
Automated Software Configuration in the MONSOON
System

P. N. Daly, N. C. Buchholz and P. Moore

MONSOON Project, Major Instrumentation Program, National Optical Astronomy
Observatory, 950 N. Cherry Avenue, P. O. Box 26732, Tucson, AZ 85726-6732, USA.

ABSTRACT

MONSOON is the next generation OUV-IR controller project being developed at NOAO. The design is flexible,
emphasizing code re-use, maintainability and scalability as key factors. The software needs to support widely
divergent detector systems ranging from multi-chip mosaics (for LSST, QUOTA, ODI and NEWFIRM) down to
large single or multi-detector laboratory development systems. In order for this flexibility to be effective and safe,
the software must be able to configure itself to the requirements of the attached detector system at startup. The
basic building block of all MONSOON systems is the PAN-DHE pair which make up a single data acquisition
node. In this paper we discuss the software solutions used in the automatic PAN configuration system.

Keywords: OUV-IR controllers, MONSOON, GPX, Software Configuration

1. INTRODUCTION

The MONSOON image acquisition system is being developed to handle NOAO’s present and future requirements
for serving focal plane data to higher level software. In old parlance, it is an array controller. In the brave, new
world, it is designed to handle both optical and infra-red data seamlessly—independent of science acquisition
type. That is, when fully developed, MONSOON may be applied to single chip CCD or IR detectors, large
area mosaics, photometric imaging, spectroscopy and technical imaging (the latter, for example, comprises fast
guiding and wavefront sensing).

Such a wide variety of uses demands scalability via replication of software and hardware plus the ability to
handle specific detectors system quirks and personalities. It must also be amenable to use by diverse user groups
such as hardware engineers, software engineers, technical support staff and science users.

Figure 1 shows a schematic of the design of MONSOON as applied to the NOAO Extremely Wide-Field
Infra-Red Mosaic (NEWFIRM) camera.1, 2 In this application, a single supervisor node controls two PAN-DHE
pairs with data delivered to the data handling system (DHS) without flowing through the observation control
system (OCS) first.

2. MULTI-LEVEL CONFIGURATION AND OPERATION

Normally, there is only one point of entry into the system via the GPX dictionary.3–5 There is, however, a
close mapping of GPX commands with PPX commands as implemented within the PAN. Therefore, a compound
statement such as:

gpxSetAVP fSamples=16 intTime=3.6 coadds=2 pxlRows=4096 pxlCols=4096

may be broken down into a sequence of statements such as:

Further author information: (Send correspondence to PND)
PND: pnd@noao.edu, NCB: ncb@noao.edu, PM: pmoore@noao.edu

NEWFIRM

Node
Supervisor

MONSOON

OCS

4 x 2048x2048 FPA

h/w signalsh/w signals

Detector
Head

Electronics
(DHE) 1

Head

Pixel
Acquisition

Node
(PAN) 1

Detector

Electronics
(DHE) 2

Pixel
Acquisition

Node
(PAN) 2

dh
eR

ep
ly

gpxCommand

gpxResponse

ppxResponse

ppxCommand

pp
xR

es
po

ns
e

dh
eR

ep
ly

dheC
m

nd

dheC
m

nd

Pixel/Meta Data

M
et

a
D

at
a

NEWFIRM
DHS

Figure 1. Schematic of a MONSOON System for NEWFIRM.

ppxSetAVP fSamples=16

ppxSetAVP intTime=3.6

ppxSetAVP coadds=2

ppxSetAVP pxlRows=4096

ppxSetAVP pxlCols=4096

To absolve the astronomer from typing in cumbersome command strings, the most common configurations
are encapsulated within a named mode. The above command snippet, for example, could be part of a mode
called, say, FastIR and the science client issues:

gpxSetMode FastIR

This goes, too, for higher-level software and/or GUI tools.

For software engineers, access to the system is via the GPX interface or the PPX interface. Hardware
engineers have similar access but can also download code into the DHEs FPGA. Laboratory testing, however,
would still be cumbersome if we required the technical engineers to type commands such as those shown in the
above examples. Also, to handle the unique qualities of differing chips and technologies, we require a sub-set of
commands unique to the system being developed or operated. We also require that such commands have names
that are meaningful to the engineers working closely on the details of the system.

What is needed is a flexible and extensible way of defining commands for engineering access and persistence
of configuration files in the system.

3. THE CONFIGURATION FILE

As with all such systems, there is a unique configuration file that can be loaded at run-time. In our system, this
file is an ASCII, comma-separated values (CSV) file with the fields defined in Table 1. Comment lines begin
with ‘#’ and are ignored. So, a typical entry might look like this:

intTime,MCB SEQITR,0x10000,1,0x2000000,SIMPLE,SIMPLE,FLOAT,ULONG,1000,0,LINEAR,0.0,65536.0,s,Integration time to 1 ms.

Table 1. MONSOON Configuration File CSV Fields.

Field Name SQL Data Type Description Example (from above)

panName varchar(32) Command name as known to PAN intTime

dheName varchar(32) Command name as known to DHE MCB SEQITR

baseAddr integer Base address in DHE for value 0x10000

nelms integer Number of elements in array 1

creg integer Miscellaneous control register 0x2000000

setMethod text Function to call to encode a value SIMPLE

getMethod text Function to call to decode a value SIMPLE

panType text Data type as known to the PAN FLOAT

dheSize text Data size as known to the DHE ULONG

coef1 float8 Coefficient 1 for conversion function 1000.0

coef2 float8 Coefficient 2 for conversion function 0.0

funcID text Conversion function LINEAR

minValue float8 Minimum value (before conversion) 0.0

maxValue float8 Maximum value (before conversion) 65536.0

units varchar(32) Units (if applicable) s

help varchar(128) Associated help text Integration time to 1 ms.

Some points to note are:

panName is the name as known to the PAN and must be unique.

dheName is the name as known to the PAN and need not be unique.

baseAddr is a hexadecimal address. If 0x0, it is an ignored field.

nelms is the number of elements. If 0 it is ignored, if >1 an array is created.

creg is a control register for save/restore and GUI display flags.

setMethod/getMethod can only be one of the pre-existing methods: NOMETHOD, SIMPLE, INTTIME,
ROISETC, ROISETR, FNAMESET, SETVOFF, SETBIASV, SETFBIAS, WRT2READ, STRINGSET,
RDMSKWRT. Further methods can be added as required for future expansion.

panType can only be one of CHAR, UCHAR, SHORT, USHORT, INT, UINT, LONG, ULONG, STRING,
FLOAT.

dheSize can only be one of ONEBIT, BYTE, CHAR, UCHAR, LONG, ULONG, SHORT, USHORT, TWLVBIT,
TWNT4BIT.

funcID can only be one of the pre-existing functions: ERROR, LINEAR, POWER, TABLE1, BITFIELD,
NONE. Further functions can be added as required for future expansion.

3.1. Loading the Command Tables

The MONSOON PAN software maintains two linked-list tables named PPX and ATT. The former, the PPX
table, contains the well-known PPX commands (mapped from the well-defined GPX dictionary) and various
command and control structures. The latter, the ATT table, is of variable length and is configured from the
commands defined in the CSV configuration file. That is, upon initialization, the PAN software reads the CSV
configuration file, parses it and then configures the data into the ATT table∗:

/* initialize the command configuration tables */

cfgInit(&istat,resp,(cmdSMemE **)&cmdPtr);

if (STATUS_BAD(istat)) MNSN_REPORT(stderr,resp);

/* now populate the built-in command table into the PPX command list */

ppxInit(&istat,resp,(cmdTblS)&(cmdPtr->cmdList_PPX));

if (STATUS_BAD(istat)) MNSN_REPORT(stderr,resp);

/* now start the ATT commands loading by opening the CSV configuration file */

cfgOpenFile(&istat,resp,&fd);

if (STATUS_BAD(istat)) MNSN_REPORT(stderr,resp);

/* while there are no errors, populate the ATT command table */

while (all_OK) {

/* read a line from the configuration file */

(void) memset((void *)inline,0,sizeof(inline));

all_OK = ((fgets(inline,MAXLINE,fd)==(char *)NULL) ? FALSE : TRUE);

/* if we have a valid line, parse it and add it into the structure */

if (all_OK && inline[0]!=’#’ && inline[0]!=’,’ && strlen(inline)>(size_t)1) {

cmdCount++;

cmdArgc = CLI_MAXLINE;

cliParse(&istat,resp,CFG_DELIM_STR,inline,strlen(inline),&cmdArgc,cmdArgv);

if (STATUS_BAD(istat)) MNSN_REPORT(stderr,resp);

if (cmdFind(&istat,(char *)NULL,cmdPtr->cmdList_ATT,cmdArgv[0]) == (cmdTblP)NULL) {

cmdCfgAdd(&istat,resp,&(cmdPtr->cmdList_ATT),FALSE,cmdArgc,cmdArgv);

if (STATUS_BAD(istat)) MNSN_REPORT(stderr,resp);

}

}

}

/* close the configuration file */

cfgCloseFile(&istat,resp,fd);

if (STATUS_BAD(istat)) MNSN_REPORT(stderr,resp);

∗The MONSOON software implements the notion of inherited status. If the status on entry is bad, the function returns
immediately allowing us to defer error checking to a later stage whilst still retaining the place of the original error.

3.2. Command Execution

When a command is received by the PAN, it first searches the PPX table and, if found, executes the associated
command/function. If the command is not found in the PPX table, it continues to search in the ATT table. At
this point, if the command is recognized, a simple protocol is involved:

• If the ATT command has no associated parameter, it is executed as a read;

• If the ATT command has an associated parameter, it is executed as a write.

Thus, we can manipulate the integration time (defined by the CSV attribute intTime), for example, in a
number of ways:

panDaemon> ppxSetAVP intTime=4.0
DBG panControl: read “ppxSetAVP intTime=4.0”
DBG panCommand: command found in PPX table at vector 0x4deec2b4
DBG cnvrttoDHE: generic: fValue = <4.000000>
DBG cnvrttoDHE: generic: result = <4000>
OK: intTime=4.0 - NEED EXACT SYNTAX

panDaemon> ppxGetAVP intTime
DBG panControl: read “ppxGetAVP intTime=4.0”
DBG panCommand: command found in PPX table at vector 0x4deeb814
DBG getSimple attValue=0x00000fa0

panDaemon> intTime
DBG panControl: read “intTime”
DBG panCommand: command found in ATT table at vector 0x4deed3f8
DBG getSimple attValue=0x00000fa0

panDaemon> intTime 6.6
DBG panControl: read “intTime 6.6”
DBG panCommand: command found in ATT table at vector 0x4deed3f8
DBG cnvrttoDHE: generic: fValue = <6.600000>
DBG cnvrttoDHE: generic: result = <6599>

panDaemon> intTime
DBG panControl: read “intTime”
DBG panCommand: command found in ATT table at vector 0x4deed3f8
DBG getSimple attValue=0x000019c7

3.3. Handling Array Attributes

If the nelms field is >1, an array is automatically created in the ATT table. Thus, for example, the configuration
line:

mcbSeqLoopRegs,MCB SEQLOOPREG,0x10110,16,0x8000000,SIMPLE,SIMPLE,FLOAT,ULONG,1,0,LINEAR,1,65535,Counts,loop registers

creates ATT entries mcbSeqLoopRegs[0] ... mcbSeqLoopRegs[15]. Thus, an individual element may be set:

panDaemon> mcbSeqLoopRegs[12] 44

or a range may be set in a single operation. For example, to set all elements between mcbSeqLoopRegs[2]
and mcbSeqLoopRegs[8], we execute†:

†Strictly, speaking, at the time of writing this has yet to be implemented.

panDaemon> mcbSeqLoopRegs[] <2:8> 44

or all array elements may be set in a single operation:

panDaemon> mcbSeqLoopRegs[] 44

4. EVERYTHING BUT THE KITCHEN SINK

From the above, it is clear that adding a new command into the system is simply a matter of generating a new
line in the CSV file with appropriate parameter values to enact the desired functionality. This elegant solution
provides great flexibility to hardware and software engineering staff but it is not without its drawbacks:

• the Unix file clobbering mechanism can really ruin your day;

• there is no error checking on the CSV file with the potential that a typing error can fatally affect the
hardware;

• there is no template to start from.

We have solved these problem by using a PostGreSQL database and creating a table with value checking
where appropriate.

4.1. SQL

First we create the database and define wrapper functions to the MONSOON Star Date time stamping system5:

CREATE DATABASE monsoondb;

\c monsoondb

CREATE FUNCTION msdsql_utc() RETURNS int4 AS ’/MNSN/soft_dev/lib/libmsdSql’ LANGUAGE C;

CREATE FUNCTION msdsql_msd() RETURNS float8 AS ’/MNSN/soft_dev/lib/libmsdSql’ LANGUAGE C;

CREATE FUNCTION msdsql_mjd() RETURNS float8 AS ’/MNSN/soft_dev/lib/libmsdSql’ LANGUAGE C;

CREATE FUNCTION msdsql_jd() RETURNS float8 AS ’/MNSN/soft_dev/lib/libmsdSql’ LANGUAGE C;

CREATE FUNCTION msdsql_ld() RETURNS float8 AS ’/MNSN/soft_dev/lib/libmsdSql’ LANGUAGE C;

Then, we proceed to create a data table for each detector type. Here, we create a generic I detector table:

CREATE TABLE generic_I (

panName varchar(32),

dheName varchar(32),

baseAddr integer

CHECK(baseAddr>=0),

nelms integer

CHECK(nelms>=0),

creg integer

CHECK(creg>=0),

setMethod text

CHECK(setMethod=’NOMETHOD’ OR setMethod=’SIMPLE’ OR setMethod=’INTTIME’ OR

setMethod=’ROISETC’ OR setMethod=’ROISETR’ OR setMethod=’FNAMESET’ OR

setMethod=’SETVOFF’ OR setMethod=’SETBIASV’ OR setMethod=’SETFBIAS’ OR

setMethod=’WRT2READ’ OR setMethod=’STRINGSET’ OR setMethod=’RDMSKWRT’),

getMethod text

CHECK(getMethod=’NOMETHOD’ OR getMethod=’SIMPLE’ OR getMethod=’INTTIME’ OR

getMethod=’ROISETC’ OR getMethod=’ROISETR’ OR getMethod=’FNAMESET’ OR

getMethod=’SETVOFF’ OR getMethod=’SETBIASV’ OR getMethod=’SETFBIAS’ OR

getMethod=’WRT2READ’ OR getMethod=’STRINGSET’ OR getMethod=’RDMSKWRT’),

panType text

CHECK(panType=’CHAR’ OR panType=’UCHAR’ OR panType=’SHORT’ OR panType=’USHORT’ OR

panType=’INT’ OR panType=’UINT’ OR panType=’LONG’ OR panType=’ULONG’ OR

panType=’STRING’ OR panType=’FLOAT’),

dheSize text

CHECK(dheSize=’ONEBIT’ OR dheSize=’BYTE’ OR dheSize=’CHAR’ OR dheSize=’UCHAR’ OR

dheSize=’LONG’ OR dheSize=’ULONG’ OR dheSize=’SHORT’ OR dheSize=’USHORT’ OR

dheSize=’TWLVBIT’ OR dheSize=’TWNT4BIT’),

coef1 float8,

coef2 float8,

funcID text

CHECK(funcID=’ERROR’ OR funcID=’LINEAR’ OR funcID=’POWER’ OR funcID=’TABLE1’ OR

funcID=’BITFIELD’ OR funcID=’NONE’),

minValue float8,

maxValue float8,

units varchar(32),

help varchar(128),

id integer CHECK(id>=0),

msd float8 CHECK(msd>0.0)

);

4.2. Perl

To populate this table, we use the present CSV file and run it through a Perl-script:

% csv2sql $MONSOON CFG/generic I.csv $MONSOON CFG/generic I.sql

Then, we can simply load the file within psql using the familiar ‘\i generic I.sql’ construct.

Clearly, we would like to manipulate the configuration records in a variety of ways. These include recovering
rows from the appropriate database table and re-populating the database from other possible sources. Several
Perl-scripts have been written, therefore, to facilitate the exchange of configuration data between the various
formats. Eventually, the PAN software will read the database directly but, until then, we utilize the conversion
utilities described in Table 2 on page 7.

Table 2. MONSOON Conversion Utility Routines.

Utility Description Usage

csv2sql Converts CSV into SQL csv2sql [in file] [out file]

cvs2xml Converts CSV into XML csv2xml [in file] [out file]

xml2csv Converts XML into CSV xml2csv [in file] [out file]

xml2sql Converts XML into SQL xml2sql [in file] [out file]

sql2csv Recovers database records to CSV sql2csv [db name] [db table] [out file]

sql2xml Recovers database records to XML sql2xml [db name] [db table] [out file]

4.3. XML, XSD and XSL

To display such data via a Web-browser interface requires using XML and a MONSOON schema. We have
developed such a schema and style sheet for MONSOON configuration records. Whilst the schema source is
too long to include in a paper of this length, the resulting XML output (for just the intTime record mentioned
above) is shown below and the Web-browser view is shown in Figure 2 on page 9.

<?xml version="1.0" ?>

<?xml-stylesheet type="text/xsl" href="generic_I.xsl"?>

<monsoonConfig detector="generic_I"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="monsoon.xsd">

<monsoonRecord id="1">

<panName>intTime</panName>

<dheName>MCB_SEQITR</dheName>

<baseAddr>0x00010000</baseAddr>

<nelms>1</nelms>

<creg>0x02000000</creg>

<setMethod>SIMPLE</setMethod>

<getMethod>SIMPLE</getMethod>

<panType>FLOAT</panType>

<dheSize>ULONG</dheSize>

<coef1>1000.0</coef1>

<coef2>0.0</coef2>

<funcID>LINEAR</funcID>

<minValue>0.0</minValue>

<maxValue>65536.0</maxValue>

<units>s</units>

<help>Integration time to 1 ms.</help>

</monsoonRecord>

</monsoonConfig>

4.4. Java

Although it is still possible to manipulate the data is a variety of ways, we have a need for simple, cross platform
access to the database since hardware engineers and software engineers are known to use differing operating
systems. The easiest way to handle cross-platform functionality is with Java. Thus, we are developing a Java
front-end to the database that will allow suitable staff to access the records and update them as required.
Although not complete, an interim, prototype interface is shown in Figure 3 on page 10.

ACKNOWLEDGMENTS

We would like to acknowledge the whole MONSOON team from NOAO-N and NOAO-S in achieving first bit,
first byte and first light (for Orion, Aladdin and CCD detectors) during the period September 2003 and May
2004—and, of course, for testing the software!

REFERENCES

1. R. G. Autry, R. G. Probst, B. M. Starr, K. M. Abdel-Gawad, R. D. Blakley, P. N. Daly, R. Dominguez,
E. A. Hileman, M. Liang, E. T. Pearson, R. A. Shaw and D. Tody, 2002, NEWFIRM: the wide-field IR imager
for NOAO 4-m telescopes, Proc. SPIE Vol. 4841, Instrument Design and Performance for Optical/Infrared
Ground-based Telescopes, Masanori Iye, Alan F. Moorwood, Eds. pp525-539.

Figure 2. MONSOON CSV Data Displayed via XML in Web-browser.

2. R. G. Probst, N. Gaughan, G. Chisholm, P. N. Daly, E. A. Hileman, M. Hunten, M. Liang, K. M. Merrill,
and J. Penegor, 2004, Project Status of NEWFIRM: the wide-field infrared camera for NOAO 4-m telescopes,
Proc. SPIE Vol. 5492, Ground-based Instrumentation for Astronomy, Masanori Iye, Alan F. Moorwood, Eds.
(in press).

3. N. C. Buchholz and P. N. Daly, 2004, The Generic Pixel Server Dictionary, Proc. SPIE Vol. 5496, Ad-
vanced Software, Control, and Communication Systems for Astronomy, Hilton Lewis, Gianni Raffi, Eds.
(this volume).

4. N. C. Buchholz and P. N. Daly, 2004, The MONSOON Generic Pixel Server Software Design, Proc. SPIE
Vol. 5496, Advanced Software, Control, and Communication Systems for Astronomy, Hilton Lewis, Gianni
Raffi, Eds. (this volume).

5. P. N. Daly and N. C. Buchholz, 2004, The MONSOON Implementation of the Generic Pixel Server, Proc.
SPIE Vol. 5496, Advanced Software, Control, and Communication Systems for Astronomy, Hilton Lewis,
Gianni Raffi, Eds. (this volume).

Figure 3. Interim Java Interface to the PostGreSQL Configuration Database.

