A Near-Infrared Variable Star Survey in the Magellanic Clouds

Noriyuki Matsunaga (Univ. of Tokyo, Japan) Yoshifusa Ita (Tohoku Univ., Japan) and IRSF/SIRIUS team

Collaborators

- PI: Yoshifusa Ita (Tohoku Univ.)
- Many observers involved:
 - T. Tanabe, T. Nagayama, S. Nishiyama, etc
- Data analysis
 - Done by Y. Ita, with NM taking parts in the catalogue verification
- About Cepheids and other variable stars
 - Yoshikazu Nakada (Univ. Tokyo)
 - Giuseppe Bono, Laura Inno (Univ. Rome/ESO)
 - Michael Feast (Univ. Cape Town)

Talk Plan

- IRSF variable star survey for the LMC/SMC
 - 10 yr long monitoring survey
 - Basic survey and catalogue properties
 - Catalogue and data release plan
- Cepheids in the SMC and their light curves
 - Light curves shapes in the optical and near-IR
 - An easy way to understand the light curve shapes

IRSF/SIRIUS in South Africa

InfraRed Survey Facility: 1.4 m telescope

FOV: about 7.7′ x 7.7′ Pixel Scale: 0.453″ /pix, 4 times better than 2MASS Simultaneous JHKs images.

SIRIUS:

Observation

- >10 years, starting in 2000 Dec.
- More than 100 epochs (always with JHKs)

LMC : **3 deg²** along the bar ~100 times in 10 yrs.

Survey Depth

- 50 sec integration (=5sec*10dithers) for each epoch in JHKs
- 10 σ detection limits
 - 17.7, 17.0, and 15.3 mag at J, H, and K, respectively in the most crowded region.
 - A Cepheid with a period ~a few days and an amplitude ~0.1 mag in the SMC (K ~ 15 mag) is detected.

Smallest amplitudes to be detected in the image subtraction as a function of brightness.

Colour-magnitude diagram (SMC)

Products

- Data reduction almost finalized for the SMC
- Photometry catalog
 - PSF fitting photometry with DAOPHOT on reference images
 - JHK photometry

~400,000 point sources

R.A.	DEC.	R.A. (J)	DEC. (J)	J	σ_J	Name of	Number of
[degree]		[degree]		[mag]		time series data	observations
11.972789	-73.290066	11.972768	-73.290061	11.693	0.025	11.972789-73.290066.J.dat	123
11.973571	-73.301043			99.999	99.999		000
11.974165	-73.105771			99.999	99.999		000
11.974200	-73.220387			99.999	99.999		000
11.974271	-73.216319			99.999	99.999		000

• Variable star catalog

- Image subtraction (ISIS by Alard)
- JHK time-series
- ~20,000 variable

sources.

[day] [mag] region subregio 2452092.702650 15.235 0.016 0.021 0.003 SMC0050-7310 F 2452212.327669 14.969 0.010 0.021 0.003 SMC0050-7310 F 2452213.285094 14.971 0.017 0.021 0.003 SMC0050-7310 F 2452214.380693 15.095 0.012 0.021 0.003 SMC0050-7310 F 2452246.273367 15.287 0.024 0.021 0.003 SMC0050-7310 F	JD	magnitude	<i>o</i> diff	$\sigma_{instrumental}$	σ_{offset}	Name of	Name of
2452092.702650 15.235 0.016 0.021 0.003 SMC0050-7310 F 2452212.327669 14.969 0.010 0.021 0.003 SMC0050-7310 F 2452213.285094 14.971 0.017 0.021 0.003 SMC0050-7310 F 2452214.380693 15.095 0.012 0.021 0.003 SMC0050-7310 F 2452246.273367 15.287 0.024 0.021 0.003 SMC0050-7310 F	[day]			[mag]		region	subregion
2452212.327669 14.969 0.010 0.021 0.003 SMC0050-7310 F 2452213.285094 14.971 0.017 0.021 0.003 SMC0050-7310 F 2452214.380693 15.095 0.012 0.021 0.003 SMC0050-7310 F 2452246.273367 15.287 0.024 0.021 0.003 SMC0050-7310 F	2452092.702650	15.235	0.016	0.021	0.003	SMC0050-7310	F
2452213.285094 14.971 0.017 0.021 0.003 SMC0050-7310 F 2452214.380693 15.095 0.012 0.021 0.003 SMC0050-7310 F 2452246.273367 15.287 0.024 0.021 0.003 SMC0050-7310 F	2452212.327669	14.969	0.010	0.021	0.003	SMC0050-7310	F
2452214.380693 15.095 0.012 0.021 0.003 SMC0050-7310 F 2452246.273367 15.287 0.024 0.021 0.003 SMC0050-7310 F	2452213.285094	14.971	0.017	0.021	0.003	SMC0050-7310	F
2452246.273367 15.287 0.024 0.021 0.003 SMC0050-7310 F	2452214.380693	15.095	0.012	0.021	0.003	SMC0050-7310	F
	2452246.273367	15.287	0.024	0.021	0.003	SMC0050-7310	F
2455225 2720/2 14 072 0.024 0.021 0.002 SMC0050 7210 E							
2455225.275065 14.975 0.024 0.021 0.005 SMC0050-7510 F	2455225.273063	14.973	0.024	0.021	0.003	SMC0050-7310	F
2455444.448035 14.995 0.008 0.021 0.003 SMC0050-7310 F	2455444.448035	14.995	0.008	0.021	0.003	SMC0050-7310	F
2455534.359242 15.147 0.012 0.021 0.003 SMC0050-7310 F	2455534.359242	15.147	0.012	0.021	0.003	SMC0050-7310	F
2455789.529211 15.128 0.008 0.021 0.003 SMC0050-7310 F	2455789.529211	15.128	0.008	0.021	0.003	SMC0050-7310	F
2456094.590574 15.050 0.009 0.021 0.003 SMC0050-7310 F	2456094.590574	15.050	0.009	0.021	0.003	SMC0050-7310	F

Light curves of various objects

Some types of objects as classified in Simbad

(Carbon-rich) Mira

Emission star (Be?)

Pre-main sequence star

X-ray binary

The longest period and dustenshrouded Miras

- The longest period found among the SMC Miras ~1150 days
- We discovered several Miras not detected in the optical (OGLE)
 - intensive mass loss producing thick circumstellar dust shells

Publication and Data release: Plan

- Basically, the data release will be accompanied by a catalogue paper for each galaxy, but please let us know if interested in earlier access to the data.
- SMC within 2013
 - Catalog paper: almost ready (Ita et al.)
 - Science papers
 - Miras: in preparation (Ita et al.)
 - Cepheids: in preparation (Matsunaga et al.)
- LMC expecting to release in next year
 - Catalog paper: to be written (Ita et al.)
 - Science papers: to be written

Light curve shapes of Cepheids

Light curve shapes vary with $\boldsymbol{\lambda}$

- The difference in the light curve shapes are known for a long time.
 - Saw-shaped curves in the optical
 - Smaller amplitudes and more symmetric in the IR

Two parameters

- T_{eff} has a dominant effect on the optical LCs, while the radius has a stronger effect on the IR LCs.
- Freedman & Madore (2010) (see also Madore, 1985)
 - The K-band light curve is widely considered to be dominated by pure radial variations.

Freedman & Madore (2010)

Our goals

- To give a quantitative description of the differences in light curve shapes based on large datasets
- To give an (intuitive and graphic) explanation of the difference
 - Although pulsational models and SED synthesis can predict the light curves (eg Natale et al. 2008), how can we get a straightforward understanding?

Data for Cepheids in the SMC

- 912 OGLE+IRSF Cepheids
 - Variations of 67% of OGLE-III Cepheids in our survey area were detected by IRSF.

Mode	OGLE-III w. IRSF	OGLE-III w/o IRSF	OGLE-III Entire SMC
F	612	170	2626
10	276	179	1644
F/10	15	8	59
10/20	9	65	215
others	0	23	86
Total	912	445	4630

Amplitudes dependent on λ

 $\leftarrow A_V$ shows a trend depending on a period, but with a large scatter

 $\leftarrow A_I$ is well correlated with A_V (ratio~**0.6**)

 $\leftarrow A_H/A_V$ has a large scatter around a ratio of ~0.3

Effects of T_{eff} and radius

• Stafan-Boltzmann's law

$$\delta m_{\rm bol} = -5\,\delta \log R - 10\delta \log T_{\rm eff}$$

- Applying bolometric correction $\delta m_{\lambda} = -5 \,\delta \log R - 10 \delta \log T_{\rm eff} - B_{\lambda} \,\delta \log T_{\rm eff}$
 - linear relation unless an amplitude is large
 - The $\delta \log T_{\rm eff}$ term depends on the wavelength.

Loops on $(\delta \log T_{\rm eff}, \delta \log R)$

- Pejcha & Kochanek (2012)
 - (normalized) loops on $(\delta \tau \cong \delta \log T_{eff}, \delta \rho \cong \delta \log R)$ based on observational data in literature.

Amplitude ratios

- If the loop are round, the ratis determined by the slopes of the linear relations.
 - AI/AV∼0.6, AH/AV∼0.3
- The scatter in the ratios caused by:
 - The ellipticity of the loop
 - The phase dependency on λ

Summary

- Near-infrared catalogue of variable stars from IRSF/SIRIUS
 - In the SMC: in this year (~20,000 variables)
 - In the LMC: next year
- Light curve shapes of Cepheids
 - Can be understood in an intuitive and graphic way by considering loops on (δ log T_{eff}, δ log R) (at least to the 1st approximation).
 - The slope and opening of the loop is essential.