EVOLVED MASSIVE STARS IN THE LOCAL GROUP

Maria R. Drout (Harvard University)

CTIO 50th Anniversary (May 9th, 2013)

Collaborators: Philip Massey, Emily Levesque, Kathryn Neugent, Georges Meynet

- Mass-Loss
- Rotation
- Opacities
- Convection
- Binarity
- •

- Mass-Loss
- Rotation
- Opacities
- Convection
- Binarity
- •

Observational testing with unbiased stellar populations is necessary

- Mass-Loss
 - Rotation
 - Opacities
 - Convection
 - Binarity
 - •

Observational testing with unbiased stellar populations is necessary

Yellow Supergiants

Red Supergiants

Luminous Blue Variables

Wolf Rayets

Yellow Supergiants

Red Supergiants

Luminous Blue Variables

Wolf Rayets

Past <-> Present <-> Future

Yellow Supergiants

Red Supergiants

Luminous Blue Variables

Wolf Rayets

Past - Present - Future

What I need <-> Progress We've <-> How We're
You to know made Confused

- Only handful of known objects.
- Some high luminosity variable members "Yellow Hypergiants"
- No comprehensive surveys conducted.

- Only handful of known objects.
- Some high luminosity variable members "Yellow Hypergiants"
- No comprehensive surveys conducted.

- Only handful of known objects.
- Some high luminosity variable members "Yellow Hypergiants"
- No comprehensive surveys conducted.

- Only handful of known objects.
- Some high luminosity variable members "Yellow Hypergiants"
- No comprehensive surveys conducted.

- Need a sample unbiased in luminosity
- Large foreground contamination

Drout 2009

- Need a sample unbiased in luminosity
- Large foreground contamination

- Need a sample unbiased in luminosity
- Large foreground contamination
- Determine membership with radial velocities
- Hundreds of YSGs in each galaxy

Neugent 2010

- Need a sample unbiased in luminosity
- Large foreground contamination
- Determine membership with radial velocities
- Hundreds of YSGs in each galaxy
- Early studies a large discrepancy with theoretical models (Drout et al. 2009, Neugent et al. 2010)

Drout 2009

- Need a sample unbiased in luminosity
- Large foreground contamination
- Determine membership with radial velocities
- Hundreds of YSGs in each galaxy
- Early studies a large discrepancy with theoretical models (Drout et al. 2009, Neugent et al. 2010)
- Discrepancies at different metallicities

Neugent 2010

- Need a sample unbiased in luminosity
- Large foreground contamination
- Determine membership with radial velocities
- Hundreds of YSGs in each galaxy
- Early studies a large discrepancy with theoretical models (Drout et al. 2009, Neugent et al. 2010)
- Discrepancies at different metallicities
- Recent studies discrepancy has disappeared

Drout 2012

- Need a sample unbiased in **luminosity**
- Large foreground contamination
- Determine membership with radial velocities
- Hundreds of YSGs in each galaxy
- Early studies a large discrepancy with theoretical models (Drout et al. 2009, Neugent et al. 2010)
- Discrepancies at different metallicities
- Recent studies discrepancy has disappeared

YELLOW SUPERGIANTS: FUTURE

- Relation to LBVs
- Variability
- Abundances
- Supernovae!

Vink 2011

YELLOW SUPERGIANTS: FUTURE

- Relation to LBVs
- Variability
- Abundances
- Supernovae!

YELLOW SUPERGIANTS: FUTURE

- Relation to LBVs
- Variability
- Abundances
- Supernovae!

Maund 2011

YELLOW SUPERGIANTS: FUTURE

Bersten 2012

Maund 2011

YELLOW SUPERGIANTS: FUTURE

Bersten 2012

RED SUPERGIANTS: PAST

- Several samples of RSGs
- Massey & Olsen (2003) point out a discrepancy in the coolest temps

RED SUPERGIANTS: PAST

- Several samples of RSGs
- Massey & Olsen (2003) point out a discrepancy in the coolest temps

Levesque 2005

RED SUPERGIANTS: PRESENT

- Fault with observational transformation.
- Now have examined 6+ galaxies.
- Mean spectral type shifts with metallicity.
- Peak luminosity stays roughly constant (5.2-5.3)

Levesque 2005

RED SUPERGIANTS: PRESENT

- Fault with observational transformation.
- Now have examined 6+ galaxies.
- Mean spectral type shifts with metallicity.
- Peak luminosity stays roughly constant (5.2-5.3)

RED SUPERGIANTS: PRESENT

- Fault with observational transformation.
- Now have examined 6+ galaxies.
- Mean spectral type shifts with metallicity.
- Peak luminosity stays roughly constant (5.2-5.3)

Leveso

RED SUPERGIANTS: FUTURE

- Complete Surveys
- Understanding Mass-Loss
- Unusual objects.
 - Dust Enshrouded (WO G64)
 - Variable (HV 11423)

Neugent 2012

RED SUPERGIANTS: FUTURE

- Complete Surveys
- Understanding Mass-Loss
- Unusual objects.
 - Dust Enshrouded (WO G64)
 - Variable (HV 11423)

LUMINOUS BLUE VARIABLES: PAST

- "Hubble-Sandage" Variables
- Coined by Conti 1984
- Several dozen known in the local group
- Eta Car

- Many candidates known
- "Quiescence" does not equal hot (Massey 2000)

- Many candidates known
- "Quiescence" does not equal hot (Massey 2000)

Massey et al. 2007

- Many candidates known
- "Quiescence" does not equal hot (Massey 2000)

Many candidates known

 "Quiescence" does not equal hot (Massey 2000)

Many candidates known

 "Quiescence" does not equal hot (Massey 2000)

- SN2009ip
- Binarity?

WOLF RAYETS: PAST

- Westerlund & Rodger 1959: 50
 WR stars in LMC
- Ratio of WC/WN type should change with metallicity.
- WN are harder to find
- Discrepancy at large metallicities.

WOLF RAYETS: PAST

- Westerlund & Rodger 1959: 50
 WR stars in LMC
- Ratio of WC/WN type should change with metallicity.
- WN are harder to find
- Discrepancy at large metallicities.

Massey & Johnson 1998

WOLF RAYETS: PRESENT/FUTURE

Complete surveys.

WOLF RAYETS: PRESENT/FUTURE

Complete surveys.

Neugent 2011

WOLF RAYETS: PRESENT/FUTURE

Complete surveys.

Neugent 2011

Neugent 2012

CONCLUSIONS

- Huge steps have been made in terms of characterizing the massive star populations across the local group galaxies.
- Still plenty of fun to be had.

