In the following, 'Night report' refers to the number selected by the observer in the night report among the proposed categories: <0.4; 0.4-0.6; 0.6-0.8; 0.8-1.0; 1.0-1.5; 1.5-2.0; 2.0-3.0; >3.0. Actually, I use and plot the average of these respective categories: 0.4; 0.5; 0.7; 0.9; 1.25; 1.75; 2.5; 3.0. The numbers usually reflect the wavelength of interest of the instrument used (i.e. for example f/14 night reports yield a seeing estimate at about 2 microns).
Note: all the seeing data presented above was taken with the Carnegie monitor. 9499 samples per year means an average of 26 per night, corresponding to an average of 3 hours continuous sampling per night.
In February 2001, Tony Tyson and his group showed us some ellipticity maps of their Mosaic images. Ellipticity of each star is measured, as per SExtractor's definitions (see the User Manual), and plotted as vectors showing both amplitude 'e' and angle 'pa'. By definition:
e = 1 - B/A, where B and A are the semi-minor and semi-major axis lengths. So a perfectly round image has an ellipticity of 0 and e=0.1 means the major axis is 10% longer than the minor axis.
Some trends were quite unusual (see example [35]) and obviously contained precious information about image quality. In May, we obtained our first engineering images with specific telescope parameters (like ADC on/off, M1 corrections on/off, etc...) in order to study the effects methodically. We have taken more data since then at various opportunities, sometimes with the complicity of the CTIO Mosaic engineering team. Based on Dave Wittman's (Bell Labs) original programs, Dara Norman (CTIO) has built up additionnal tools to calculate the mean ellipticity vector in the field, substract it from all the stars and do combined plots showing the data before and after substraction. There has been a substantial support from both Dave and Dara to get these tools running and they are now working very efficiently and robustly. Sincere thanks to both of them. The programs and a README file explaining how to use them can be found in /ua76/boccas/4m/ellipticity/.
These ellipticity plots have allowed us to investigate deeper mostly 2 issues: the effects of the ADC in the image quality, and a method to build astigmatism lookup tables for M1. Most images are 10sec unguided R filter exposures (unless written otherwise).
The Atmospheric Dispersion Corrector (ADC) is part of the Prime Focus Corrector (PFC). It consists of 2 rotating pairs of cemented prisms as descibed in this paper [36]. These are fairly large piece of refractive optics (40cm in diameter) that can introduce wavefront distorsion if their surfacing has residual aberrations and/or if their mounting introduce stress into the glass. We conducted tests near the zenith (so that any gravity effect is azimuthally uniform and no dispersion has to be compensated) by rotating the prisms and observing the ellipticity patterns.
* One prism rotating, one fixed:
* Both prisms rotating together maintaining the neutral 180deg angle difference:
Since the active optics were implemented on the Blanco 4m telescope, we have been building the PF lookup tables with the Hartmann screen method. We have used a few times curvature sensing with EF too. Both techniques are applied on one on-axis star only, mostly because of the time needed for the data reduction with our existing software tools. The ellipticity maps have revealed in some cases that measuring one star in the center of the field is not appropriate to determine the best overall correction for the entire field. The ellipticity approach, because it does a statistical analysis of all the stars in the field in a fairly short time, yields the precise information of the optimum correction to apply to compensate astigmatism. Other aberrations at PF can not be measured (nor corrected) by this technique but astigmatism is the dominant static telescope aberration that needs to be corrected, thus the ellipticity measurements are best suited for that task.
A Mean Ellipticity Vector MEV (for the entire field) above 0.04 indicates that there is some astigmatism worth correcting. The existence of a MEV > 0.04 means:
Example: through-focus sequence [38] of 6 images taken with steps of 75um and a forced astigmatism (M1 tweak) of 1um at 0deg (10sec, R, ADC off, corr off, zenith). One can clearly see the 90deg rotation (from horizontal to vertical in this case) of the astigmatism/ellipticity pattern when going through focus. From the ellipmap program we get:
Image | Focus | e | pa | fwhm |
obj019 | 15875 | 0.07 | 7 | 2.71 |
obj018 | 15800 | 0.04 | 2 | 2.21 |
obj017 | 15725 | 0.02 | 106 | 2.18 |
obj016 | 15650 | 0.10 | 84 | 1.91 |
obj020 | 15575 | 0.08 | 91 | 2.71 |
obj021 | 15500 | 0.15 | 87 | 2.52 |
The image with least astigmatism is the 3rd one (obj017) but it is the 4th image (obj016) that has the best fwhm. Based on the pattern of the plots, it seems like there would be an intermediate focus (about 15760) between the 2nd and 3rd images where the ellipticity would be lower in average (i.e. rounder images). Thus in this case we would conclude that the best fwhm focus (15650) is different from the 'roundest' focus (15760). Furthermore, an 'mscfocus' analysis of the focus sequence corresponding to these 6 images yields a best focus of 15704 at 1.83".
M.B., 30 Sept 01
En construcción todavía
Esta breve información explica como reconocer los típicos problemas encontrados al telescopio con la calidad de imagen. Debería ser de ayuda para el operador de telescopio que quiere analisar la situación y actuar consecuentemente y rapidamente, si es que el observador no entiende o reconoce el mismo el problema. De forma general, es necesario quedar atento a cualquier 'queja' del observador para asegurarse que el telescopio entrega su mejor potencial y que el observador sabe como enfocar el telescopio y mantener buen foco toda la noche. Recuerden que un 50% de los casos de imagenes malas o 'más-o-menos' se debe a un foco de mala calidad!
Lo más importante y la primera acción que deben tomar cuando se presenta una imagen rara, es hacer una secuencia de foco (debe extenderse bastante y simetricamente de ambos lados de foco) para:
Para analizar la secuencia de foco, se debe utilisar la funcción 'imexam' de IRAF y graficar los perfiles (r) para ver el mejor fwhm y los contours [39] (e) para ver la redondez de la imagen. El mejor perfil debe coincidir con el mejor contour, sino hay que examinar otra estrella (puede ser que el objeto selecionado fue una galaxia). Aqui va un ejemplo de secuencia de contours, y la secuencia de perfiles [40] asociados, asi que un gráfico de fwhm versus focus [41] (es la funcción 'mscfocus' de 'mscred'en IRAF). En este caso la imagen #5 es claramente la mejor.
Cuando se ha realizado esta secuencia, hacerse las siguientes preguntas:
Les ruego siempre avisarme cuando detectan una de estas aberraciones, aunque no les parezca significativa, ya que su observación será útil para diagnóstico más fino. GRACIAS.
d50 = EE50 = FWHM
d80 = EE80 = 1.48 FWHM
Do^2 = Dt^2 + Dcoma^2 + Dastig^2 + Dtref^2
D^5/3 = Do^5/3 + Dsa^5/3.secz + Ae^5/3.DTe^2 + Ac^5/3.DTc^2
donde z es la distancia zenital, DTe es la diferencia de temperatura entre el espejo Te y la cúpula Tc, Ae es un coeficiente que vale 0.4 si Te>Tc y 0.13 si Te es menor que Tc, DTc es la diferencia de temperatura entre la cúpula y el exterior, y Ac es un coeficiente que vale 0.1.
FWHM_Z1 = FWHM_Z2 x (cosZ2/cosZ1)^0.6
FWHM_0deg = FWHM_10deg x 0.991
FWHM_0deg = FWHM_20deg x 0.963
FWHM_0deg = FWHM_30deg x 0.917
FWHM_0deg = FWHM_40deg x 0.852
FWHM_0deg = FWHM_50deg x 0.767
FWHM_0deg = FWHM_60deg x 0.660
FWHM_0deg = FWHM_cenit, se usa para comparar con los valores del Dimm.
FWHM(l1) = FWHM(l2) x (l1/l2)^-0.2
FWHM_V = FWHM_U x 0.919
FWHM_V = FWHM_B x 0.947
FWHM_V = FWHM_Bj x 0.954
FWHM_V = FWHM_R x 1.034
FWHM_V = FWHM_I x 1.078
FWHM_V = FWHM_Z x 1.113
Para comparar el FWHM del telescopio con el Dimm, hay que corregir por la distancia cenital Y la longitud de onda.
M2-M1 = 2.5 log B1/B2
o en forma equivalente: B1/B2 = 10^((M1-M2)/2.5)
Una diferencia de magnitud de +1 representa 2.5 veces más luz. 2 magnitudes representan 6.3 veces más luz, 5 magnitudes son 100 veces más luz,...
Maxime Boccas, 3 febrero 2001, revised 18 june 01
Blanco 4.0-m Optical Status 2010
pf_shap.in.11Mar05.txt [48] | pf_shap.in.12feb02.txt [49] | f_shap.in.130809.txt [50] | |
pf_shap.in.230410_lut-offset0deg.txt [51] | pf_shap.in.230410_lut-offset180deg.txt [52] | ||
Links
[1] http://www.ctio.noao.edu/noao/content/gu%C3%ADa-%C3%B3ptica
[2] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/through_focus_pf.gif
[3] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/coma_pf.gif
[4] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/astig_pf.gif
[5] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/tref_pf.gif
[6] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/coma_zeroed_pf.gif
[7] http://www.ctio.noao.edu/noao/content/ellipticity-measurements
[8] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/depth_focus_pf.gif
[9] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/noadc.gif
[10] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/ispijspot.jpg
[11] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/ispihspot.jpg
[12] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/ispikspot.jpg
[13] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/ispijee.jpg
[14] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/ispihee.jpg
[15] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/ispikee.jpg
[16] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/ispijfocus.jpg
[17] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/ispihfocus.jpg
[18] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/ispikfocus.jpg
[19] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/ispijeeold.jpg
[20] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/ispiheeold.jpg
[21] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/ispikeeold.jpg
[22] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/blancoiq-status-sumry_300509-1.xls
[23] http://www.ctio.noao.edu/noao/content/optical-status-2010
[24] https://www.ctio.noao.edu/cgi-bin/DocDB/ShowDocument?docid=1403
[25] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/f14stat1.gif
[26] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/f14stat2.gif
[27] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/mosaic_stat.gif
[28] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/baldwin1.jpg
[29] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/suntzeff1.jpg
[30] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/seeing-comparison.gif
[31] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/seeing-1996.gif
[32] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/seeing-1997.gif
[33] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/seeing-1998.gif
[34] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/seeing-1999.gif
[35] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/weirdtrend.gif
[36] http://www.ctio.noao.edu/noao/content/PFADC
[37] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/seqmscfocus.gif
[38] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/seqtweak1-0.jpg
[39] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/mosfoc01.gif
[40] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/mosfoc02.gif
[41] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/mosfoc03.gif
[42] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/binodal_astig.gif
[43] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/F8_IQ_historical.xls
[44] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/f8_list.in.030909.txt
[45] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/f8_list.in.280410.txt
[46] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/f8_list.in.300310.txt
[47] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/PF_IQ_historical.xls
[48] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/pf_shap.in.11Mar05.txt
[49] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/pf_shap.in.12feb02.txt
[50] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/pf_shap.in.130809.txt
[51] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/pf_shap.in.230410_lut-offset0deg.txt
[52] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/pf_shap.in.230410_lut-offset180deg.txt
[53] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/BlancoFlex_laser_mitutoyo-coma-skynap_summary2010.xls
[54] http://www.ctio.noao.edu/noao/sites/default/files/telescopes/Blanco%20summary%20310510.pdf