CTIO
Published on CTIO (http://www.ctio.noao.edu/noao)

CTIO Home > DECam Science papers

DECam Science papers [1]

2014 [2] - 2015 [3] - 2016 [4] - 2017 [5] - 2018 [6] - 2019 [7]

Community papers:

2020

  • Andreoni et al. (2020), MNRAS, 491, 5852: Probing the extragalactic fast transient sky at minute time-scales with DECam [8]
  • Andreoni et al. (2020), ApJ, 890, 131: GROWTH on S190814bv: Deep Synoptic Limits on the Optical/Near-infrared Counterpart to a Neutron Star-Black Hole Merger [9]
  • Bonaca et al. (2020), ApJ, 889, 70: Variations in the Width, Density, and Direction of the Palomar 5 Tidal Tails [10]
  • Calamida et al. (2020), ApJ, 891, 167: The Not So Simple Stellar System Omega Cen. II. Evidence in Support of a Merging Scenario [11]
  • Chandler et al. (2020), ApJL, 892, L38: Cometary Activity Discovered on a Distant Centaur: A Nonaqueous Sublimation Mechanism [12]
  • Chen et al. (2020), ApJL, 889, L6: The Most Rapidly Declining Type I Supernova 2019bkc/ATLAS19dqr [13]
  • Cheng et al. (2020), MNRAS, 493, 4209: Optimizing automatic morphological classification of galaxies with machine learning and deep learning using Dark Energy Survey imaging [14]
  • Coppejans et al. (2020), MNRAS, ApJL, 895, L23: A Mildly Relativistic Outflow from the Energetic, Fast-rising Blue Optical Transient CSS161010 in a Dwarf Galaxy [15]
  • Coughlin et al. (2020), MNRAS, 492, 863: Implications of the search for optical counterparts during the first six months of the Advanced LIGO's and Advanced Virgo's third observing run: possible limits on the ejecta mass and binary properties [16]
  • Ebrova et al. (2020), A&A, 634, A73: NGC 4993, the shell galaxy host of GW170817: constraints on the recent galactic merger [17]
  • Fahrion et al. (2020), A&A, 634, A53: Metal-poor nuclear star clusters in two dwarf galaxies near Centaurus A suggesting formation from the in-spiraling of globular clusters [18]
  • Grado et al. (2020), MNRAS, 492, 1731: Search for the optical counterpart of the GW170814 gravitational wave event with the VLT Survey Telescope [19]
  • Hewitt et al. (2020), MNRAS, 493, 3854: Comparison of galaxy spiral arm pitch angle measurements using manual and automated techniques [20]
  • Huang et al. (2020), ApJ, 894, 78: Finding Strong Gravitational Lenses in the DESI DECam Legacy Survey [21]
  • Ji et al. (2020), ApJ, 889, 27: Detailed Abundances in the Ultra-faint Magellanic Satellites Carina II and III [22]
  • Johnston et al. (2020), MNRAS, 495, 2247: The Next Generation Fornax Survey (NGFS): VII. A MUSE view of the nuclear star clusters in Fornax dwarf galaxies [23]
  • Kasparova et al. (2020), MNRAS, 493, 5494: An excessively massive thick disc of the enormous edge-on lenticular galaxy NGC 7572 [24]
  • Kawinwanichakij et al. (2020), ApJ, 892, 7: On the (Lack of) Evolution of the Stellar Mass Function of Massive Galaxies from z = 1.5 to 0.4 [25]
  • Khostovan et al. (2020), MNRAS, 493, 3966: A large, deep 3 deg2 survey of Halpha, [OIII], and [OII] emitters from LAGER: constraining luminosity functions [26]
  • Kim et al. (2020), ApJ, 894, 126: Gemini Multi-Object Spectrograph Integral Field Unit Spectroscopy of the Double-peaked Broad Emission Line of a Red Active Galactic Nucleus [27]
  • Kitanidis et al (2020), MNRAS, 492, 2262: Imaging systematics and clustering of DESI main targets [28]
  • Luo et al. (2020), MNRAS, 494, 3686: Characterization of optical light curves of extreme variability quasars over a ~16-yr baseline [29]
  • Markwardt et al. (2020), MNRAS, 492, 6105: Search for L5 Earth Trojans with DECam [30]
  • Martinez-Palomera et al. (2020), ApJ, 889, 113: Introducing the Search for Intermediate-mass Black Holes in Nearby Galaxies (SIBLING) Survey [31]
  • Mau et al. (2020), ApJ, 890, 136: Two Ultra-faint Milky Way Stellar Systems Discovered in Early Data from the DECam Local Volume Exploration Survey [32]
  • McCleary et al. (2020), ApJ, 893, 8: Dark Matter Distribution of Four Low-z Clusters of Galaxies [33]
  • Monteiro-Oliveira et al. (2020), MNRAS, 495, 2007: Revising the merger scenario of the galaxy cluster Abell 1644: a new gas poor structure discovered by weak gravitational lensing [34]
  • Moskowitz and Walker (2020), ApJ, 892:27: Stellar Density Profiles of Dwarf Spheroidal Galaxies [35]
  • Paillassa et al. (2020), A&A, 634, A48: MAXIMASK and MAXITRACK: Two new tools for identifying contaminants in astronomical images using convolutional neural networks [36]
  • Palumbo et al. (2020), MNRAS, 494, 4730: Linking compact dwarf starburst galaxies in the RESOLVE survey to downsized blue nuggets [37]
  • Peña et al (2020), AJ, 159, 148: Asteroids' Size Distribution and Colors from HITS [38]
  • Phriksee et al. (2020), MNRAS, 491, 1643: Weak lensing analysis of CODEX clusters using dark energy camera legacy survey: mass-richness relation [39]
  • Piatti and Fernandez-Trincado, A&A, 635, A93: Pal 13: its moderately extended low-density halo and its accretion history [40]
  • Prieto et al. (2020), ApJ, 889, 100: Variable Halpha Emission in the Nebular Spectra of the Low-luminosity Type Ia SN2018cqj/ATLAS18qtd [41]
  • Reines et al. (2020), ApJ, 888, 36: A New Sample of (Wandering) Massive Black Holes in Dwarf Galaxies from High-resolution Radio Observations [42]
  • Rezaie et al. (2020), MNRAS, 495, 1613: Improving galaxy clustering measurements with deep learning: analysis of the DECaLS DR7 data [43]
  • Sherman et al. (2020), MNRAS, 491, 3318: Exploring the high-mass end of the stellar mass function of star-forming galaxies at cosmic noon [44]
  • Soraisam et al. (2020), ApJ, 892, 112: A Classification Algorithm for Time-domain Novelties in Preparation for LSST Alerts. Application to Variable Stars and Transients Detected with DECam in the Galactic Bulge [45]
  • Tanoglidis et al. (2020), MNRAS, 491, 3535: Optimizing galaxy samples for clustering measurements in photometric surveys [46]
  • Ting-Wen and Prochaska (2020), MNRAS, in press: Constraining Magnetic Fields in the Circumgalactic Medium [47]
  • Vaduvescu et al. (2020), Astronomy and Computing, 30, 100356: Mega-Archive and the EURONEAR tools for data mining world astronomical images [48]
  • Vieira et al. (2020), ApJ, 895, 96: A Deep CFHT Optical Search for a Counterpart to the Possible Neutron Star-Black Hole Merger GW190814 [49]
  • Vivas et al. (2020), MNRAS, 492, 1061: A DECam view of the diffuse dwarf galaxy Crater II - Variable stars [50]
  • Young et al. (2020), MNRAS, 495, 1493: Atomic hydrogen clues to the formation of counterrotating stellar discs [51]
  • Zenteno et al. (2020), MNRAS, 495, 705: A joint SZ-X-ray-optical analysis of the dynamical state of 288 massive galaxy clusters [52]
  • Zucker et al. (2020), A&A, 633, A51: A compendium of distances to molecular clouds in the Star Formation Handbook [53]

Papers from the Dark Energy Survey (DES) Collaboration:

2020

  • Bernardinelli et al. (2020), ApJSS, 247, 32: Trans-Neptunian Objects Found in the First Four Years of the Dark Energy Survey [54]
  • Bleem et al. (2020), ApJSS, 247, 25: The SPTpol Extended Cluster Survey [55]
  • de Jaeger et al. (2020), MNRAS, 495, 4860: Studying Type II supernovae as cosmological standard candles using the Dark Energy Survey [56]
  • Drlica-Wagner et al. (2020), ApJ, 893, 47: Milky Way Satellite Census. I. The Observational Selection Function for Milky Way Satellites in DES Y3 and Pan-STARRS DR1 [57]
  • Gutierrez et al. (2020), MNRAS, 496, 95: DES16C3cje: A low-luminosity, long-lived supernova [58]
  • Khain et al. (2020), AJ, 159, 133: Dynamical Classification of Trans-Neptunian Objects Detected by the Dark Energy Survey [59]
  • Lidman et al. (2020), MNRAS, 496, 19: OzDES multi-object fibre spectroscopy for the Dark Energy Survey: results and second data release [60]
  • Mawdsley et al. (2020), MNRAS, 493, 5662: Dark Energy Survey Year 1 Results: Wide-field mass maps via forward fitting in harmonic space [61]
  • Nadler et al. (2020), ApJ, 893, 48: Milky Way Satellite Census. II. Galaxy-Halo Connection Constraints Including the Impact of the Large Magellanic Cloud [62]
  • Nord et al. (2020), MNRAS, 494, 1308: Observation and confirmation of nine strong-lensing systems in Dark Energy Survey Year 1 data [63]
  • Palmese et al. (2020), MNRAS, 493, 4591: Stellar mass as a galaxy cluster mass proxy: application to the Dark Energy Survey redMaPPer clusters [64]
  • Pursiainen et al. (2020), MNRAS, 494, 5576: The mystery of photometric twins DES17X1boj and DES16E2bjy [65]
  • Scolnic et al (2020), ApJL, 896, L13: Supernova Siblings: Assessing the Consistency of Properties of Type Ia Supernovae that Share the Same Parent Galaxies [66]
  • Smith et al. (2020), MNRAS, 494, 4426: First cosmology results using type Ia supernovae from the Dark Energy Survey: the effect of host galaxy properties on supernova luminosity [67]
  • Wiseman et al. (2020), MNRAS, 495, 4040: Supernova host galaxies in the dark energy survey: I. Deep coadds, photometry, and stellar masses [68]
  • Yang et al. (2020), MNRAS, 493, 5573: Spectral variability of a sample of extreme variability quasars and implications for the Mg II broad-line region [69]
  • Yu et al. (2020), ApJSS, 246, 16: Quasar Accretion Disk Sizes from Continuum Reverberation Mapping in the DES Standard-star Fields [70]

 


Source URL (modified on 07/13/2020 - 12:12): http://www.ctio.noao.edu/noao/content/DECam-Science-papers

Links
[1] http://www.ctio.noao.edu/noao/content/DECam-Science-papers
[2] http://www.ctio.noao.edu/noao/content/Publications-based-DECam-data-2014
[3] http://www.ctio.noao.edu/noao/content/Publications-based-DECam-data-2015
[4] http://www.ctio.noao.edu/noao/content/Publications-based-DECam-data-2016
[5] http://www.ctio.noao.edu/noao/content/Publications-based-DECam-data-2017
[6] http://www.ctio.noao.edu/noao/content/Publications-based-DECam-data-2018
[7] http://www.ctio.noao.edu/noao/content/Publications-based-DECam-data-2019
[8] https://ui.adsabs.harvard.edu/abs/2020MNRAS.491.5852A/abstract
[9] https://ui.adsabs.harvard.edu/abs/2020ApJ...890..131A/abstract
[10] https://ui.adsabs.harvard.edu/abs/2020ApJ...889...70B/abstract
[11] https://ui.adsabs.harvard.edu/abs/2020ApJ...891..167C/abstract
[12] https://ui.adsabs.harvard.edu/abs/2020ApJ...892L..38C/abstract
[13] https://ui.adsabs.harvard.edu/abs/2020ApJ...889L...6C/abstract
[14] https://ui.adsabs.harvard.edu/abs/2020MNRAS.493.4209C/abstract
[15] https://ui.adsabs.harvard.edu/abs/2020ApJ...895L..23C/abstract
[16] https://ui.adsabs.harvard.edu/abs/2020MNRAS.492..863C/abstract
[17] https://ui.adsabs.harvard.edu/abs/2020A%26A...634A..73E/abstract
[18] https://ui.adsabs.harvard.edu/abs/2020A%26A...634A..53F/abstract
[19] https://ui.adsabs.harvard.edu/abs/2020MNRAS.492.1731G/abstract
[20] https://ui.adsabs.harvard.edu/abs/2020MNRAS.493.3854H/abstract
[21] https://ui.adsabs.harvard.edu/abs/2020ApJ...894...78H/abstract
[22] https://ui.adsabs.harvard.edu/abs/2020ApJ...889...27J/abstract
[23] https://ui.adsabs.harvard.edu/abs/2020MNRAS.495.2247J/abstract
[24] https://ui.adsabs.harvard.edu/abs/2020MNRAS.493.5464K/abstract
[25] https://ui.adsabs.harvard.edu/abs/2020ApJ...892....7K/abstract
[26] https://ui.adsabs.harvard.edu/abs/2020MNRAS.493.3966K/abstract
[27] https://ui.adsabs.harvard.edu/abs/2020ApJ...894..126K/abstract
[28] https://ui.adsabs.harvard.edu/abs/2020MNRAS.496.2262K/abstract
[29] https://ui.adsabs.harvard.edu/abs/2020MNRAS.494.3686L/abstract
[30] https://ui.adsabs.harvard.edu/abs/2020MNRAS.492.6105M/abstract
[31] https://ui.adsabs.harvard.edu/abs/2020ApJ...889..113M/abstract
[32] https://ui.adsabs.harvard.edu/abs/2020ApJ...890..136M/abstract
[33] https://ui.adsabs.harvard.edu/abs/2020ApJ...893....8M/abstract
[34] https://ui.adsabs.harvard.edu/abs/2020MNRAS.495.2007M/abstract
[35] https://ui.adsabs.harvard.edu/abs/2020ApJ...892...27M/abstract
[36] https://ui.adsabs.harvard.edu/abs/2020A%26A...634A..48P/abstract
[37] https://ui.adsabs.harvard.edu/abs/2020MNRAS.494.4730P/abstract
[38] https://ui.adsabs.harvard.edu/abs/2020AJ....159..148P/abstract
[39] https://ui.adsabs.harvard.edu/abs/2020MNRAS.491.1643P/abstract
[40] https://ui.adsabs.harvard.edu/abs/2020A%26A...635A..93P/abstract
[41] https://ui.adsabs.harvard.edu/abs/2020ApJ...889..100P/abstract
[42] https://ui.adsabs.harvard.edu/abs/2020ApJ...888...36R/abstract
[43] https://ui.adsabs.harvard.edu/abs/2020MNRAS.495.1613R/abstract
[44] https://ui.adsabs.harvard.edu/abs/2020MNRAS.491.3318S/abstract
[45] https://ui.adsabs.harvard.edu/abs/2020ApJ...892..112S/abstract
[46] https://ui.adsabs.harvard.edu/abs/2020MNRAS.491.3535T/abstract
[47] https://ui.adsabs.harvard.edu/abs/2020MNRAS.tmp.1895L/abstract
[48] https://ui.adsabs.harvard.edu/abs/2020A%26C....3000356V/abstract
[49] https://ui.adsabs.harvard.edu/abs/2020ApJ...895...96V/abstract
[50] https://ui.adsabs.harvard.edu/abs/2020MNRAS.492.1061V/abstract
[51] https://ui.adsabs.harvard.edu/abs/2020MNRAS.495.1433Y/abstract
[52] https://ui.adsabs.harvard.edu/abs/2020MNRAS.495..705Z/abstract
[53] https://ui.adsabs.harvard.edu/abs/2020A%26A...633A..51Z/abstract
[54] https://ui.adsabs.harvard.edu/abs/2020ApJS..247...32B/abstract
[55] https://ui.adsabs.harvard.edu/abs/2020ApJS..247...25B/abstract
[56] https://ui.adsabs.harvard.edu/abs/2020MNRAS.495.4860D/abstract
[57] https://ui.adsabs.harvard.edu/abs/2020ApJ...893...47D/abstract
[58] https://ui.adsabs.harvard.edu/abs/2020MNRAS.496...95G/abstract
[59] https://ui.adsabs.harvard.edu/abs/2020AJ....159..133K/abstract
[60] https://ui.adsabs.harvard.edu/abs/2020MNRAS.496...19L/abstract
[61] https://ui.adsabs.harvard.edu/abs/2020MNRAS.493.5662M/abstract
[62] https://ui.adsabs.harvard.edu/abs/2020ApJ...893...48N/abstract
[63] https://ui.adsabs.harvard.edu/abs/2020MNRAS.494.1308N/abstract
[64] https://ui.adsabs.harvard.edu/abs/2020MNRAS.493.4591P/abstract
[65] https://ui.adsabs.harvard.edu/abs/2020MNRAS.494.5576P/abstract
[66] https://ui.adsabs.harvard.edu/abs/2020ApJ...896L..13S/abstract
[67] https://ui.adsabs.harvard.edu/abs/2020MNRAS.494.4426S/abstract
[68] https://ui.adsabs.harvard.edu/abs/2020MNRAS.495.4040W/abstract
[69] https://ui.adsabs.harvard.edu/abs/2020MNRAS.493.5773Y/abstract
[70] https://ui.adsabs.harvard.edu/abs/2020ApJS..246...16Y/abstract