CTIO
Published on CTIO (http://www.ctio.noao.edu/noao)

CTIO Home > Publications based on DECam data (2017)

Publications based on DECam data (2017) [1]

Community papers:

  • Abbott et al. (2017), PASA, 34, id.e012: Superluminous Supernovae at High Redshift [2]
  • Andreoni et al. (2017), PASA, 34, id.e037: Mary, a Pipeline to Aid Discovery of Optical Transients [3]
  • Cabrera-Vives et al. (2017), ApJ, 836, 97 : Deep-HiTS: Rotation Invariant Convolutional Neural Network for Transient Detection [4]
  • Calamida et al. (2017), AJ, 153, 175: The not so simple globular cluster Omega Cen. I. Spatial distribution of the multiple stellar populations [5]
  • Erkal et al. (2017), MNRAS, 470, 60: A sharper view of Pal 5's tails: discovery of stream perturbations with a novel non-parametric technique [6]
  • Johnson et al. (2017), MNRAS, 466, 129: CXOGBS J174954.5-294335: a new deeply eclipsing intermediate polar [7]
  • Mackey et al. (2017), MNRAS, 472, 2975: Structured star formation in the Magellanic inter-Cloud region [8]
  • Medina et al (2017), ApJL, 845, L10: Serendipitous Discovery of RR Lyrae Stars in the Leo V Ultra-faint Galaxy [9]
  • Monteiro-Oliveira et al. (2017), MNRAS, 468, 4566: Weak lensing and spectroscopic analysis of the nearby dissociative merging galaxy cluster Abell 3376 [10]
  • Muller et al. (2017), A&A, 497, id.A7: New low surface brightness dwarf galaxies in the Centaurus group [11]
  • Myeong et al. (2017), ApJL, 840, L25: Tidal tails around the outer halo globular clusters Eridanus and Palomar 15 [12]
  • Nidever et al. (2017), AJ, 154, 199: SMASH: Survey of the MAgellanic Stellar History [13]
  • Piatti (2017), ApJL, 834, L14: Stellar Cluster Candidates Discovered in the Magellanic System [14]
  • Raichoor et al. (2017), MNRAS, 471, 3955: The SDSS-IV extended Baryon Oscillation Spectroscopic Survey: final emission line galaxy target selection [15]
  • Shi et al. (2017), ApJ, 846, 26: Deep Imaging of the HCG 95 Field. I. Ultra-diffuse Galaxies [16] 
  • Suyu et al. (2017), MNRAS, 468, 2590: H0LiCOW - I. H0 Lenses in COSMOGRAIL's Wellspring: program overview [17]
  • Taylor et al. (2017), MNRAS, 469, 3444: The Survey of Centaurus A's Baryonic Structures (SCABS) - II. The extended globular cluster system of NGC 5128 and its nearby environment [18]
  • Trilling et al. (2017), AJ, 154, 170: The size distribution of Near Earth Objects larger than 10 meters [19]
  • Vivas et al. (2017), AJ, 154, 85: Absolute Magnitudes and Colors of RR Lyrae stars in DECam Passbands from Photometry of the Globular Cluster M5 [20]
  • Vohl et al. (2017), PASA, 34, id.e038: Enabling Near Real-Time Remote Search for Fast Transient Events with Lossy Data Compression [21]
  • Wang et al. (2017), ApJ, 839, id.27: First Discoveries of z > 6 Quasars with the DECam Legacy Survey and UKIRT Hemisphere Survey [22]
  • Zheng et al (2017), ApJL, 842, L22: First Results from the Lyman Alpha Galaxies in the Epoch of Reionization (LAGER) Survey: Cosmological Reionization at z ∼ 7 [23]

Dark Energy Survey Collaboration papers:

  • Agnello et al. (2017), MNRAS, 472, 4038: Models of the strongly lensed quasar DES J0408-5354 [24]
  • Bernstein et al. (2017), PASP, 129, pp. 074503: Astrometric Calibration and Performance of the Dark Energy Camera [25]
  • Berstein et al. (2017), PASP, 129, pp. 114502: Instrumental response model and detrending for the Dark Energy Camera [26]
  • Bufanda et al. (2017), MNRAS, 465, 2531: The evolution of active galactic nuclei in clusters of galaxies from the Dark Energy Survey [27]
  • Childress et al. (2017), MNRAS, 472, 273: OzDES multifibre spectroscopy for the Dark Energy Survey: 3-yr results and first data release [28]
  • Clampitt et al. (2017), MNRAS, 465, 4204: Galaxy-galaxy lensing in the Dark Energy Survey Science Verification data [29]
  • Clerkin et al. (2017), MNRAS, 466, 1444: Testing the lognormality of the galaxy and weak lensing convergence distributions from Dark Energy Survey maps [30]
  • Cowperthwaite et al. (2017), ApJL, 848, L17: The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. II. UV, Optical, and Near-infrared Light Curves and Comparison to Kilonova Models [31] 
  • Diehl et al. (2017), ApJS, 232, 15: The DES Bright Arcs Survey: Hundreds of Candidate Strongly Lensed Galaxy Systems from the Dark Energy Survey Science Verification and Year 1 Observations [32]
  • Doctor et al. (2017), ApJ, 837, id.57: A Search for Kilonovae in the Dark Energy Survey [33]
  • Etherington et al. (2017), MNRAS, 466, 228: Environmental dependence of the galaxy stellar mass function in the Dark Energy Survey Science Verification Data [34]
  • Gerdes et al. (2017), ApJL, 839, id.L15: Discovery and Physical Characterization of a Large Scattered Disk Object at 92 au [35]
  • Henning et al. (2017), MNRAS, 467, 4015: Galaxy populations in massive galaxy clusters to z = 1.1: colour distribution, concentration, halo occupation number and red sequence fraction [36]
  • Jouvel et al. (2017), MNRAS, 469, 2771: Photometric redshifts and clustering of emission line galaxies selected jointly by DES and eBOSS [37]
  • Kovacs et al. (2017), MNRAS, 465, 4166: Imprint of DES superstructures on the cosmic microwave background [38]
  • Kwan et al. (2017), MNRAS, 464, 4045: Cosmology from large-scale galaxy clustering and galaxy-galaxy lensing with Dark Energy Survey Science Verification data [39]
  • Lin et al. (2017), ApJL, 838, id.L15: Discovery of the Lensed Quasar System DES J0408-5354 [40]
  • Luque et al. (2017), MNRAS, 468, 97: The Dark Energy Survey view of the Sagittarius stream: discovery of two faint stellar system candidates [41]
  • MacCrann et al. (2017), MNRAS, 465, 2567: Inference from the small scales of cosmic shear with current and future Dark Energy Survey data [42]
  • Melchior et al. (2017), MNRAS, 469, 4899: Weak-lensing mass calibration of redMaPPer galaxy clusters in Dark Energy Survey Science Verification data [43]
  • Mudd et al. (2017), MNRAS, 468, 3682: Discovery of a z = 0.65 post-starburst BAL quasar in the DES supernova fields [44]
  • Ostrovski et al. (2017), MNRAS, 465, 4325: VDES J2325-5229 a z = 2.7 gravitationally lensed quasar discovered using morphology-independent supervised machine learning [45]
  • Palmese et al. (2017), ApJL, 849, L34: Evidence for Dynamically Driven Formation of the GW170817 Neutron Star Binary in NGC 4993 [46]
  • Pan et al. (2017), MNRAS, 470, 4271: DES15E2mlf: A Spectroscopically Confirmed Superluminous Supernova that Exploded 3.5 Gyr After the Big Bang [47]
  • Pieres et al. (2017), MNRAS, 468, 1349: A stellar overdensity associated with the Small Magellanic Cloud [48]
  • Reed et al. (2017), MNRAS, 468, 4702: Eight new luminous z ≥ 6 quasars discovered via SED model fitting of VISTA, WISE and Dark Energy Survey Year 1 observations [49]
  • Sánchez et al. (2017), MNRAS, 465, 746: Cosmic voids and void lensing in the Dark Energy Survey Science Verification data [50]
  • Saro et al. (2017), MNRAS, 468, 3347: Optical–SZE scaling relations for DES optically selected clusters within the SPT-SZ Survey [51]
  • Soares-Santos et al. (2017), ApJL, 848, L16: The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. I. Discovery of the Optical Counterpart Using the Dark Energy Camera [52]
  • Tie et al. (2017), AJ, 153, id.107: A Study of Quasar Selection in the Supernova Fields of the Dark Energy Survey [53]

Source URL (modified on 10/02/2019 - 13:48): http://www.ctio.noao.edu/noao/node/16386

Links
[1] http://www.ctio.noao.edu/noao/node/16386
[2] http://adsabs.harvard.edu/abs/2017PASA...34...12A
[3] http://adsabs.harvard.edu/abs/2017PASA...34...37A
[4] http://adsabs.harvard.edu/abs/2017arXiv170100458C
[5] http://adsabs.harvard.edu/abs/2017arXiv170202294C
[6] http://adsabs.harvard.edu/abs/2017MNRAS.470...60E
[7] http://adsabs.harvard.edu/abs/2017MNRAS.466..129J
[8] http://adsabs.harvard.edu/abs/2017MNRAS.472.2975M
[9] http://adsabs.harvard.edu/abs/2017ApJ...845L..10M
[10] http://adsabs.harvard.edu/abs/2017MNRAS.468.4566M
[11] http://adsabs.harvard.edu/abs/2017A%26A...597A...7M
[12] http://adsabs.harvard.edu/abs/2017arXiv170407690M
[13] http://adsabs.harvard.edu/abs/2017AJ....154..199N
[14] http://adsabs.harvard.edu/abs/2017ApJ...834L..14P
[15] http://adsabs.harvard.edu/abs/2017MNRAS.471.3955R
[16] http://adsabs.harvard.edu/abs/2017ApJ...846...26S
[17] http://adsabs.harvard.edu/abs/2017MNRAS.468.2590S
[18] http://adsabs.harvard.edu/abs/2017MNRAS.469.3444T
[19] http://adsabs.harvard.edu/abs/2017arXiv170704066T
[20] http://adsabs.harvard.edu/abs/2017arXiv170703954V
[21] http://adsabs.harvard.edu/abs/2017PASA...34...38V
[22] http://adsabs.harvard.edu/abs/2017ApJ...839...27W
[23] http://adsabs.harvard.edu/abs/2017ApJ...842L..22Z
[24] http://adsabs.harvard.edu/abs/2017MNRAS.472.4038A
[25] http://adsabs.harvard.edu/abs/2017PASP..129g4503B
[26] http://adsabs.harvard.edu/abs/2017PASP..129k4502B
[27] http://adsabs.harvard.edu/abs/2017MNRAS.465.2531B
[28] http://adsabs.harvard.edu/abs/2017MNRAS.472..273C
[29] http://adsabs.harvard.edu/abs/2017MNRAS.465.4204C
[30] http://adsabs.harvard.edu/abs/2017MNRAS.466.1444C
[31] http://adsabs.harvard.edu/abs/2017ApJ...848L..17C
[32] http://adsabs.harvard.edu/abs/2017ApJS..232...15D
[33] http://adsabs.harvard.edu/abs/2017ApJ...837...57D
[34] http://adsabs.harvard.edu/abs/2017MNRAS.466..228E
[35] http://adsabs.harvard.edu/abs/2017ApJ...839L..15G
[36] http://adsabs.harvard.edu/abs/2017MNRAS.467.4015H
[37] http://adsabs.harvard.edu/abs/2017MNRAS.469.2771J
[38] http://adsabs.harvard.edu/abs/2017MNRAS.465.4166K
[39] http://adsabs.harvard.edu/abs/2017MNRAS.464.4045K
[40] http://adsabs.harvard.edu/abs/2017ApJ...838L..15L
[41] http://adsabs.harvard.edu/abs/2017MNRAS.468...97L
[42] http://adsabs.harvard.edu/abs/2017MNRAS.465.2567M
[43] http://adsabs.harvard.edu/abs/2017MNRAS.469.4899M
[44] http://adsabs.harvard.edu/abs/2017MNRAS.468.3682M
[45] http://adsabs.harvard.edu/abs/2017MNRAS.465.4325O
[46] http://adsabs.harvard.edu/abs/2017ApJ...849L..34P
[47] http://adsabs.harvard.edu/abs/2017arXiv170706649P
[48] http://adsabs.harvard.edu/abs/2017MNRAS.468.1349P
[49] http://adsabs.harvard.edu/abs/2017MNRAS.468.4702R
[50] http://adsabs.harvard.edu/abs/2017MNRAS.465..746S
[51] http://adsabs.harvard.edu/abs/2017MNRAS.468.3347S
[52] http://adsabs.harvard.edu/abs/2017ApJ...848L..16S
[53] http://adsabs.harvard.edu/abs/2017AJ....153..107T