The Chandra Galactic Bulge Survey

Christopher Britt, Robert Hynes, Peter Jonker, Manuel Torres, Thomas Maccarone, Gijs Nelemans, Danny Steeghs, Sandra Greiss, Eva Ratti, and the Galactic Bulge Survey Collaboration

What is the Chandra Galactic Bulge

Survey?

- X-ray survey of Galactic Bulge
- Less extinction
- Less crowding
- Maintain high source density

Gonzalez et al (2012)

Goals

- Get masses of Neutron Star and Black Hole systems, constrain NS EoS and fill out BH mass distribution
- Hope to find first eclipsing BH binary in the galaxy
- Constrain binary evolution models
 - Expect ~120 new qLMXBs (Jonker et al, 2011)
- Produce flux limited survey of many types of X-ray producing objects

Özel et al (2012)

Many Sources of X-rays

- Accreting Binaries
 - Infalling material produces X-rays
 - X-ray Binaries, Cataclysmic
 Variables, Polars, Intermediate
 Polars, Ultra Compact X-ray
 Binaries
- Other Interacting Binaries
 - RS CVn systems, W Ursa Majoris systems (W Uma)
- Active single stars with flares
- AGN

Classification Toolkit

- Period Analysis
- Ratio of X-ray to Optical Flux
- Lightcurve Morphology
- Spectral features
- Mass determinations
- Behavior in other wavelengths (UV, IR, Radio)

Almost all of these rely, at least in part, on facilities at NOAO

Optical/NIR Spectroscopy

- Gemini-S, VIMOS, NTT Manuel Torres, Peter Jonker
- Lay slit over variable sources, if present
- Look for emission lines
- Some interesting sources have no emission lines CX332, observed with Gemini, has spectrum of Carbon star

CX561 – Possible Black Hole?

- Double Peaked Hα, 1460 km/s separation
- Ca II lines from donor
- No ellipsoidal modulations – low inclination?
- Obvious next step is phase resolved spectroscopy

Why use Variability?

- Most stars aren't variable. Compact binaries likely are for a variety of reasons
- Other sources of X-rays are also likely to be variable; RS CVns, W UMas, active stars with starspots
- If there's a variable in the X-ray error circle, it is *likely* the counterpart. Have already identified exceptions to this (CX561). Expect ~25 chance alignments with variables in field.

Optical Variability Data

- Current data collected with BLANCO 4m at CTIO, Mosaic-II instrument
- 16 < r' < 23
- Planned observations with DECam this June.
- Follow-up for standards, some bright sources done on CTIO's o.9m June 2012

Periodic Sources

• CX153 /93

Covered in depth in Ratti et al, 2013 MNRAS, 428, 3543

Photometry with ISIS

Period Search

- Lomb-Scargle
- Fold: Looks bimodal → Double the period
- Fit ellipsoidal modulations to estimate sin *i*

Phase resolved spectroscopy reveals M_1 =0.8 M_{\odot} M_2 =0.6 M_{\odot} (Ratti 2013)

Eclipsing Sources

Even at Low Luminosity

Counterpart Numbers

Conclusions

- We are successfully finding eclipsing counterparts even when optically faint
- We are successfully classifying sources based on spectroscopy and photometry of counterparts (Britt et al, accepted; Torres et al, in preparation)
- Finding low number of ellipsoidal modulations which could have implications for population synthesis
- Still need to get spectroscopy for remainder of variable counterparts

Arlo Says Hi

Log(F _X /F _{Opt})		Variability	RV limit (km/s)	Spectral features
CV	-2 - 0	Flickering, ellipsoidal, DN	low 100's	H, He I emission. Possible weak He II. Possible absorption lines from donor
mCV	-1 - 1	Flick., Orbital Side Band, rarely DN	low 100's	H, He I, strong He II emission. He II/Hβ ≥0.4
qLMXB	-2 - 0 (BH/NS)	Ellipsoidal, Flick., flares τ~min - hr	high 100's	H, faint He I, no He II, broader than CV lines. Possible donor lines
LMXB	≥ 2	Flick., Outbursts τ~weeks/months, NS - reprocessed X-ray bursts.	high 100's	H, He I, He II, disk continuum dominates
RS CVn	-32	Sine wave P ~ days	10'S	Ca II H & K emission lines
W UMa	-32	Broad eclipse, P ~ hours	low 100's	Balmer, CaII H & K, Ca I, Fe I, Mg I all in absorption
M Dwarf	-3	Star spots P~days, flares	10's	In absorption: TiO, CaH, K I, Mg I, Na I, Fe I Balmer emission