-3.1 20

file:///home/bonati/www/Software/panview_doc/manuals/module_manuals/DHE/DHE_CommandList_SDSU.html
file:///home/bonati/www/Software/panview_doc/manuals/module_manuals/DHE/DHE_CommandList_SDSU.html

Only "dark" has real meaning (no
shutter)

dark

obs.roi
<xstart><ystart><xlen>

Region Of Interest (subwindow).
Coords. in unbinned units, from

dhe set roi 513 513

obs.obsidcounter

1024 1024
<ylen> lower left corner
returns the progress of the dhe et
rogress - e get progress
prog image/exposure. (READ ONLY) gL pIog
obs.autoobsid autoobsid sets auto observation ID on/off dhe autoobsid off
dhe set obs.obsid
obs.obsidbase sets the basename for the obs. ID © SEL ODS.0DSI
myObs
sets the initial value for the obsID |dhe set

counter obs.obsidcounter 10
1mage parameters
alternates Lo
complete command description example
" "
short
. image title, to be the "object" ,
image.title <string> imagetitle . dhe set title M51
8 & g field on the headers
image.comment . image comment, to appear on dhe set imagecomment
. 1magecomment . .
<string> the headers this 1s a test
. . . .) dhe set
image.directory <abs directory where image will be |))
- image.directory /home/i
path> stored
mages/
image.basename) dhe set image.basename
i - basename for image name)
<string> junk
. . .. dheset
image.rootname complete rootname, which is i
] rootname) rootname /home/images/
<directory/basename> directrory + basename ik
jun
image.prefix <string> imprefix prefix for basename dhe set imprefix red_
image.sufix <string> imsufix sufix for basename dhe set imsufix _red
. . imagenumber, number for next image, or .
image.number <uint> e) dhe set imagenumber 22
number initial image if a sequence

Chiron scripting reference / CTIO 60 inches Chiron CHI60S-3.1

21

Itipleextensions, i ill be single or MEF)
image.mext <on | off> LD) CEXICNSIONS 1r.nag‘e WiT be smgle ot dhe set extensions off
extensions fits file
image.modifiers <key1 data sections of image, like dhe set modifiers
vall ... keyN valN> prescan, overscan, etc prescans 22 overscan 50
image.autoexpid <on |))
> autoexpid sets auto exposure 1D dhe set autoexpid on
0
) . sets the base of the expID dhe set image.expidbase
image.expidbase .
(auto if undef) myexplD
: i sets initial counter for the dhe set
image.expidcounter))
expID. image.expidcounter 1
dhe parameters
alternate Lo
complete command " description example
short
dhe.binni
©-DIning ! binning in x and y (OPTICAL ONLY) dhe set binning 2 3
<xbin><ybin>
dhe.autoshutter <on | opens shutter automatically when exposure | dhe set autoshutter
off> starts or not (ex, "off" for darks) on
dhe.shutter <open | dhe set shutter
- opens or close the shutter manually
close> open
) readmode. The readmode must be dhe set readmode
dhe. readmode <string> -
supported by the hardware lower_left
inf ti f d pixel ti
dhe.timing timinginfo E;EIAH;I g);i)?) rame and pixetHme dhe get timinginfo
infi ti try -topology- d
dhe.geometry - N 9rma on on geometry -topology- (x an dhe get geometry
y size, etc) (READ ONLY)
troll fi infi ti troll figurati
dhe.config controllerconfi information on controller configuration dhe get dhe.config
g (READ ONLY)
information on current status of the
status - dhe get status
controller (READ ONLY)

Chiron scripting reference / CTIO 60 inches Chiron CHI60S-3.1

22

A.3.2 Observation control

command description

EXPOSE starts the exposure sequence

ABORT aborts all activity (current exposure/readout/sequence). Current image get lost

STOP [sequence | stops sequence but waits for current exposure/readout to finish (sequence) or

exposure] stops the current integration and reads out (exposure)

PAUSE pauses exposure, closing the shutter and stopping the exposure count.
(OPTICAL ONLY)

RESUME resumes a paused exposure (OPTICAL ONLY)

EiET <controller | resets controller or PCI card

A.3.3 Fits commands

The “key add” and “key delete”’ commands are permanent, because they affect the actual file template

command description example
fits key add <KEY> fits key add TEST
ey d Adds (or edit if key already exists) the specified KEY e reya ..
<datatype> <value> // o FLOAT 2.0 // this is a
to the specified value (and datatype) and comment
<comment> test
Fits key delete <KEY> Deletes the specified KEY from the template Fits key delete TEST

Fits key get preview [ext]

Shows how the headers will look like for the next

image (keywords, values, comments and datatypes). If
MEEF fits, the extension can be specified (starting from
0)

Fits get preview

Fits key get all

Shows the actual template (the KEYS and sources, not
the current values as the preview)

Fits key get all

Fits get hdrfile [-full]

Shows the header file template. If “-full” is specified

shows the complete (absolute) path to the template

Fits get hdrfile -full

Chiron scripting reference / CTIO 60 inches Chiron CHI60S-3.1

23

References

e panview documentation

Chiron scripting reference / CTIO 60 inches Chiron CHI60S-3.1

24

	Introduction
	Chapter 1: The wrappers
	1.1 Brief internal description
	1.2 CHIRON
	1.3 dhe or DHE
	1.4 lamp or LAMP
	1.5 tcs or TCS
	1.6 pan
	1.7 panview macros

	Chapter 2: the sockets and the protocol behind the scenes.
	2.1 The protocol
	2.1.1 Commands
	2.1.2 Responses
	2.1.3 Asynchronous messages
	2.2 Handling it

	Chapter 3: Examples
	3.1 csh
	3.2 CL

	Appendix A: available commands
	A.1 TCS
	A.2 LAMP
	A.3 IODCELL
	A.4 SLICER
	A.5 FOCUS
	A.6 PAN (panview)

	References

