
Prospero Command
Procedure Scripts

A toolkit for automating astronomical observing with
the Prospero package.

Richard Pogge & Paul Martini
The Ohio State University
Department of Astronomy

2001 November 3

Copyright © The Ohio State University Department of Astronomy

Published by The Ohio State University, Department of Astronomy, 140 W. 18th Avenue, Columbus,
Ohio 43210-1173

All Rights Reserved

This manual has been composed in Times New Roman font using Microsoft Word. PDF versions
were created using Adobe Acrobat v5

Prospero Command Procedure
Scripts

Richard Pogge & Paul Martini

The Ohio State University

Department of Astronomy

2001 November 3

User Support

Limited user support for Prospero is available via email and the World Wide Web. This
support only applies to problems with the Prospero package software proper. Problems with
the instruments themselves must be referred to the appropriate instrument support personnel.
Please report any software problems or bugs to the Prospero email support line:

prospero@astronomy.ohio-state.edu

Replies will be sent at the earliest possible convenience (this is not a support “hot seat”).

World Wide Web

Information, additional documentation, a searchable online manual, sample scripts from this
manual, and other resources for Prospero users are available at the Prospero Homepage on the
World Wide Web:

URL: http://www.astronomy.ohio-state.edu/~prospero

Acknowledgements

A number of people have made Prospero possible, including many users who have pointed out
errors and omissions, or who have suggested new commands and procedures. All are thanked
for their help. In particular, Robert Blum at CTIO has be instrumental in a number of changes
which helped support the deployment of OSIRIS at CTIO, and has continued to provide
valuable inputs. Andrew Stephens (formerly of OSU, now the Princeton/Catolica fellow)
wrote many Prospero scripts and helped with the essential early debugging efforts. Mark
Wagner and Ray Bertram did a lot of debugging early in the CCDS deployment at Lowell and
later MDM Observatory. Other observers and mountain support personnel who have pointed
out errors and omissions include (in no particular order) M. Tavariz, P. Romano, J.
Thorstensen, D. DePoy, R. Probst, M. Merrill, J. Frogel, B. Peterson, R. Barr, and H. Roussel,.
Our apologies if we have forgotten anyone.

The Prospero command language is based on the XVista command language, much of the
syntax of which is due to the efforts of Richard Stover, De Clarke, Don Terndrup, Tod Lauer,
and Jon Holtzman. Without their efforts on Vista and later XVista, Prospero would not be
what it is today.

iv

mailto:prospero@astronomy.ohio-state.edu
http://www.astronomy.ohio-state.edu/~prospero

Table of Contents

Table of Contents... iii

Chapter 1: Introduction... 1

1.1 Overview ... 1
1.2 How to use this manual ... 2

Chapter 2: Procedure Script Basics.. 3

Chapter 3: The Startup Script File ... 5

Chapter 4: Procedure Files and Directories... 7

Chapter 5: Procedure Commands .. 9

5.1 PEDIT: edit the procedure buffer.. 9
5.2 SHOW: list the contents of the procedure buffer... 9
5.3 WP: write the contents of the procedure buffer to disk ... 10
5.4 RP: read a procedure file from disk .. 10
5.5 RUN: Execute the procedure in the procedure buffer ... 11
5.6 VERIFY: verify execution of a procedure (trace-mode).. 11

Chapter 6: Procedure Execution Control... 13

6.1 CALL: call and execute a procedure file as a subroutine ... 13
6.2 END: end a procedure .. 14
6.3 STOP: stop procedure execution... 14
6.4 RETURN: return from a procedure subroutine... 14
6.5 PARAMETER: evaluate command-line parameters.. 15
6.6 “#” Insert a comment line into a script... 16

Chapter 7: Flow Control in Procedures (Loops, Conditional Tests, & Branching) 17

7.1 PAUSE: pausing during procedure execution... 17
7.2 CONTINUE: resume a PAUSEd procedure.. 17
7.3 SLEEP: Put a procedure to sleep for a given time interval... 18
7.4 WAIT: Suspend a procedure and wait for the RETURN key ... 19
7.5 ALERT: Print an alert message to the screen then continue... 20

iii

iv ♦ Prospero Command Procedure Scripts

7.6 GOTO: jump to a labeled place in a procedure.. 20
7.7 “:” label a line as a GOTO jump-point .. 21
7.8 DO Loops .. 21
7.9 IF/THEN Logical Flow Control .. 22
7.10 ERROR: execute on error.. 25
7.11 EOF: execute on End-of-File (EOF) ... 25

Chapter 8: Prospero Variables ... 29

8.1 Arithmetic Expressions.. 29
8.2 SET: define a Prospero variable and give it a value... 32
8.3 TYPE: evaluate an expression and print it .. 33
8.4 ASK: prompt for a variable on the console ... 34
8.5 YORN: Ask a “Yes or No” question. ... 34
8.6 Using variables to substitute for numerical command-line arguments ... 35
8.7 PRINTF: formatted output of strings & arithmetic expressions.. 37

Chapter 9: String Variables in Prospero .. 41

9.1 STRING: define a string variable.. 41
9.2 Substituting String Variables into a Command Line ... 42
9.3 Printing string variables ... 42
9.4 Getting values out of the FITS headers ... 43
9.5 Advanced Examples of String Substitution.. 44

Chapter 10: External ASCII Files... 45

10.1 OPEN: open an ASCII data file for reading.. 45
10.2 CLOSE: closing an opened ASCII data file... 46
10.3 READ: read the next line of an ASCII data file... 46
10.4 SKIP: skip over lines in an ASCII data file ... 47
10.5 REWIND: position an open file to the beginning of the file .. 48
10.6 STAT: find the properties of a file ... 48
10.7 Implicit Reading: substituting a file line onto the command line .. 49
10.8 Writing to Files using Output Redirection .. 50

Chapter 11: Sample Procedure Scripts .. 51

11.1 An Image Sequence (Part I) .. 51
11.2 An Image Sequence (Part II) ... 51
11.3 Simple Camera Focus Script ... 53
11.4 More Complex Camera Focus Script .. 54

iv

Contents ♦ v

11.5 IR Image Mosaic Script (Part I) .. 56
11.6 IR Image Mosaic Script (Part II)... 58
11.7 IR Image Mosaic Script (Part III) ... 60

Chapter 12: Command Summary... 65

12.1 Editing, Reading, Writing, and Executing Procedures.. 65
12.2 Numerical Variables and Arithmetic Expressions... 65
12.3 String Variables... 67
12.4 Printing & Prompting for Input .. 67
12.5 Flow Control in Procedures.. 68
12.6 DO Loops: ... 69
12.7 Conditional (IF) Branching: ... 69
12.8 External ASCII Data Files .. 70

Chapter 13: Differences from XVista .. 71

13.1 No GO ... 71
13.2 Comments .. 71
13.3 Integer and Floating-Point variables as command-line arguments .. 71

vi ♦ Prospero Command Procedure Scripts

vi

Chapter 1: Introduction

1.1 Overview
Prospero normally works by executing individual commands typed at the keyboard. It is also
possible to execute a list of commands stored in an external text file. The ability to execute
commands from files, called “Command Procedure Scripts,” is one of the most powerful
features of Prospero. It allows observers to customize Prospero to make repetitive or
complex observations by writing mini-programs in the Prospero interactive command
language, rather than having to write (and debug and install) a new Fortran subroutine module
for each new task.

In addition to simple scripts, Prospero provides a set of specialized functions for doing more
advanced procedure control: DO-loops, IF/ELSE conditional branching, GOTO branching,
input prompting, message printing, string manipulation, external file I/O, and various types of
PAUSE and SLEEP directives. These greatly expand the possibilities of procedure scripts to
allowing you to write “programs” in the Prospero command language. This makes Prospero
user-extensible and greatly enhances its utility.

Since Prospero is descended from the XVista image-processing package, it shares the basic
scripting syntax of XVista. Even if you don't know XVista (and have no intention of learning),
you should find the Prospero script utility to be very intuitive and easy to learn At the very
least, a procedure script can be nothing more than a list of the Prospero commands that you
would have typed by hand anyway. The difference is that they are stored in a file and
executed as a procedure instead of being typed in line-by-line (i.e., literally a “script” of
commands to be followed by the program). Much of this manual is devoted to what you can
do beyond the simple “one command after the other” type of scripts.

To give credit where credit is due, the true authors of the procedure scripting utility are
primarily Richard Stover, Tod Lauer, and Don Terndrup, all of whom were responsible for
much of the development work on Versions 1 through 3 of VISTA at Lick Observatory during
the 1980s. Jon Holtzman (NMSU) has carried on support of XVista, with support from many
others, and was responsible for version 4.0 upon which Prospero is based. Since this guide
reproduces much of the contents of the online help pages for the individual scripting
commands, this makes them authors, if perhaps only in absentia, and the exact linkages as to
who wrote what when have been lost. This work is thus highly derivative, and we (RP and
PM) consider ourselves as compilers and commentators as well as authors proper. We also
take full responsibility for any and all errors or inconsistencies, and the script examples are
entirely our own fault.

1

2 ♦ Prospero Command Procedure Scripts

1.2 How to use this manual
This manual is divided into two parts. The first, encompassing chapters 2 through 6, defines
the basic scripting commands common to both simple (“command-list”) and complex
(“command program”) scripts. Observers interested only in writing simple command-list
scripts need only read these chapters. Observers who wish to create more complex command-
program scripts, including the use of variables, command-line arguments, and flow control
like DO-loops and conditional tests (IF/THEN logical tests), will need also need to read
chapters 7 through 10. We give worked out examples of scripts in Chapter 11, but caution the
reader that these are meant to be illustrative of different ways to perform observing tasks with
scripts of varying complexity, not the only way to do things. XVista users who are
experienced with scripts in that package should read Chapter 12 describing some important
differences in the Prospero implementation of scripting.

In the main body of the text, Prospero commands are printed in ALL CAPS to distinguish
them, although in general Prospero commands are case insensitive. Specific examples of
commands (or script fragments where those commands only make sense in a particular
context, e.g., DO-loops) are typeset in a typewriter font. These are usually set apart
from the text with indentation to distinguish them as examples of commands you would
actually type into a script file or on the command line. When a command is first introduced,
its command-line arguments are printed in Italics to distinguish them from the command verb
proper. If a command-line argument is optional, it is enclosed in of []'s. Numerical arguments
may be integers, floating-point numbers, or arithmetic expressions to be evaluated. Character-
string arguments longer than one word must be enclosed within single quotes ('s), as spaces
are used to separate arguments on the Prospero command line.

Since Prospero shares Vista's heritage, it also shares some of its peculiarities. If there are
especially important considerations, or particular oddities that might trip up the unsuspecting
user, we have put these in little boxes labeled “IMPORTANT!!!” throughout the text. We
have chosen these based on common problems that first-time users often encounter, or known
"features" (things you think should work but don't). Future editions of this manual will no
doubt expand upon these.

2

Chapter 2: Procedure Script Basics

The basic commands for creating, storing and modifying procedure scripts are:

PEDIT Edit the contents of the procedure buffer.

WP Write the procedure buffer to a disk file.

RP Read a script file on disk into the procedure buffer

SHOW Show the currently loaded procedure script

RUN Run the script in the procedure buffer

There are several “control commands” that effect the operation of a procedure.

VERIFY Executes a procedure line-by-line for debugging.
PAUSE Pauses during execution of a procedure.
SLEEP Put a procedure to sleep for a specified interval
CALL Calls a procedure disk file as a subroutine.
RETURN Returns from a procedure used as a subroutine.
DO,
END_DO

A DO-loop to repeat execution a number of times.

GOTO Jump to another place in the procedure.
: (colon) Defines a jump-point in the procedure.

IF,
END_IF

Define a block of commands that are executed only under
certain conditions.

ELSE,
ELSE_IF

Control branching that has many options.

Comment character.

A well-written procedure script can eliminate the boredom and errors that come from typing
commands repeatedly. However, it does much more than that: it greatly expands the functions
of Prospero so that new observing or data acquisition applications do not require new internal
subroutines. A familiarity with procedure scripts will make observing with Prospero much
more efficient and free from fatigue- or boredom-induced errors.

3

4 ♦ Prospero Command Procedure Scripts

4

Chapter 3: The Startup Script File

When the Prospero program is started up, it attempts to execute the startup script stored in the
file defined by the UNIX environment variable V_STARTUP (defined in your .cshrc file). For
example, if you had defined V_STARTUP to be

setenv PR_STARTUP ./myprocs/myproc.pro

before running Prospero, then ./myprocs/myproc.pro will be executed at Prospero start up.
Typically, the startup script will contain definitions of personal aliases, settings for particular
symbol values, or load repeatedly used images into working image buffers.

Sample Startup Script:
Sample Startup Script
Defines some useful Unix Aliases
alias ls '$ ls -F'
alias rm '$ rm -i'
alias cp '$ cp -i'
alias mv '$ mv -i'
alias pwd '$ pwd'
alias lpr '$ lpr'
alias lpq '$ lpq'
alias cat '$ cat'
alias more '$ less -m'
alias df '$ df'
alias du '$ du'
end

This example uses the ALIAS command to define a set of commonly used Unix operating
system commands so that you can execute them from within Prospero without having to
remember to use the $ shell-escape character. Note that END must be the last command in
any procedure script.

5

6 ♦ Prospero Command Procedure Scripts

6

Chapter 4: Procedure Files and Directories

Prospero reads procedure scripts into an internal “procedure buffer” before execution (with
the exception of the startup procedure). External procedure scripts may be loaded from files
into the buffer, written from this buffer to external files, or the contents of the buffer may be
edited directly. The contents of this buffer are erased when a Prospero session ends.

Procedure files are simply ASCII text files containing Prospero commands laid out as if they
were the source code for a program written in the Prospero command language. They must
contain no special characters (control or ESC characters), and must use normal carriage-
control and line-feed delimiters to mark the ends of lines. You must edit them outside of
Prospero, or use the $ shell escape character to invoke your favorite editor.

IMPORTANT!!!

At present, Prospero procedure scripts are limited to 1024
lines, with each line no more than 80 characters long.

Procedures may contain blank lines to make things readable, and many observers indent DO-
Loops or IF-Blocks to “structure” the program and make it more readable. Rules for flow
control, I/O etc. are similar to Fortran-77 conventions, but logical operators use more intuitive
symbols (e.g., >, <, etc.) rather than Fortran “.le.” constructs.

Comments may be placed in a command procedure to auto-document them using the “#”
character in the first column. The “#” character may also be used on a command line to
comment that line, for example:

this is a procedure to do stuff

rd 1 myimage.fits # read in myimage.fits
...
end

Note that any comments you put in the procedure file are counted towards the maximum.
Blank lines also count against you, so don't go too crazy with them, either.

By default, Prospero will search for procedure files in the directory defined prior to startup by
the “PR_PRODIR” environment variable. This variable may also be redefined in mid-session
by executing the SETDIR command.

Procedure files are assigned the “.pro” filename extension by default. This, too, may be
redefined using the SETDIR command. If you intend to use a custom procedure file
extension, we recommend you put an appropriate SETDIR command into your startup
procedure file.

7

8 ♦ Prospero Command Procedure Scripts

8

Chapter 5: Procedure Commands

5.1 PEDIT: edit the procedure buffer
Usage: pedit

The command PEDIT loads the procedure buffer into a temporary file in your current
directory, then runs a process that allows you to edit it with your designated screen editor. If
you leave the editor with EXIT (i.e., save all changes and exit), the modified procedure is
loaded back into the procedure buffer, but not executed. If you leave the editor with QUIT
(i.e., ignore changes and abort), the contents of the procedure buffer are left unchanged.

By default, PEDIT uses the editor defined at startup by the PR_EDITOR environment
variable. If either PR_EDITOR or VISUAL (an environment variable commonly defined by
the .cshrc shell script) is undefined, Prospero defaults to the generic vi editor expected to be
found on any rational Unix system in a canonical place. You can use another editor either by
defining the PR_EDITOR environment variable before executing Prospero, or by using the
SETEDITOR command from within Prospero, which lets you select between at least vi and
Emacs.

For example, to use the Emacs editor, you might define
setenv PR_EDITOR /usr/local/bin/emacs

before running Prospero, or once within Prospero, executing the command:
SETEDITOR emacs

Note: most Prospero installations are such that Prospero is executed by way of a shell script
that defines all local environment variables for the observer.

Procedures may contain no more than 1024 lines of not more than 80 characters each. If you
leave the editor and your procedure contains more than 1024 lines, it is truncated and the last
line is set to 'END'. Also, each line is allowed a maximum length of 80 characters.

You may also define procedures (also with a maximum length of 1024 lines) using the editor
before running Prospero, and read them into the procedure buffer with RP or execute them
with CALL. Many observers build up a collection of custom procedures in this way.

5.2 SHOW: list the contents of the procedure buffer
Usage: SHOW [output redirection]

SHOW prints the current contents of the procedure buffer. The output may be redirected, as
in

9

10 ♦ Prospero Command Procedure Scripts

SHOW >special.pro

(Note that there is no space between the > and the filename, cf. §10.8) To store a procedure in
the buffer to a disk file, however, it is better to use the WP command.

5.3 WP: write the contents of the procedure buffer to disk
Usage: WP filename

where:

filename is the name of the procedure file to create

Unless otherwise specified in “filename”, WP will write to the default directory for procedures
(defined by the PR_PRODIR environment variable), and will be given the “.pro” filename
extension if none is given. The current definitions of the default procedure directory and
default file extension may be viewed using the PRINT DIR command, or changed using the
SETDIR PR DIR= EXT= command.

Examples:

In the following, the default procedure directory path is ~/Prospero/proc/ and
the default file extension is “.pro”:

WP MYSCRIPT

writes the procedure file ~/Prospero/proc/MYSCRIPT.pro (note the case of
“MYSCRIPT”: all Unix filenames are case sensitive!).

WP ./myscript

writes the procedure into the file “./myscript.pro” in the current working directory.
WP myscript.XYZ

writes “myscript.XYZ” into the ~/Prospero/proc/ directory.

5.4 RP: read a procedure file from disk
Usage: RP filename

where:

filename is the name of the procedure file to read in

RP will read a maximum of 1024 lines, with a maximum of 80 characters per line, from the
designated filename into the procedure buffer.

Unless otherwise specified in “filename', RP will read from the default directory for
procedures (defined by the PR_PRODIR environment variable), and will be given the “.pro”
filename extension if none is given. The current definitions of the default procedure directory

10

Chapter 5: Procedure Commands♦11

and default file extension may be viewed using the PRINT DIR command, or changed using
the SETDIR PR DIR= EXT= command.

Examples:

In the following, the default procedure directory path is ~/Prospero/proc/ and
the default file extension is “.pro”:

RP MYSCRIPT

reads the file ~/Prospero/proc/MYSCRIPT.pro into the procedure buffer, wiping
out the previous contents.

RP ./myscript

reads the file “./myscript.pro” in the current working directory into the procedure
buffer (erasing the contents of the buffer).

RP myscript.XYZ

reads the file “~/Prospero/proc/myscript.XYZ” into the procedure buffer.

IMPORTANT!!!

All files used by Prospero must have file extensions, even
if Unix allows for extension-less filenames.

5.5 RUN: Execute the procedure in the procedure buffer
Usage: RUN [parameter1] [parameter2] ...

where:

parameter1,2,...are parameters passed to the procedure.

RUN tells Prospero to start executing the procedure held in its procedure buffer. You may
also supply parameters to the procedure on the command line. The parameters must be
evaluated using the PARAMETER command (§6.5) in the procedure. See also the CALL
command.

Examples:
RUN 10

executes the procedure in the buffer, passing the numeric parameter 10 to the procedure.
RUN /usr1/data1/image

executes the procedure, passing the string parameter to the procedure.

5.6 VERIFY: verify execution of a procedure (trace-mode)
Usage: VERIFY Y or VERIFY N

11

12 ♦ Prospero Command Procedure Scripts

VERIFY echoes each line of an executing procedure to the terminal screen as it is executed,
allowing you to trace the operation of the procedure line-by-line. The keyword “Y” turns the
display on and the keyword “N” turns the display off. This is useful for debugging a
procedure, and is set to “No” by default.

12

Chapter 6: Procedure Execution Control

6.1 CALL: call and execute a procedure file as a subroutine
Usage: CALL procfile [parameter1] [parameter2] ...

where:

procfile is the name of a procedure file
parameter1,2,... are optional parameters to be passed

The CALL command tells Prospero to save the contents of its current procedure buffer, read
in the desired procedure file, and begin execution at its first line. The CALL command can be
executed directly in the immediate input mode, or be used inside procedures to call other
procedures. In both cases, at the completion of the called procedure, Prospero will return
properly to either the input mode or calling procedure. Prospero will support up to 10 levels
or subroutine calls. If an error occurs while a called procedure is executing, Prospero will
unwind and display the complete subroutine stack.

A procedure is allowed a maximum length of 1024 lines, and each line is allowed a maximum
length of 80 characters. If your procedures or lines exceed this maximum, they will be
truncated.

Optional parameters may be passed to the procedure. Parameters may be numeric or string
arguments. Command-line parameters are evaluated by the procedure using the
PARAMETER command. The sole limitation is that the order of command-line arguments
for the procedure is fixed by the order used in the procedure's PARAMETER statement. See
§6.5 for details.

Suppose the default procedure is ~/Prospero/proc/ and the default extension is .pro, then:

Examples:
CALL myscript

executes ~/Prospero/proc/myscript.pro
CALL ./myscript

executes ./myscript.pro
CALL ./myscript.txt

executes ./myscript.txt
CALL myscript kill

executes ~/Prospero/proc/myscript.pro, passing it the parameter “kill”.

13

14 ♦ Prospero Command Procedure Scripts

If the script being called as a subroutine requires command-line arguments and you wish to
use variables or strings to pass those arguments, the variables and strings are passed to the
called script “unqualified”. Thus

CALL mysubscript n t '{title}'

is the correct calling syntax for using “mysubscript” as a subroutine within another script,
passing the numerical variables “n” and “t”, and the string variable “{title}” as shown. Note,
however, that the syntax

CALL mysubscript $n %t '{title}'

is invalid (here variable “n” has been qualified as integer, and “t” as a float). Variable
qualification is discussed in §8.6 below.

6.2 END: end a procedure
Usage: END

All procedures must end with END or RETURN.

This command signals the end of the current procedure when it is executed. If the procedure
is executed as a subroutine of another procedure (using the CALL command), the END
command, like RETURN (§6.4), tells Prospero to return to the calling procedure.

A procedure may be prematurely aborted by hitting the Ctrl-C key.

6.3 STOP: stop procedure execution
Usage: STOP ['A message']

The STOP command causes a procedure to stop executing. If a message is supplied, it will be
typed on the terminal, otherwise a default message is typed. A stack unwind is also produced
if the stop occurs in a CALLed procedure.

6.4 RETURN: return from a procedure subroutine
Usage: RETURN

RETURN tells Prospero to halt execution of the current sub-procedure and return to any
calling procedure or back to the normal command-mode as is appropriate. This command is
intended to allow a return from the procedure as a result of an IF test. In cases where no
condition testing is required, the final END command in the procedure buffer will tell
Prospero that the procedure has completed and act like an implicit RETURN statement.

Examples:

Here is an example of a conditional exit from a procedure. This procedure may be run
with CALL or RUN.

14

Chapter 6: Procedure Execution Control ♦ 15

LOOP:
ASK 'Enter 0 (zero) to quit >> ' TEST
IF TEST=0

RETURN
END_IF
...
GOTO LOOP:

Note: END may be used as RETURN only if it is the last command in the file. Thus a
procedure like:

(commands)
END

may be executed as a subroutine, but one that looks like:
IF TEST=0

END
END_IF

will fail. In this instance you must use RETURN instead of END to correctly exit the loop.

6.5 PARAMETER: evaluate command-line parameters
Usage: PARAMETER [varname] [varname] [STRING=string_var] ...

PARAMETER evaluates parameters to be passed to a procedure. For example, suppose that
the following command was typed:

CALL test 2 X IMAGEFILE

The parameter list portion of the command line, 2 X IMAGEFILE, is saved, then the
procedure file named “test.pro” is read in and executed (“called”). Note that on a Unix
system, procedure names are filenames, and therefore are case sensitive.

In order to be able to process the command line arguments given above, the test.pro procedure
has in it the command:

PARAMETER BUFNUM FACTOR STRING=FILENAME

BUFNUM and FACTOR are taken to be variable names and are associated with the first two
parameters from the parameter list. In effect it does the same as the command “SET
BUFNUM=2 FACTOR=X.” Note that “2” and “X” could have been any arithmetic
expression.

The STRING= keyword means that the third parameter is used as a literal string and the string
variable name FILENAME is given the string value IMAGENAME, in effect executing the
command:

STRING FILENAME IMAGENAME

If there are fewer parameters in the CALL than required in the PARAMETER command, the
missing parameters are given default values of 0 (if numbers) or blank (if strings), as
appropriate. If more arguments are given than expected, an error results.

15

16 ♦ Prospero Command Procedure Scripts

Note that there is only one common area in Prospero for saving lists of passed parameters, so
the PARAMETER command must be executed before calling another command procedure as
a subroutine. In general, the PARAMETER line must be the first non-comment line in any
given script file.

A further note on script files used as subroutines. All Prospero variables are global, in the
sense that if you define a variable X to have a particular value in one procedure, and then call a
second that also uses variable X, they will be assumed to be the same variable. This means
you should be very careful about what variables you use in scripts designed to be called as
subroutines of other scripts.

6.6 “#” Insert a comment line into a script
Usage: # text with comment

The # character is used to denote comments, and all text following the # (including the #) will
be ignored. This is useful for temporarily removing commands from a procedure, for
example:

DO I=1,20
PRINTF 'Displaying Image %I' I
TV $I Z=0. L=100.
PAUSE 'Hit C to continue'

END_DO

in which the procedure will no longer print “Displaying Image ...” on each pass through the
loop. It also provides a way to internally document the operation of a procedure script, for
example:

Display images 1-20 in Box 1

BOX 1 SR=1 NR=512 SC=15 NC=25
DO I=1,20

MEAN $I BOX=1 # compute the mean in box 1
TV $I Z=0. L=2*MEAN # display w/span=2*MEAN
PAUSE 'Hit C to continue'

END_DO

in which the # is used to insert a header explaining what the procedure does, and in-line
comments on particular commands.

Note that all comments count against the 1024-line maximum for Prospero scripts.

16

Chapter 7: Flow Control in Procedures (Loops,
Conditional Tests, & Branching)

7.1 PAUSE: pausing during procedure execution
Usage: PAUSE 'prompt message'

When the PAUSE command is encountered in a script, Prospero prints the prompt “PAUSE”
followed by the rest of the (optional) prompt that appears on the command line. The
execution of the procedure is then paused, any regular (i.e., non-script) Prospero commands at
the command prompt. To resume the script from the point where it was paused, type the
CONTINUE command. If, however, you give the command RUN or CALL, any previous
pause state will be canceled, and Prospero will start the new script from the beginning.

There are two important provisos when using PAUSE:

1. The PAUSE command must always be placed on its own line in a script. For
example, a procedure that looks like:

Command_1
Command_2; PAUSE; command_3
Command_4

will pause properly, but CONTINUE will resume the script at command_4 not
command_3!

2. While a script is paused you can issue any regular Prospero commands, but you
cannot execute another script. If you call (or run) another script while a PAUSE is
active, Prospero will reset the script command stack, essentially forgetting the
previous script responsible for the PAUSE! A subsequent CONTINUE statement will
not restart the old script. Be especially careful if you make overly liberal use of
command aliases, especially if an alias executes a script “call” statement.

If you do not need to execute interactive commands, but simply want to halt script execution
to wait for some action to proceed, see the WAIT or SLEEP commands below. They reduce
the temptation to do something bad that “breaks” a pause so that you cannot resume execution
of the script.

7.2 CONTINUE: resume a PAUSEd procedure
Usage: CONTINUE

Re-starts a procedure stopped by PAUSE. See PAUSE for more information.

17

18 ♦ Prospero Command Procedure Scripts

7.3 SLEEP: Put a procedure to sleep for a given time
interval

Usage: SLEEP seconds ['sleep message'] [SILENT]

where:

seconds is the time interval to sleep for in seconds
'sleep message' is an optional message to print while sleeping
SILENT tells SLEEP to work silently (no messages)

SLEEP will put Prospero to sleep for the specified time interval in seconds. This is useful for
inserting delays in time-critical tasks. Once the specified interval has elapsed, execution will
resume with the next command. SLEEP accepts time intervals from 1 to 300 seconds in
duration.

Prospero will either print the optional sleep message provided in quotes on the command line,
or the generic message:

Sleeping for xxxx seconds...

Messages are limited to 64 characters in length, and multi-word messages must be contained
within single quotes ('s).

If the SILENT keyword is used, no sleep message will be printed to the terminal screen, and
any optional message included on the command line will be ignored.

SLEEP may be interrupted by a Ctrl-C to shorten the nap. This Ctrl-C will not terminate the
procedure, but will return a message giving the time remaining when it was prematurely
awakened.

Examples:
SLEEP 10

Prints “Sleeping for 10 seconds...”, and then resumes after a 10-second pause.
SLEEP 5 'Waiting 5 sec for scope to settle...'

Prints “Waiting 5 sec for scope to settle...”, then resumes execution after
a 5-second pause.

Note: SLEEP “keeps one eye open” to watch for any messages from the data-taking system
sent during its nap. If the instrument control system (the data-taking PCs) generates any
message traffic during SLEEP, you may see occasional output on the terminal or (if enabled)
the status display may update.

18

Chapter 7: Flow control in Procedures ♦ 19

7.4 WAIT: Suspend a procedure and wait for the RETURN
key

Usage: WAIT ['wait message'] [BELL]

where:

'wait message' is an optional message to print while it waits
BELL rings the bell to get the observer's attention

WAIT will suspend operation of a command procedure script, and then print the wait message
(or some default message) and wait until either

1. The observer hits RETURN, at which point execution of the procedure continues
to the next command.

2. The observer hits Ctrl-C and the procedure terminates prematurely.

WAIT is used in procedures to tell the observer to go do something like setup the autoguider,
close the door, or any other manual operation that (a) Prospero cannot do itself and (b) must
be done before the observing procedure may continue.

Unlike PAUSE (which puts you temporarily back into the command prompt) or SLEEP
(which just takes a nap for a time), WAIT only requires a RETURN key to continue the
procedure.

The BELL keyword will add an aural cue to the WAIT command.

Examples:
WAIT

Prints out “Procedure Waiting: Hit RETURN to Continue”, and then
waits for the observer to hit the RETURN key.

WAIT 'Re-Acquire the Guide Star and hit RETURN' BELL

Rings the bell and prints the message, and then waits for the observer to hit the RETURN
key.

Note: Like SLEEP, WAIT will watch for any data-taking system messages while waiting for a
response from the observer. If the instrument control system is generating any message traffic
during the WAIT, you may see occasional output on the terminal or (if enabled) the status
display may update.

19

20 ♦ Prospero Command Procedure Scripts

7.5 ALERT: Print an alert message to the screen then
continue

Usage: alert 'alert message' [ntimes] [tdelay]

where:

'alert message' an alert message to print on each alert
ntimes is the number of times to repeat the alert
tdelay is a time delay, in seconds, to insert between alert repeats

ALERT will ring the console bell and print an alert message to get the observer's attention and
then continue execution. It can be used to insert “wake-up calls” in long procedures, to add an
aural cue to call attention to input or error messages that need servicing, etc. By default, the
alert will print once, wait 3 seconds, and then continue execution.

The number of repeats (ntimes) and the inter-repeat delay time (tdelay) may be set on the
command line, thus:

alert 'WAKE UP!' 5 1

rings the bell and prints “WAKE UP!” 5 times, pausing 1 second between alerts. Rude but
effective.

Like SLEEP, an ALERT may be canceled with a Ctrl-C without terminating the procedure
script that executed the ALERT.

Examples:
ALERT 'Exposure Done!' 3 2

Prints out “Exposure Done!”, rings the bell once every 2 seconds three times, then
continues the procedure

ALERT 'Object Sequence Completed...'

Prints out “Object Sequence Completed…”, rings the bell, and then waits 3
seconds before executing the next command in the script.

7.6 GOTO: jump to a labeled place in a procedure
Usage: GOTO LABEL_NAME

where:

LABEL_NAME is a label defined somewhere else in the procedure.

GOTO tells Prospero to jump to the line in the procedure buffer that begins with the string
“LABEL_NAME:”, where “LABEL_NAME” can be any alphanumeric string terminated
with a colon (:) to mark it as a label. You can jump out of, but not into, a procedure DO-Loop
or IF-block. If you attempt to break into a DO-Loop or IF-block, Prospero will signal an error

20

Chapter 7: Flow control in Procedures ♦ 21

condition and stop the procedure execution. Jumps to labels may be forwards or backwards
within a procedure.

A simple example of using a GOTO to jump over some lines of a procedure:
GOTO WHEREVER
A number of procedure lines to jump...
WHEREVER:
The next commands to be executed...

This is an example of a sloppy infinite loop using a GOTO:
NOWHERE:
A number of procedure lines...
GOTO NOWHERE

7.7 “:” label a line as a GOTO jump-point
Usage: LABEL_NAME:

To label a procedure line as jump-point for the GOTO command, the line must start with the
LABEL_NAME string terminated with a colon (“:”) immediately following the label (no
spaces). No other commands can appear on the same line as a label.

7.8 DO Loops
Usage:

DO var=N1,N2,N3
any Prospero commands

END_DO

where:
var is a Prospero variable name,
N1 is the initial value of the variable,
N2 is the final value of the variable,
N3 is the amount to increment the variable by on each pass

The DO commands enable you set setup repeatable groups of commands within the procedure
buffer. The Prospero DO-Loop is very similar to the Fortran-77 DO-Loop.

The variable “var” is initially set to the starting value N1. When the END_DO statement is
encountered the value is changed by an amount equal to N3. The value of N3 can be either
positive or negative. If N3 is positive then the looping terminates when N1 becomes greater
than N2. If N3 is negative then looping terminates when N1 becomes less than N2. If N3 is
not specified then it defaults to +1 if N2 is greater than N1 or to −1 if N2 is less than N1.

N1, N2, and N3 can also be arithmetic expressions. The value of “var” can be changed within
the loop without affecting the DO-Loop operation. However, Prospero will reset it to its
appropriate loop value at the beginning of each loop.

21

22 ♦ Prospero Command Procedure Scripts

The underscore character is required in END_DO because Prospero uses spaces to delimit
commands from keywords. DO-Loops may be nested up to 20 deep. DO-Loops are
recognized only within procedures, and cannot be executed “by-hand”. The GOTO command
can be used to jump out of a DO-Loop, but it cannot be used to jump INTO one. Further, DO-
Loops must contain, or be contained completely within, any IF/THEN blocks. These rules
should be familiar from standard Fortran or C programming style.

Example 1:
DO I=1,3

Any number of procedure lines. These lines
are executed 3 times.

END_DO

Example 2:
DO Q=1,N

A number of procedure lines. These lines
are executed N times. N is a variable
previously defined using the SET command.

END_DO

Example 3:
DO B=D+I,N-J,-1

Any number of procedure lines. The
Counter decrements from D+I to N-J.

END_DO

IMPORTANT!!!
Flow-control statements (DO, IF, END_DO, etc.) cannot appear on a line
with other commands (using the ; construct). They must appear on
separate lines. For example:
DO I=1,10

DO J=1,10
(some stuff)

END_DO; END_DO
or similar constructions are wrong! Each END_DO must appear on a line
by itself. See Chapter 0 for details.

7.9 IF/THEN Logical Flow Control
Prospero procedures allow testing of variables and branching based on the results of those
tests. This capability greatly expands the usefulness of procedures.

The simplest use of IF is to mark a section of a procedure that is executed only if some logical
condition is true. It has the form:

IF condition
Procedure lines (any number) executed if condition is true.

END_IF

22

Chapter 7: Flow control in Procedures ♦ 23

You can also have two-level branching using ELSE:
IF condition

Procedure lines to be executed if condition is true.
ELSE

Procedure lines to be executed if condition is false.
END_IF

Finally, the ELSE_IF command lets you create a multi-level IF/ELSE block as follows:
IF condition1

Procedure lines executed when only condition1 is true.
ELSE_IF condition2

Procedure lines executed when only condition2 is true.
ELSE_IF conditionN

Lines executed when only conditionN is true.
ELSE

Lines to be executed if all other conditions are false.
END_IF

The conditions tested by the IF and ELSE_IF statements are any valid Prospero logical
expressions. An expression is considered to be “TRUE” if it evaluates to be non-zero, and
“FALSE” otherwise. Prospero arithmetic supports various logical operators whose value is
either 1 or 0 depending on whether the logical test is TRUE or FALSE.

The logical operators are as follows, where A and B can represent either Prospero variables or
arithmetic expressions.

IF A>B Test A greater than B

IF A>=B Test A greater than or equal to B

IF A==B Test A equal to B

IF A~=B Test A not equal to B

IF A<=B Test A less than or equal to B

IF A<B Test A less than B

There are two logical (Boolean) conjunctions:

& Boolean AND

| Boolean OR

that can be used to join several of the above tests. Examples of these conjunctions are below:

IF (A>B)&(A==C) Tests A>B AND A=C

IF ((A==B)|(C<D))&(C==B) Tests (A=B OR C<D) AND C= B

23

24 ♦ Prospero Command Procedure Scripts

Parentheses are used to set the order of the test, as is common to most programming
languages.

The syntax of the IF statements is designed to look similar to the Fortran-77 IF-block
structures (actually, it is closer to C in logical syntax). Each IF-block must begin with an IF
command and end with the END_IF command. An algebraic statement to be tested must
follow the IF on the same line. If the relation is true, then the procedure commands following
the IF command are executed. If the relation is false, Prospero looks for any ELSE_IF tests,
any final ELSE statement, or jumps to the procedure lines following the END_IF statement.

The ELSE_IF command also must have a condition to be tested on the same line. ELSE_IF's
are optional, but permit you to test other conditions and execute other blocks of the procedure
buffer in the event that the initial IF or any preceding ELSE_IF's are false. In this way you
can allow Prospero to “trickle down' through several tests looking for one that is true.

The ELSE statement is also optional and marks a set of procedure lines for Prospero to
execute if and only if the initial IF and any following ELSE_IF's all test out false. Basically,
the IF, any ELSE_IF's, or any ELSE statements all mark out various blocks of the procedure
to be executed under different conditions. After the execution of any block, Prospero
transfers control to the procedure lines following the END_IF statement.

IF-blocks can be nested within other IF-blocks up to 15 levels deep. The GOTO command
may jump into, but not out of, IF-blocks. IF-blocks must contain or be contained within DO
loops completely. Some examples of IF blocks are given below:

Example 1:
IF X>Y

Do these procedure lines if X > Y
END_IF

Example 2:
IF (X>Y)&(X<Z)

Do these procedure lines if X > Y
but less than Z.

ELSE
Otherwise jump to these procedure lines.

END_IF

Example 3:
IF SKY-LIMIT>BACKGRND

Do these procedure lines if test true.
ELSE_IF BACKGRND==0

Do these procedure lines if test false,
but ELSE_IF condition true.

END_IF

Example 4:
IF IMAGE-1

Do these procedure lines if IMAGE is not
equal to 1 (which would make the

24

Chapter 7: Flow control in Procedures ♦ 25

expression evaluate to 0).
END_IF

7.10 ERROR: execute on error
Usage: ERROR command

where:

command is any valid Prospero command.

ERROR tells Prospero to execute the given Prospero command whenever an execution error
occurs. The command can be any Prospero command but is quite often a GOTO command.
The command to execute cannot contain multiple commands separated by semicolons (;).

For example:
ERROR GOTO WHEREVER
Any number of procedure lines...
WHEREVER:
A group of commands to only be executed after an error has
occurred...

In this example, ERROR is told to set a variable ERRFLAG to 1 if an error occurs:
ERROR ERRFLAG=1

In this instance, the rest of the procedure might periodically check ERRFLAG before taking
additional steps.

7.11 EOF: execute on End-of-File (EOF)
Usage: EOF command

where:

command is any valid Prospero command.

EOF tells Prospero to execute the given Prospero command whenever an end of file is
encountered in an opened ASCII data file. See the OPEN and READ commands (Chapter 10)
for information on how to use ASCII data files. The command can be any Prospero command
but is quite often a GOTO command (§7.6). The command cannot contain multiple
commands separated by semi- colons.

For example, here we tell the script to jump to "WHEREVER" immediately upon detecting an
EOF during an ASCII file read:

EOF GOTO WHEREVER
Any number of procedure lines...
WHEREVER:
The commands to be executed only after an end-of-file is detected

In this example, detecting an EOF will set the Prospero variable EOF_FLAG to 1 on
detecting an EOF:

25

26 ♦ Prospero Command Procedure Scripts

EOF EOF_FLAG=1

This would go at the top of a procedure, and the rest of the procedure would then periodically
check the value of EOF_FLAG before proceeding to trap EOFs.

26

Chapter 7: Flow control in Procedures ♦ 27

27

Chapter 8: Prospero Variables

Prospero Variables are character names to which are associated values. You get access to the
value by using the name. The following commands are used in Prospero to manipulate
variables:

SET defines the value of a variable, either directly or by
evaluating arithmetic operations on other variables.

TYPE print the value of a variable or arithmetic expression.
ASK asks (prompts) for data to be entered at the keyboard.
PRINTF formatted printing of variables and strings.
STRING define a string variable (with or without prompting)

8.1 Arithmetic Expressions
Here we review the syntax of mathematical expressions. Any observer who wishes to use
Prospero effectively should review this section carefully.

Arithmetic expressions come in four types:

EXPLICIT NUMERIC VALUES, such as:
3.14159
59.39
2.32E-05

VARIABLE NAMES with values assigned with the SET command. Variable names must
be composed of alphanumeric characters. There can be up to seven characters in the name.
The first character of the variable name should be an alphabetic character.

DATA FILE REFERENCES that allow you to use numeric values from an ASCII text file.
Data file references begin with the “@” symbol followed by the file name, a period (“.”), and
then the column number. The column number can itself be either a numeric integer constant
or a variable name. An example is given in the description of the READ command (§10.3).

CONSTANTS or VARIABLES used in arithmetic expressions or on the command line.

The following table lists arithmetic functions supported in Prospero, with examples of their
use. ('Binary' means relating two objects—“unary' means applying to one object.)

29

30 ♦ Prospero Command Procedure Scripts

binary addition B+C 2+5

binary subtraction B-C 2-5

binary multiplication B*C 2*5

binary division B/C 2-5

unary negation -B -2

exponentiation A^0.5 10^3

equate A=B A=B=3

The following logical operators are also supported.

logical greater than Α>Β Α>2.5

logical less than Α<Β Α<100

logical equal to Α==Β Α==10

logical not equal to Α∼=Β Α∼=10

logical less than or equal to A<=B A<=5

logical greater than or equal to A>=B A>=3

Logical operators return a value of either 1 (TRUE) or 0 (FALSE). Expressions are evaluated
in the same order as they are in FORTRAN. You may change the order of evaluation using
parentheses “()”. An example is (B+0.53)*10^(45.6/(A+5))

IMPORTANT!!!

There must be no spaces between operators and arguments!

Prospero supports a limited set of mathematical functions. The arguments to the function are
contained in square brackets. The following functions are currently supported:

Arithmetic Functions

INT[E] nearest integer to the expression E

ABS[E] absolute value of E

MOD[E,I] E modulo I

30

Chapter 8: Prospero Variables ♦ 31

IFIX[E] integer part of E (truncation)

MAX[E,F] the larger of E or F

MIN[E,F] the smaller of E or F

LOG10[E] log to the base 10 of E

LOGE[E] log to the base e of E

EXP[E] e raised to the power E (Use ^ for all other exponentiations)

SQRT[E] square root of absolute value of E

Trigonometric Functions

SIN[E] sine of E (E in radians)

SIND[E] sine of E (E in degrees)

COS[E] cosine of E (E in radians)

COSD[E] cosine of E (E in degrees)

ARCTAN[E] arctan of E, producing radians

ARCTAND[E] arctan of E, producing degrees

ARCCOS[E] arccos of E, producing radians

ARCCOSD[E] arccos of E, producing degrees

Image Parameters

NR[B] number of rows of the object in buffer B.

NC[B] number of columns of ...

SR[B] start row ...

SC[B] start column ...

EXPOS[B] exposure time ...

RA[B] right ascension in sec of time of ...

DEC[B] declination in sec of arc ...

31

32 ♦ Prospero Command Procedure Scripts

ZENITH[B] zenith distance in radians ...

UT[B] universal time of mid-exposure in hours ...

GETVAL[I,R,C] returns the value of the pixel at row R and column C in
image I

SETVAL[I,R,C,V] returns the value of the pixel at row R and column C in
image I, then sets the value of that pixel to V.

WL[I,P] returns the wavelength of pixel P in image I.

PIX[I,W] returns the pixel number corresponding to the wavelength W
in image I.

Functions can appear inside other functions, and may contain expressions of arbitrary
complexity (so long as the parentheses are balanced!).

PLOT 4 R=200 XS=X XE=X+50

Note that R=, XS=, and XE= are command keywords, not variables, and the equals signs
following them are not interpreted as arithmetic operations. However, since everything
following the first = is an arithmetic expression, you could save the “value” of, for instance,
XE, by doing the following:

PLOT 4 R=200 XS=X XE=XLAST=X+50

The variable XLAST takes on the value of X+50.

IMPORTANT!!!
Variable names or arithmetic expressions may be used
anywhere that an explicit constant may be used as the
value of a keyword.

8.2 SET: define a Prospero variable and give it a value
Usage: SET VAR_NAME=value [VAR_NAME=value]

where:

VAR_NAME is the name of the variable being defined, and
value is its value.

SET defines Prospero variables in terms of numerical constants, other variables, or the result
of arithmetic operations between other variables. The name of a Prospero variable is any
alphanumeric string. The value of the variable is always a floating-point number. Prospero
supports an internal variable table that holds variables defined by you or as the output of a
program. These variables can be used to pass the results of arithmetic calculations to

32

Chapter 8: Prospero Variables ♦ 33

keywords, to control the flow of a procedure in IF tests or DO loops, or to store convenient
numbers in symbolic form.

Each SET command can handle up to 15 definitions at once. Each definition must include an
“=” sign with the name of the new variable to its left, and a defining expression to its right.
The expression on the right may be any proper Prospero arithmetic expression (see §8.1 for
rules on expressions). All operations are done in double precision floating point.

Examples:
SET Q=6

Sets Q to have the value 6
SET A=1 B=3 C=D=6

Sets several variables at once
SET V=SIND[45]

Functions may be used
SET B=3.1415926^0.5+4

Any arithmetic expression may be used.
SET C=LOG10[@FILE.1]

References to data from files may be used.

Note: There must be no spaces between the beginning of “VAR_NAME” and the end of
“value”.

Note that the SET command may in general be omitted when defining variables. Use of this
“implicit SET” feature will save time and typing. The SET command has been retained to
ensure backward compatibility with older versions of Prospero (and Vista).

IMPORTANT!!!

All Prospero variables are GLOBAL floating-point
variables. This means that if you use the same variable
name in two different subroutines with one called by the
other, Prospero will assume they are the same variable.

8.3 TYPE: evaluate an expression and print it
Usage: TYPE expression [expression] [expression] ...

This command can be used to print out arithmetic expressions. Up to 15 expressions may
appear at one time on the command line.

Examples:
TYPE X

Evaluates X (a variable) and prints the value.

33

34 ♦ Prospero Command Procedure Scripts

TYPE X+0.5^3.4

Evaluates the expression shows and prints the value.
TYPE X X*2 X*4

Evaluates the 3 expressions & prints the results

NOTE: The expressions that TYPE will accept must have at least one non-numeric character
in them. This means that the expressions must contain at least one variable name OR at least
one arithmetic operator.

Thus, something like
TYPE 6.3

will not work.

The command PRINTF (§8.7) is used to print expressions in a particular format.

8.4 ASK: prompt for a variable on the console
Usage: ASK ['An optional prompt in quotes'] VAR_NAME

This command can be used to request the input of variable values during the execution of a
procedure. When the ASK command is executed, the prompt will be displayed at the terminal
until the requested value is typed in. If no prompt is given, the command will respond with
“ENTER VAR_NAME:” and wait for you to respond to the prompt by typing a value and
hitting the return key. Only one value can be requested per ASK command.

Examples:
ASK BCKGND

will print “ENTER BCKGND :” on your screen. When you enter an number and hit
RETURN, the value of BCKGND will be set to the number you specified.

ASK 'Enter an estimate for the background >> ' BCKGND

will type the prompt “Enter an estimate for the background >>” on
your terminal, and wait for you to enter an expression; the value of BCKGND is the value
of that expression.

Note that the reply typed in response to ASK can be any valid expression.

8.5 YORN: Ask a “Yes or No” question.
Usage: YORN ['An optional prompt in quotes']

YORN prompts the user to answer a Yes or No (YorN) question. YORN takes a single
argument, a question prompt that must be enclosed in single quotes ('s).

34

Chapter 8: Prospero Variables ♦ 35

The response to the question is case-insensitive, and only the first character of the answer is
tested. Thus

“YES” = yes, Yes, y, Y, etc.

“NO” = No, no, n, N, etc.

are all valid responses. If an invalid response is given, it will ask the question again.

On answering either Yes or No, YORN sets the Prospero variable YORN to either 1 (Yes) or
0 (No). Recall that 1 is a logical “TRUE” in Prospero, while 0 is a logical “FALSE”. An
example of how YORN is used in a script is as follows:

YORN 'Do it'
if (YORN)
 printf 'doing it…'
else
 printf 'not doing it…'
end_if
end

When this script is run, the observer sees:
Do it <Y|N> ?

Responding with "Y" will print
doing it…

Responding with "N" will print
not doing it…

A common mistake is to forget to put quotes around the prompt string. This will cause only
the first word of the prompt to appear.

8.6 Using variables to substitute for numerical command-
line arguments

Usage:

COMMAND $varname [rest of command]
COMMAND %varname [rest of command]

Numerical arguments by themselves on the command line (that is, numbers given as
arguments of a command without being part of a “KEYWORD=VALUE” token) are used by
a number of commands, and may be either integers or floating-point numbers. Examples are
integer device positions (e.g., FILTER 2) and decimal parameter values (e.g., EXPTIME 4.3).

In order to use a variable to substitute for a bare numerical argument, it needs to be “qualified”
as either an integer or floating-point number. If the variable is to be an integer, a $ (dollar
sign) is prepended to the variable name to qualify it as an integer, hence:

RD $J FILE=950101.001

35

36 ♦ Prospero Command Procedure Scripts

reads image 950101.001 into image buffer given by integer variable J, whereas
FILTER $F

sets the filter to the position given by the value in integer variable F.

If a floating-point number is required (e.g., a decimal exposure time), then a % (percent sign)
is prepended to the variable name to qualify it as a float, hence:

EXPTIME %T MINUTES

sets the exposure time to T minutes, where T is a floating-point variable. Similarly
GRTILT %ANG

tilts the grating by ANG degrees, where ANG is a floating-point number.

Note that you can also use $ or % to qualify any valid arithmetic expression as an integer or
floating argument, hence

RD $J+1 FILE=950101.001

or
EXPTIME %(T+2*DT) MINUTES

are both valid commands, provided the variables being used have all been previously defined.
The expressions are evaluated before being qualified and substituted onto the command line.

NOTES:

1. $ and % may not be used in “KEYWORD=VALUE” tokens. For example,
TV 2 Z=%F L=5.0

is invalid and will result in an error. The correct syntax is
TV 2 Z=F L=5.0

2. $ and % may not be used inside numerical expressions, thus
RD ($I+1) FILE=960101.023

is invalid. By enclosing the $I in ()’s you are attempting to evaluate $I, which is
unrecognized by the parser.

3. $ and % may not be used when passing variables to subroutine scripts via the
CALL/PARAMETER mechanism, thus

CALL DOEXPOSE $n %t

is invalid, and will result in an error. The correct calling syntax is
CALL DOEXPOSE n t

With the variables n and t passed “unqualified”.

If the integer part of a variable is required in an expression, the arithmetic functions INT[] and
IFIX[] are provided to return the nearest integer and integer part (truncation), respectively. All
XVista variables are “floats” by definition.

36

Chapter 8: Prospero Variables ♦ 37

8.7 PRINTF: formatted output of strings & arithmetic
expressions

Usage: PRINTF 'Format string' [expressions] [redirection]

This command displays character strings and variables in specified formats, thus producing
tables of results.

The simplest form of PRINTF is
PRINTF 'string'

which prints the string enclosed within single quotes.

Examples:
PRINTF HELLO

prints HELLO on the terminal screen, and
PRINTF 'Hello, world'

Prints the string Hello, world on the terminal screen.

You can print the values of arithmetic expressions by using a format specifier in the character
string, followed by the names of the expressions to be evaluated and printed. The % character
is used to denote a format specifier within a string. The format specifiers use a C-like syntax
with certain affinities to Fortran (Prospero has a decidedly mixed heritage).

Examples:

Suppose we have two variables: A with value 1.0, and PI with value 3.14159. Then
PRINTF '%F4.1 %F9.4' A PI

prints
 1.0 3.1416

while
PRINTF '%I6 and %F9.5' A PI

prints
 1 and 3.14159

and finally,
PRINTF 'The value of pi is %F9.7' PI

prints
The value of pi is 3.1415900

Note that all spaces between the % format specifiers are printed.

The output of PRINTF can be redirected. For example:

37

38 ♦ Prospero Command Procedure Scripts

A=45
PRINTF 'The sine of %I2 degrees is %F9.7' A SIND[A]

To force newlines in the printing, use the pattern “\N” or “\n” in the format statement. An
example is:

A=5.1234
PRINTF 'The value of A is \n %F9.3' A

which prints
The value of A is
5.123

See Section 9.3 for how to print string variables.

38

Chapter 8: Prospero Variables ♦ 39

39

Chapter 9: String Variables in Prospero

9.1 STRING: define a string variable
Usage:

STRING name ['format string'] [expressions]

STRING name '?query'

STRING defines string variables. String variables are names to which a character string is
associated.

STRING works like PRINTF (§8.7), except that the name of the string variable being defined
appears between the command STRING and the format string. As in PRINTF, you can define
strings directly, as in:

STRING EXPR 'This is a string with seven words.'
STRING HELLO 'Hello, world'

Remember that multiple words to be considered as one string must be enclosed in quotes. If
you wish to define a blank string, you must define it as a single blank in quotes, as in:

STRING NAME ' '

You may also define strings using expression evaluation, for example:
J=7
STRING FNAME 'FILE%I3.3' J

This evaluates the numeric variable J, and substitutes its value into a string named “FNAME”
that begins with the characters FILE. In this example, the value of the string variable FNAME
will become “FILE007”.

If the first character of the format statement is a question mark (?), STRING will use the
remainder of the statement as an input prompt, and wait for user entry at the keyboard. This
allows the interactive entry of strings. If the format string contains only a question mark, the
default prompt will be Enter followed by the name of the string variable to be defined.

Examples:
STRING FILE '?Enter a filename for this image. >> '

will print “Enter a filename for this image. >>”, and then pause while
you enter a name. Your reply will be loaded into the character string FILE.

STRING HEADER ?

will print “Enter HEADER” then accept a string.

41

42 ♦ Prospero Command Procedure Scripts

Note: You cannot evaluate arithmetic expressions when defining strings interactively. Thus
STRING FILE '?Enter a file for image %I2' J

will not work. The “\n” newline character is also not allowed inside a prompt.

You can list all currently defined strings with the command PRINT STRINGS.

A string variable can be substituted into a command line by enclosing the name of the string in
braces ({}'s). See below for more information.

String variables are stored in a different stack from numeric variables. Thus it is possible to
have a string variable and a numeric variable with the same name.

9.2 Substituting String Variables into a Command Line
To substitute the value of a string into a command line, enclose the name of the string in
braces. As an example, the command RD reads a file from disk. Its syntax is

RD buf filename

which reads a disk file “filename” into buffer number “buf”.

Suppose that the string FNAME has been defined to be “./myfile.dat”, then
RD 2 {FNAME}

will execute the command
RD 2 ./myfile.dat

If the string to be substituted has more than one word separated by spaces, then the
substitution command must appear in single quotes, thus if the string OBJNAME has been
defined to be “NGC 1068 @ K”, then

OBJECT '{OBJNAME}'

will execute the command
OBJECT 'NGC 1068 @ K'

Without the quotes around {OBJNAME}, it would have recognized only the first word in the
string.

9.3 Printing string variables
There are three ways to view the values of string variables:

1. Use PRINT STRINGS to show all currently defined strings.
2. Use PRINTF and substitute the string as the format string.
3. Use PRINTF with the %A format specification. As in Fortran or C, the

number of characters to print may given.

42

Chapter 9: String Variables in Prospero ♦ 43

Examples:
PRINTF '{STRING}'

Will print the named string on the terminal.

If FNAME is a string previously defined to be “ngc1068k.fits”, then
PRINTF 'Writing file %A' '{FNAME}'

will print
Writing file ngc1068k.fits

on the terminal screen. Note that the %A format statement suppresses leading spaces.

If instead, you were to type:
PRINTF 'Writing file %A20 ' '{FNAME}'

it would print:
Writing file ngc1068k.fits

forcing PRINTF to format the string with 20 characters, in this case resulting in a number
of leading spaces. The formatting would be useful if the output were being redirected to
an output file to make a column-formatted table (for example).

9.4 Getting values out of the FITS headers
The substitution mechanism can be used to copy the value of a FITS header card into a string
or a numerical variable. The syntax for this is:

{?BUFFER:CARDNAME}

where:

BUFFER is the image buffer number
CARDNAME is the name of a FITS header card.

The value of the FITS card is substituted into the command line where indicated by the
{?BUFFER:CARDNAME} construction. If the buffer number is incorrect, there is nothing in
the listed buffer, or if the named card does not exist, an error message is printed and a blank
string is loaded. Leading blanks and comments are stripped off. Use the STRING command to
load a string with a FITS character card. Use a direct assignment to load a numerical FITS
card into a Prospero variable.

Examples:
STRING OBJ '{?23:OBJECT}'

Loads the OBJECT card in the FITS header of the image in buffer 23 into string {OBJ}.
FOC={?1:FOCUS}

43

44 ♦ Prospero Command Procedure Scripts

Gets the value of the FOCUS card (a number) and loads the numerical value into the
Prospero variable FOC.

9.5 Advanced Examples of String Substitution
This section gives examples of more advances use of string substitution as part of command
procedure scripts.

In this procedure fragment, the observer is asked to type the filename of an image that is to
read from the disk and processed using a subroutine. The processed image is then written out
with the same filename.

STRING FILE '?Enter the file to process. >> '
RD 1 {FILE} # Read image
CALL PROCESS # Process it
WD 1 {FILE} # Write out

As the procedure is run, the prompt “Enter ...” appears on the screen. The reply is loaded into
the string variable FILE. Suppose the reply was “/usr1/data1/hd183143.001”. Then the next
command, which reads an image from the disk, uses the string substitution mechanism to
insert the string FILE into the command. The actual command executed is

RD 1 /usr1/data1/hd183143.001

Similarly, the last command in the procedure is
WD 1 /usr1/data1/hd183143.001

The following loop defines the string NAME. The value of NAME is successively FILE001,
FILE002, FILE003, FILE004, through FILE100

DO INDEX=1,100
 STRING NAME 'FILE%I3.3' INDEX

END_DO

The string substitution mechanism can be used to read text from an opened ASCII data file,
allowing you (for example) to write a script that reads object names and exposure times from
each line of a file. See the discussion for the OPEN and READ commands for more details on
using ASCII files.

An oddity: You cannot have a % as the first character in a format statement in string
substitutions. For example, you want to generate object names of the form "Object @ filter",
using a common object name previously defined as objname. The obvious syntax:

STRING FULLNAME '%A at V' '{objname}
OBJECT '{FULLNAME}'

will fail, as the STRING command will cause a parser error when it tries to interpret %A as a
floating variable substitution! The reasons are obscure. You can accomplish the same thing
by including the string to be substituted in the format statement proper, hence:

STRING FULLNAME '{objname} at V'
OBJECT '{FULLNAME}'

will work. It looks kind of odd (think if it as string concatenation), but it does the job.

44

Chapter 10: External ASCII Files

Prospero provides a facility for reading and writing ASCII text files. Uses of ASCII files
within procedures include lists of images for processing, procedure log files, data to help
control a procedure, (e.g., coordinates of an image mosaic) etc.

IMPORTANT!!!

All external ASCII files must have names of the form
“basename.ext”, where “ext” is a file extension.
While Unix allows filenames without extensions, Prospero
does not.

10.1 OPEN: open an ASCII data file for reading
Usage: OPEN logical_name filename

where:

logical_name Is the logical name you assign to the file
filename Is the disk filename.

OPEN opens the specified ASCII file read-only. Such files must be normal sequential files as
might be generated by the editor or various commands. If the file is successfully opened the
LOGICAL_NAME is then assigned to the opened file and all further references to the file are
made using the logical name. If an OPEN is done using a logical name that is already assigned
to an opened file, this old file is closed and the new file is opened. When a file is first opened,
the first line of the file is ready to be read. A detailed example of how to use OPEN and the
logical file name is given in the description of the READ command.

A maximum of up to FIVE (5) files may be open at one time. It is a good practice to get in the
habit of using CLOSE to close files opened by a procedure script, as files are not closed
automatically upon script termination.

Example:
OPEN DATA ./mydatafile.dat

Opens the file for reading and assigns the logical name DATA to the file.

45

46 ♦ Prospero Command Procedure Scripts

10.2 CLOSE: closing an opened ASCII data file
Usage: CLOSE logical_name

where:

logical_name is the logical name of a file previously opened file.

CLOSE allows you to close one of the ASCII text files that you have previously opened with
the OPEN command. You should regularly pair OPEN and CLOSE in scripts to make sure
you close files you are done with as only five files may be OPEN at one time.

Unlike normal programs, OPEN files are not closed automatically when the procedure
finishes execution. Since only five ASCII files may be open at one time, if your procedure
uses an OPEN command, you should always include a CLOSE command before the end of
the procedure.

10.3 READ: read the next line of an ASCII data file
Usage: READ logical_name

where:

logical_name is the logical name of a file previously opened file.

The READ command causes the next line of the named file to be read. This line then
becomes the 'current' line for the file and all subsequent references to the file in arithmetic
expressions use the current line. Each READ causes a new line to be read in the order in
which they appear in the file. However, it is possible to skip specified lines in the file using
the SKIP command. The following example shows how to use the OPEN, and READ
commands in conjunction with arithmetic expressions.

Suppose you have a file called PHOTOMETRY.DAT containing the following four lines of
data:

B V
100.5 150.3
110.4 164.9
75.3 113.6

We could compute B-V using the following simple procedure.
OPEN PHOT PHOTOMETRY.DAT
SKIP PHOT 1
DO I=1,3

READ PHOT
BV=2.5*(LOG10[@PHOT.1]-LOG10[@PHOT.2])
PRINTF '%I2 %F10.3' I BV

END_DO
END

46

Chapter 10: External ASCII Files ♦ 47

The first line opens the file and gives it the name PHOT. Since the first line of the file does
not contain numeric data and is just a header for the columns of data, we use the SKIP
command to label line 1 as a line to be skipped. We then begin to read the real data. The first
time line 4 is executed it reads line 1 of the file. It finds that we have marked line 1 as a line to
skip so it then reads the next line.

Line 5 then makes two references to the file. The construction @PHOT.1 is interpreted in the
following way: In the 'current' line of PHOT (the one we just got with the READ), extract the
first word of the line and convert it into a numeric value. And, of course, @PHOT.2 refers to
the second word on the current line. The 'word' indicator can be either a constant as shown or
it can be a variable. So if B=1 and V=2 we could have said @PHOT.B and @PHOT.V.
Expressions are not allowed: @PHOT.(B+1) is illegal and @PHOT.B+1 means “add 1 to the
value of @PHOT.B”.

10.4 SKIP: skip over lines in an ASCII data file
Usage: SKIP logical_name line# [line1,line2]...

where:

logical_name is the logical name of a previously opened file
line# one line in the file to skip.
line1,line2 is a range of lines in the file to skip.

SKIP builds a table of lines to be skipped for the named file. There is enough room in the
table for 50 skip specifications. Each individual line skipped counts as one specification and
each range of lines skipped counts as two specifications. Whenever a file is opened, its skip
table is cleared. Rewinding a file (see the REWIND command) does not clear the skip table.
If you just type SKIP LOGICAL_NAME without any lines to skip then the table of skipped
lines for the named file is printed.

Lines that are skipped in a file can not be read with the READ command or by string
substitution and are not used by the STAT command. In particular, note that the number of
lines in the file as returned by the STAT command is the actual number of lines minus any
skipped lines.

Examples:
SKIP PHOT 1

Marks line 1 of file PHOT to be skipped.
SKIP PHOT 100,120

Marks 100 to 120 (inclusive) to be skipped.
SKIP PHOT 1 100,120

Marks lines 1 and 100-120 to be skipped.
SKIP PHOT

with no arguments will print the current skip table for the file labeled PHOT.

47

48 ♦ Prospero Command Procedure Scripts

See the example under the READ command (§10.3) for another use of the SKIP command.

10.5 REWIND: position an open file to the beginning of
the file

Usage: REWIND logical_name

where:

logical_name is the logical name of a previously opened file.

The REWIND command repositions the named file back to the beginning of the file. The file
must already be opened for reading using the OPEN command. Lines in the file which are
marked for skipping using the SKIP command will continue to be skipped.

10.6 STAT: find the properties of a file
Usage: STAT variable=function[expression]

where:

variable is a Prospero math variable in which the value of the statistic is stored.
expression is an arithmetic expression that involves at least one reference to data

in an open ASCII file.
function is one of the following:

MAX Find the maximum value of the expression.

MIN Find the minimum value of the expression.

FIRST Finds the first value of the expression.

LAST Find the last value of the expression.

COUNT Counts the number of lines in the file. In this case 'expression' is really
just a logical file name.

LOAD Loads the arithmetic expression from each line in the input file into a
specified buffer using STAT N=LOAD[buffer,expression]

The STAT command can be used to determine information about the data values in an ASCII
file. For the MAX and MIN functions, the given expression is evaluated for each line in the
file. For the FIRST function, the expression is evaluated for the first line in the file and for the
LAST function the expression is evaluated for the last line in the file. The COUNT function
merely counts the lines in the file. Remember that skipped lines (see the SKIP command) are
never included in the calculations. These STAT functions are not the same as the normal
Prospero math functions and can not be included in other mathematical expressions.

48

Chapter 10: External ASCII Files ♦ 49

The LOAD function allows the observer to load data from an input ASCII file into a Prospero
image buffer. Arithmetic operations may be performed on the input data before loading into
the buffer. Simply specify the desired buffer and the arithmetic expression to load. The new
buffer will automatically be created.

Examples:
STAT NOBJS=COUNT[TARGLIST]

Counts the number of lines in the file designated by the logical name TARGLIST (see
OPEN), and assigns this value to the variable NOBJS. The file associated with the
logical name TARGLIST must have been opened with the OPEN command. Skipped
lines are not counted.

STAT MAXVAL=MAX[2.5*LOG10[@PHOT.2]

Evaluates the expression “2.5*LOG10[@PHOT.2]” for each line in the file PHOT and
sets MAXVAL to have the maximum value. The file PHOT will be left repositioned to
the beginning of the file after the STAT command completes.

STAT N=LOAD[1,@PHOT.1*@PHOT.2]

Loads the product of the values in the first and second columns of the input file PHOT
into Prospero buffer number 1.

10.7 Implicit Reading: substituting a file line onto the
command line

String substitutions, using the {STRING_NAME} construction, can also substitute lines from
an opened file. To do so use the form {LOGICAL_NAME}, which does an implied READ
of the named file and substitutes the entire line from the file into the command line. You can
also substitute particular words using the form {LOGICAL_NAME.WORD_INDICATOR}
where the word indicator is an expression giving the word number. These substitutions
always do a new implicit READ for each substitution. The following example shows how to
use these implied READ string substitutions.

In this procedure, the observer is asked to give a filename. The file contains a list of disk file
names for images that are to be processed in some standard way. The processed image is
written out with the same name. There is one disk file name per line.

STRING FILE '?Enter image name file. >> '
OPEN IMAGES {FILE}
STAT LINES=COUNT[IMAGES]
DO I=1,LINES

STRING DISKIM {IMAGES}
RD 1 {DISKIM}
CALL PROCESS
WD 1 {DISKIM}

END_DO
END

49

50 ♦ Prospero Command Procedure Scripts

10.8 Writing to Files using Output Redirection
Many (but not all!) programs that produce large amounts of information may have their output
redirected by the observer. The output from these programs normally goes to the terminal, but
instead can be written to a file or to the line printer.

To redirect the output, you must use the open/write (“>”) construct or the open/append (“>>”)
construct, both analogous to the same Unix constructs. These must appear at the END of a
valid command.

They work like this:
 command >filename

writes the output to the specified file, creating a new version of that file.
 command >>filename

appends the output to the specified file. If that file does not exits, it is created.

Examples:
PRINTF '%I %I' NUM PHOT >first.lis

Prints the values of the variables NUM and PHOT into the new file “first.lis”, converting
them to integers. The file will be located in your current default directory. Note that
since we are working within the Unix operating system, filenames are case sensitive.

PRINTF 'FILE {IMFILE} has mean of %F' MNFILE >>redux.log

Inserts the string IMFILE into the line of text and evaluates the value of MNFILE,
appending this text string into the ASCII file redux.log in the current working
directory. If this file does not exist, it creates it first. Note the use of {}’s around
IMFILE which specify that this string is to be substituted in the command as shown.

50

Chapter 11: Sample Procedure Scripts

The following are examples of simple Prospero scripts. These are meant to be illustrative,
rather than to suggest the only way to do things. Within each group of examples, you will
notice a steady progression from simple to more complex implementations.

11.1 An Image Sequence (Part I)
In this script, the observer wishes to take a sequence of images through each of three filters
(numbered 1−3 in the instrument filter wheel). This script is bare bones, and must be edited if
the observer wishes to change any of the image parameters.

The script below does the following:

1. Takes 5 images of 30-seconds each through a J-band filter in filter wheel slot 1.

2. Takes 3 images of 60-seconds each through an H-band filter in slot 2.

3. Takes 5 images of 40-seconds each through a K-band filter in slot 3.

The object title is changed each time to reflect the new filter, and the MGO command is used to
take the multiple integrations.

filter 1
exptime 30
object 'UGC 12176 @ J'
mgo 5
filter 2
exptime 60
object 'UGC 12176 @ H'
mgo 3
filter 3
exptime 40
object 'UGC 12176 @ K'
mgo 5
end

The script above is simply a list of the commands the observer would have typed if they were
doing the task by hand. This is the most common type of script written by observers.

11.2 An Image Sequence (Part II)
Suppose that the observer wants to take 3-filter sequences for all of the objects on their target
list. In this case, editing the script above to change the object name and integration times for
each object would be both tedious and dangerous as there are more opportunities to make
mistakes. A more general script can be written by making use of the PARAMETER command

51

52 ♦ Prospero Command Procedure Scripts

(§6.5) and the various numerical variable and string handling utilities of Prospero to pass
arguments to be used. By then making the script an alias, it can be treated as a custom
Prospero command that takes arguments on the command line to set the object name an
integration times each object.

This script will be stored in the procedure directory as filename “dojhk.pro”, and executed
via an alias that uses the CALL command (§6.1). We also add some other features as noted
below.

dojhk - take a BVR image sequence

Usage: call dojhk 'object name' Jexp Hexp Kexp

where: 'object name' is the object title in quotes
Jexp, Hexp, & Kexp are the integration times for
each filter band, in seconds.

Will take 5 J images of Jexp sec, 3 H images of Hexp,
and 5 K images of Kexp, changing the name each time.

1998 July 8 [rwp/osu]

parameter string=objid Jexp Hexp Kexp

J-band sequence: 5 images of Jexp seconds each

filter 1
 exptime %Jexp
 string newname '{objid} @ J'
 object '{newname}'
 printf 'Taking 5 J-band images of %f5.1 sec each' Jexp
 mgo 5

H-band sequence: 3 images of Hexp seconds each

filter 2
 exptime %Hexp
 string newname '{objid} @ H'
 object '{newname}'
 printf 'Taking 3 H-band images of %f5.1 sec each' Hexp
 mgo 3

K-band sequence: 5 images of Kexp seconds each

filter 3
 exptime %Kexp
 string newname '{objid} @ K'
 object '{newname}'
 printf 'Taking 5 K-band images of %f5.1 sec each' Kexp
 mgo 5
string hey 'All images of {objid} are done'
alert '{hey}' 1 0
end

52

Chapter 11: Sample Procedure Scripts ♦ 53

To use this script, you would write it out into a procedure script file named dojhk.pro with
the command

wp dojhk

and then define an alias, dojhk to use as a custom command:
alias dojhk 'call dojhk'

To execute this script, you would type the dojhk alias with the necessary arguments. For
example, to take JHK images of Mrk 35 with integration times/image of 60, 90, and 45
seconds in J, H, and K respectively, you would type:

dojhk 'Mrk 35' 60 90 45

The result will be five 60-second J-band images, three 90-second H-band images, and five 45-
second K-band images of Mrk 35, each labeled appropriately.

We've used a number of different features in this script to enhance its usefulness as a general
“custom command”:

1. The # mark for embedding comments. These are really useful for remembering later what
your script actually does (including later in the same night...)

2. The % qualifier when using a variable to substitute for a floating-point numerical
argument on the command line (used here with the EXPTIME command to set the
integration time from values passed by the PARAMETER command). See §8.6 or the
online help page for NUMBERS for details on substituting variables for numerical
command-line arguments.

3. The STRING command and the string substitution utility (the {}'s) to change the object
name using the OBJECT command by appending the filter band name onto a user-
provided string (the objid string passed by the PARAMETER command).

4. The PRINTF command to print status messages as the script proceeds.

5. The ALERT command to ring the bell and print a "done" message at the end.

Scripts of this kind are very useful if doing very repetitious observing programs, for example
imaging surveys of many objects.

11.3 Simple Camera Focus Script
Below is a simple focusing script that uses a loop to change the re-imaging camera focus,
taking an image of a slit mask at each step. This example illustrates:

1. Use of DO-loops.

2. Use of the PAUSE command to temporarily interrupt a script to let the user check settings.

53

54 ♦ Prospero Command Procedure Scripts

Scripts of this kind might be found in a suite of canned procedures associated with setups for a
particular instrument.

dofocus - do a focus sequence

Usage: call dofocus itime sfoc efoc fstep

where: itime = integration time in seconds
sfoc = starting camera focus value
efoc = ending focus value
fstep = focus step

parameter itime sfoc efoc fstep
exptime %itime
pause 'Check the setup, then hit C to continue'
do foc=sfoc,efoc,fstep

camfocus $foc
string focid 'Focus=%i4' foc
object '{focid}'
printf 'Doing camfocus %i4' foc
go

end_do
printf 'Focus sequence done...'
end

When executed dofocus sets the integration time and then pauses to remind the observer to
make sure the camera, slit, and filter selections are OK and gives them a chance to make the
necessary settings before proceeding further. When everything is set, the observer types C
followed by the Return key to resume execution of the script. On each pass around the DO-
loop, the image “object” name is changed to include the focus value, and the current focus
value is printed for the observer to keep track of the sequence. For example:

call dofocus 2 100 300 20

Will take a sequence of 2-second focus images with camera settings running from 100 to 300
in steps of 20 (11 images).

11.4 More Complex Camera Focus Script
The next script illustrates how to acquire a sequence of images using the various flow-control
commands (DO/END_DO, IF/THEN, and GOTO). In this case, our goal is a general script
for taking a series of focus images of a slit mask to determine the optimal re-imaging camera
lens focus for a particular filter band. Scripts of this kind might be found in the toolkit of an
instrument support astronomer.

cfoc - take a set of camera focus frames

1999 Feb 12 [rwp/osu]

Ask for the camera to focus
getcam:
ask 'Which camera (f/2.8=0, f/7=1) >>' camid
if (camid<0)&(camid>1)

54

Chapter 11: Sample Procedure Scripts ♦ 55

 printf 'Must choose 0 or 1'
 goto getcam
end_if
camera $camid
if camid==1
 string cstr 'f/2.8 Camera @'
else
 string cstr 'f/7 Camera @'
end_if
ask for the filter
getfilt:
ask 'Which filter (J=1, H=2, K=3) >>' filtid
if (filtid<1)&(filtid>3)
 printf 'Must choose 1, 2, or 3'
 goto getfilt
end_if
filter $filtid
if filtid==1
 string fstr 'J Focus'
else_if filtid==2
 string fstr 'H Focus'
else
 string fstr 'K Focus'
end_if

get the starting focus, ending focus, step size, and exp time

ask 'Starting Focus Value >> ' sfoc
ask 'Ending Focus Value >> ' efoc
ask 'Focus Step Size >> ' fstep
ask 'Integration Time >> ' itime
exptime %itime

get the filename to use

string ffile '?Starting Filename (e.g. kfoc.001) >> '
filename '{ffile}'

loop over camera focus, taking an image of the pinhole at each
setting

do foc=sfoc,efoc,fstep
 camfocus $foc
 string focname '{cstr} {fstr} Focus=%i4' foc
 printf 'Doing CAMFOCUS=%i4' foc
 object '{focname}'
 go
end_do
printf 'Focus run completed...'
end

This is a bit more sophisticated example that shows how to make a script interactive. It
prompts for both numerical and string variables to use in setting the behavior of the script.

Some things to note:

55

56 ♦ Prospero Command Procedure Scripts

1. If a variable is to take the place of a floating-point number on a command line you have to
use the %VARNAME construct (e.g., as in “exptime %itime” above), as described in §8.6.

2. If a variable is to be substituted for an integer command-line argument, it needs to be
qualified using the $ qualifier (e.g., as in “camfocus $foc” above). See §8.6

3. The STRING command can either define a string directly, or if the ? appears first inside
the quotes, it will prompt for the string value. See the online help file for STRING for
details.

4. No spaces must appear anywhere within a logical expression, for example in “if
(filtid<1)&(filtid>3)” above. Spaces are used to separate arguments on a
command line, and if used in expressions, would treat it as two arguments where only one
is expected (the parser is good, but not that good).

5. A jump-point label must end in a colon “:”, but when the label is used in a GOTO
statement, the colon is omitted (as in “getcam:” and “goto getcam” above).

11.5 IR Image Mosaic Script (Part I)
This script is intended to take a 2×2 IR image mosaic of a region with extended emission (e.g.,
a galaxy or a nebula), and therefore includes sky chopping in the usual ABBA fashion. The
array is assumed to subtend a field somewhat larger than 100x200 arcseconds on the sky. The
resulting field of this mosaic is approximately 200×400 arcseconds. The telescope should be
centered on the object at the start, and at the end the telescope will be sent back to the starting
point.

NOTE: the script and the two that follow will only work with those telescopes that provide the
ability to command pointing offsets remotely.

mos - take a 2x2 IR mosaic with 512x1024 InSb Array

Usage: call mos
1997 Jan 11 [plm/osu]

exptime 5

chop to sky

east 500 twait=10
object 'Sky 1'
avego 10
west 500 twait=10

go to first position

offset dec=100 ra=50 twait=10
object 'Position 1'
mavego 2 10

56

Chapter 11: Sample Procedure Scripts ♦ 57

chop to sky

east 500 twait=10
object 'Sky 2'
avego 10
west 500 twait=10

go to second position

south 200 twait=10
object 'Position 2'
mavego 2 10

chop to sky

east 500 twait=10
object 'Sky 3'
avego 10
west 500 twait=10

go to third position

west 100 twait=10
object 'Position 3'
mavego 2 10

chop to sky

east 500 twait=10
object 'Sky 4'
avego 10
west 500 twait=10

go to fourth position

north 200 twait=10
object 'Position 4'
mavego 2 10

chop to sky

east 500 twait=10
object 'Sky 5'
avego 10
west 500 twait=10

go back to start

offset ra=-50 dec=-100 twait=10

printf 'All done!'
end

This is just the sequence of commands you would type if you were doing this by hand (pretty
tedious). As the mosaic gets more complex, the script has to similarly grow in size. Note that

57

58 ♦ Prospero Command Procedure Scripts

for each offset we use the TWAIT=10 keyword to tell the system to wait 10 seconds after
each move for the telescope to settle. Actual settling times depend on the telescope control
system and the size of the offset. Note also that we have used both the specific
NORTH/SOUTH/EAST/WEST directional offsetting commands, as well as the generic
offset command to accomplish the offsets.

The next script shows a more sophisticated way to do the same thing that is more easily
extensible.

11.6 IR Image Mosaic Script (Part II)
Here we do the same thing as above, only now we embed the repeated operations of sky
chopping inside of a subroutine script, and add a dithering subroutine as well. Thus there are
three files needed for this example:

1. mos2.pro: the main procedure script file.

2. sky.pro: the sky chopping script file, called by mos2

3. dith.pro: the dithering script file, called by mos2 and sky

In this example we create a 2×2 mosaic as above, but at each “object” and “sky” position we
“dither” the images around a four-corner pattern to help avoid bad pixels on the array. (Note:
if you are acquainted with standard IR imaging practices, this should all sound familiar. If not,
finding an IR imager instrument manual will help clarify why we do this, we won't discuss IR
imaging practices here, only give a script that implements those practices with Prospero).

The mos2.pro script file:

mos2 - take a 2x2 mosaic with TIFKAM

Advanced version of mos.pro. Calls the subroutines
sky.pro and dith.pro (which must be in the procedure
directory for this script to work).

Produces a mosaic field approximately 200x400 arcseconds
in size. Uses an ABBA sampling pattern.

Usage: call mos2.pro objname exptime coadds

1997 Jan 11 [plm/osu]

parameter string=objname etime coad
snooze=10 # time to wait for telescope to settle
if etime==0
 ask 'Exposure Time: ' etime
end_if
if coad==0
 ask 'Number of Coadds: ' coad
end_if

58

Chapter 11: Sample Procedure Scripts ♦ 59

do imos=1,5
 string FULLNAME '{objname} Sky %i2' imos
 object '{FULLNAME}'
 call sky etime coad
 printf 'Finished sky %i2' imos
 if imos==1
 offset ra=50 dec=100 twait=snooze
 else_if imos==2
 south 200 twait=snooze
 else_if imos==3
 west 100 twait=snooze
 else_if imos==4
 north 200 twait=snooze
 else_if imos==5
 goto done # just want a final sky
 end_if
 string FULLNAME '{objname} Position %i2' imos
 object '{FULLNAME}'
 call dith etime coad 2 # dither with mgo 2
 printf 'Finished set %i2 of 5' imos
 done:
end_do

recenter telescope at original position

offset ra=50 dec=-100 twait=snooze

alert 'Attention: 2x2 mosaic sequence completed' 2 1
end

The sky.pro script file:

sky.pro -- chop to a sky positon and dithing using dith.pro,
returning the telescop to the original position.

Usage: call sky exptime coadds

1997 Jan 11 [plm/osu]

parameter etime coad
chop=500

south $chop
call dith etime coad 1
north $chop
return

The dith.pro script file:

dith.pro -- dithering around the four corners of a
square 'side' arcseconds on a side

Usage: call dith exptime coadds mgos

1997 Jan 11 [plm/osu]

59

60 ♦ Prospero Command Procedure Scripts

parameter etime coad mg
side=10 # size of the dither square in arcseconds
snooze=10 # seconds sleep after offsetting

exptime %etime

do jd=1,4
 if jd==2
 west $side twait=snooze
 else_if jd==3
 north $side twait=snooze
 else_if jd==4
 east $side twait=snooze
 end_if
 mavego $mg $coad
end_do

return to start of dither pattern

south $side twait=snooze

return

Some things to note:

1. For these scripts to work, they must all be in the default procedure directory, with the
filenames given. With the CALL statement, the .pro filename extension is implicit.

2. The subroutines sky and dith end with the RETURN command instead of END.

3. This example (and the one before it) used the TWAIT= keyword with the offsetting
commands to insert a timed pause in the procedure. This is to allow the telescope to stop
bouncing after the offset.

4. The ALERT command is used at the end to wake up the observer, as this script could take
a while to execute.

5. If a subroutine and its calling script both use the same counter variable in a DO-loop (e.g.,
both use variable I as the DO-loop counter), then things get confused. Try to use different
counter variables when doing subroutines (see above).

6. Variables passed as arguments of sub-scripts using the CALL statement are always passed
“unqualified” (i.e., without the % or $ qualifiers), whereas variables used to substitute for
numerical arguments in normal commands (e.g., EAST or WEST) must be properly
qualified (see §8.6 for details).

11.7 IR Image Mosaic Script (Part III)
Now we generalize one step further. In mos2.pro above, we used a large IF/ELSE block to
build the mosaic using hardwired offsets that gave coordinates relative to the previous tile of

60

Chapter 11: Sample Procedure Scripts ♦ 61

the mosaic. In this example, we now specify the coordinates of the center of each tile of the
mosaic relative to a (0,0) position defined by the observer to be the origin of the final mosaic.
The mosaic may now be any size, breaking out of the limitation of a 2×2 mosaic as in the
examples above. We will also introduce two new procedures, sky2.pro and dith2.pro that take
additional arguments to give us more freedom in choosing the chopping and dithering
parameters.

We emphasize that this is not the only way (or the best way) to do this, but illustrates how
external ASCII data files can be incorporated into a relatively sophisticated procedure script.

There are four files needed for this example:

1. mos3.pro: the main procedure script file (see below)

2. sky2.pro: the sky chopping script file (see below)

3. dith2.pro: the dithering script file (see below)

4. mosaic.dat: an ASCII data file with the mosaic pattern

Below we give the mos3.pro script and a sample mosaic.dat file that replicates the 2x2
mosaics in the previous examples. Note here that we use the more general OFFSET
command instead of the subset of directional commands (e.g., NORTH, EAST, etc.) used in the
previous examples.

The mos3.pro script file:

mos3 - Take an image mosaic with TIFKAM

Builds an image mosaic using offsets given in the
an external ascii file. This file should contain
absolute offsets from the initial telescope position.

MOS3 dithers at each object and sky position, and
sky chops following an ABBA pattern.

This script calls the subroutines sky2.pro and
dith2.pro, which must be in the procedure directory.

Usage: call mos3 'object name' offlist exptime coadds

The file 'offlist' has a 2-column format:

dra1 ddec1
dra2 ddec2
... ...
draN ddecN

where: +dra is east, -dra is west in arcseconds
+ddec is north, -ddec is south in arcseconds

1997 Jan 14 [plm/osu]

61

62 ♦ Prospero Command Procedure Scripts

parameter string=objname string=offlist etime coad
if etime==0
 ask 'Exposure Time: ' etime
end_if
if coad==0
 ask 'Number of Coadds: ' coad
end_if

set the sky chopping angle to 500 arcseconds N-S

rachop=0
decchop=500

open the file containing the absolute offsets

open offsets {offlist}
stat noff=count[offsets]

roff=0
doff=0
do i=1,noff+1
 string FULLNAME '{objname} Sky %i2' i
 object '{FULLNAME}'
 call sky2 etime coad rachop decchop

set some position tracking variables

 if i==1
 ralast=0
 declast=0
 else
 ralast=rtmp # last ra offset
 declast=dtmp # last dec offset
 end_if
 if i==noff+1
 goto done
 end_if

 read offsets # read coords of the next mosaic cell
 rtmp=@offsets.1 # ra offset in column 1
 dtmp=@offsets.2 # dec offset in column 2
 roff=rtmp-ralast # size of the next ra offset
 doff=dtmp-declast # size of the next dec offset

do the offset, waiting 10 sec for the scope to settle

 offset ra=roff dec=doff twait=10
 string FULLNAME '{objname} Position %i2' i
 object '{FULLNAME}'
 call dith2 etime coad 2 side # dither with mgo 2
 printf 'Position %i2 of %i2 completed' i noff
 done:
end_do

restore the telescope to the original position

62

Chapter 11: Sample Procedure Scripts ♦ 63

offset ra=-rtmp dec=-dtmp twait=10

close file and wake up observer

close offsets
alert 'Attention: mosaic sequence completed' 2 1
end

The sky2.pro script file:

sky2.pro - chop to a sky positionand dithing using dith.pro,
returning the telescope to the original position.

Usage: call sky2 exptime coadds rachop decchop

where:
rachop = N-S chop in arcseconds (north positive)
decchop = E-W chop in arcseconds (east positive).

1997 Jan 14 [plm/osu]

parameter etime coad rac decc

roff=rac # size of the N-S chop
doff=decc # size of the E-W chop
offset ra=roff dec=doff twait=20
call dith2 etime coad 1
offset ra=-roff dec=-doff twait=20 # reverse the chop
return

The dith2.pro script file:

dith2.pro - dither around the four corners of a square
'side' arcseconds on a side and performing a
certain number of coadds and mgos there.

Usage: call dith exptime coadds mgos side

1997 Jan 14 [plm/osu]

parameter etime coad mg side
snooze=15 # seconds to sleep after offsetting

exptime %etime

oside=-side
do jd=1,4
 if jd==2
 offset ra=oside twait=snooze
 else_if jd==3
 offset dec=side twait=snooze
 else_if jd==4
 offset ra=side twait=snooze
 end_if
 mavego $mg $coad

63

64 ♦ Prospero Command Procedure Scripts

end_do

return to start of dither pattern

offset dec=oside twait=snooze

return

Notes:

1. The offsets file, mosaic.dat is hardwired into the OPEN command, and has a “./”
prepended to specify that the file is in the current working directory.

2. The OPEN command is balanced by a CLOSE command near the end of the script.

3. The cumulative offset is tracked with the ROFF and DOFF variables to be able to restore
the telescope position at the end.

A sample mosaic.dat file would be:
50 100
50 -100
-50 -100
-50 100

Two things to note:

1. The file must reside in the current working directory, not the procedure directory.

2. This particular example replicates the 2×2 mosaic pattern executed by the mos.pro and
mos2.pro example scripts.

Note that the coordinates of each tile of the mosaic are given relative to a common center
(coordinates [0,0]), unlike the previous two examples where the offset coordinates are given
relative to the previous tile of the mosaic.

Because we count the number of lines in the mosaic.dat file, we can make a mosaic of any size
and pattern with this script.

This is clearly not the only way, or even the best way to do this observing procedure. We
include it here as a possible solution. If someone comes up with a good mosaic script that
works well in actual practice, please send it to us and we'll include it in future editions of this
guide.

64

Chapter 12: Command Summary

This section provides a quick summary of all procedure scripting commands. Please see the
text or the online help files for a detailed description of their function and use.

12.1 Editing, Reading, Writing, and Executing Procedures
PEDIT Edit the procedure buffer

RP filename read a procedure file from disk

SHOW [output redirection] print the contents of the procedure buffer

WP filename Write the procedure buffer to disk

RUN [arg1] [arg2] ... Run the procedure buffer

CALL filename [arg1] [arg2] … Execute a procedure file. CALL is also used
to execute procedure scripts as subroutines
of larger scripts.

VERIFY [Y|N] Trace procedure execution line-by-line

PARAMETER [var1] [var2] [STRING=str1] Evaluate command-line arguments passed to
a procedure. If a procedure uses command-
line arguments, PARAMETER must appear
in the first executable (non-comment) line
of the procedure.

END End a procedure and return to the command
prompt END must appear in the very last
line of all procedures.

RETURN Return from a procedure called as a
subroutine

Insert a comment line into a procedure

12.2 Numerical Variables and Arithmetic Expressions
VARIABLE=value

The value assigned may to a variable be a number or an arithmetic expression. Up to 15
variables may be define/evaluated on a single command line.

65

66 ♦ Prospero Command Procedure Scripts

Using numerical variables as command-line arguments:

Integer Arguments: COMMAND $variable

Real Argument: COMMAND %variable

Keyword Argument: COMMAND KEYWORD=variable

Arithmetic Operators & Expressions:

+ addition B+C

- subtraction X-Y

* multiplication X1*X2

/ division A/B

- negative sign -X

^ exponentiation A^0.5

= equate A=B

NOTE: No spaces may appear anywhere in arithmetic expressions.

Arithmetic Functions:

INT[E] nearest integer to the expression E

ABS[E] absolute value of E

MOD[E,I] E modulo I (remainder of E/I)

IFIX[E] integer part of E (truncation)

MAX[E,F] the larger of E or F

MIN[E,F] the smaller of E of F

LOG10[E] Log base 10 of E

LOGE[E] Log base e ("natural log") of E

EXP[E] e raised to the power E

SQRT[E] square root of absolute value of E

66

Chapter 11: Sample Procedure Scripts ♦ 67

Trigonometric Functions:

SIN[E] sine of E (E in radians)

SIND[E] sine of E (E in degrees)

COS[E] cosine of E (E in radians)

COSD[E] cosine of E (E in degrees)

ARCTAN[E] arctan of E, returns radians

ARCTAND[E] arctan of E, returns degrees

12.3 String Variables
STRING strname 'the string' Define a string.

STRING strname 'format statement' expr Create a string that includes numbers input
from variables or expressions

COMMAND {strname} [rest of command] Substitute a string onto the command line

12.4 Printing & Prompting for Input
TYPE expr1 [expr2] ... [expr15] Unformatted printing

PRINTF 'Format string' [exprs] Formatted printing

PRINTF 'Format string' [exprs] >filename Send formatted output to an external ASCII
file.

PRINTF 'Format string' [exprs] >>filename Append formatted output to an existing
ASCII file:

ASK ['prompt in quotes'] variable Prompt the user for a numerical value from
the keyboard

YORN ['prompt in quotes'] Ask the user a Yes/No question. YORN sets
the variable YORN to 1 if Yes, 0 if No.

STRING strname '?prompt in quotes' Prompt the user for a string

67

68 ♦ Prospero Command Procedure Scripts

PRINTF and String Format Syntax:

%F unformatted floating-point number

%F4.1 4 digit float with 1 digit of precision (e.g., 123.4)

%I unformatted integer

%I6 6-digit integer, no leading zeros (e.g., 1, 123, 142212)

%I3.3 3-digit integer with leading zeros (e.g., 152, 001, 015)

%A unformatted string

%A10 10-character string

12.5 Flow Control in Procedures
STOP ['A message'] Stop procedure execution and return to the

command prompt

PAUSE 'pause message' Pause the procedure and return to the command
prompt

CONTINUE -or- C Resume a paused procedure

SLEEP tsec ['optional sleep message'] Put a procedure to sleep for tsec seconds

WAIT ['optional wait message to print'] Suspend a procedure until the user hits the
RETURN key

ALERT 'alert message' ntimes tdelay Print an alert message to the screen. The
message is repeated ntimes with a pause of
tdelay seconds between alerts.

GOTO label Jump to a labeled line in a procedure

label: Label a line as a GOTO jump-point

ERROR command Execute “command” on Error

ERROR GOTO label GOTO “label:” on ERROR

EOF command Execute “command” on End-of-File (EOF)

EOF GOTO label GOTO “label:” on EOF

68

Chapter 11: Sample Procedure Scripts ♦ 69

12.6 DO Loops:
DO var=from,to,step
 execute these commands
END_DO

NOTE: No spaces are allowed between the arguments in the DO command.

12.7 Conditional (IF) Branching:

Logical & Boolean Operators:

> greater than A>B, A>2.5

< less than A<B, A<100

== equal to A==B, A==10

~= not equal to A~=B, A~=10

<= less than or = A<=B, A<=5

>= greater than or = A>=B, A>=3

& Boolean AND (A>B)&(C==0)

| Boolean OR (C>=2)|(B<A)

NOTE: No spaces are allowed anywhere in logical expressions.

IF/END_IF: Simple logical test:
IF (logical test)
 Execute these lines if the test is true.
END_IF

IF/ELSE/END_IF: IF/ELSE logical test:
IF (logical test)
 Execute these lines if the test is true.
ELSE
 Execute these lines if the test is false.
END_IF

IF/ELSE logical test after a Yes/No question:
YORN 'Do something'
IF (YORN)
 Execute these lines if yes
ELSE
 Execute these lines if no
END_IF

69

70 ♦ Prospero Command Procedure Scripts

Multi-level IF-Test Block:
IF (logical test 1)
 lines to be executed if test 1 is true.
ELSE_IF (logical test 2)
 lines to be executed when test 1 is
 false but test 2 is true.
 .
 .
 .
ELSE_IF (logical test N)
 lines to be executed when all conditions
 are false except test N.
ELSE
 lines to be executed if and only if
 all other conditions are false.
END_IF

12.8 External ASCII Data Files
Up to 5 ASCII files may be opened at one time. All files are readonly. User-assigned logical
names are used to distinguish the currently open files.

OPEN logname filename Open the ASCII file filename and assign it
logical name logname

CLOSE logname Close logname

READ logname Read the next line from logname

STRING strname {logname} Read then next line of logname a string

variable=@logname.n Extract numbers from column n of the last
line read

SKIP logname line [line1,line2] Skip over selected lines in logname

REWIND logname Rewind logname to the first line

STAT variable=COUNT[logname] Count the number of lines in logname

STAT variable=MAX[@logname.n] Find the maximum data value in column n

STAT variable=MIN[@logname.n] Find the minimum data value in column n

STAT variable=FIRST[@logname.n] Find the first data value in column n

STAT variable=LAST[@logname.n] Find the last data value in column n

70

Chapter 13: Differences from XVista

In stripping XVista down to its parser to form a foundation for Prospero, we made a few,
syntactic changes and additions to the XVista scripting language. Since we treat Prospero and
XVista as separate (if related) programs, we felt justified in making deep changes that make
sense in the context of Prospero’s data acquisition function without regard to XVista tradition
or convention if it best suited our needs. We note that about 90-odd% of Prospero’s command
syntax is backward compatible with XVista scripting conventions, but there are some
important differences that might throw unwary XVista users.

The simple summary is: however much it may look like XVista, Prospero is NOT XVista by
another name. Especially in three important areas:

13.1 No GO
The GO command in Prospero means “start an integration.” This intuitive and deeply rooted
in the syntax of nearly every data-taking system used in astronomy, and it was not considered
worthwhile to make Prospero behave differently. Thus, to execute commands in the
procedure buffer, Prospero uses the RUN command in place of the XVista GO command.

13.2 Comments
We adopt the # (hash) character as the comment character, This is a syntax common to Unix
shell scripts, IRAF cl scripts, and is the comment character used by configuration files in the
data taking system. First-time users with no experience of XVista would guess # as a
comment more readily than the ! character used in XVista.

XVista users should note, however, that the ! character is also treated as an alternative
comment character in Prospero, even if it is not documented as such.

13.3 Integer and Floating-Point variables as command-line
arguments

Some Prospero commands require floating-point arguments alone on the command line (e.g.,
the EXPTIME command accepts fractional exposure times). We thus have introduced the
%VARNAME floating-point qualifier syntax to Prospero, taking its place along side the
$VARNAME integer qualifier syntax adopted from the original XVista parser. See §8.6 for
details.

As in XVista, the $VARNAME qualifier converts the variable VARNAME to the nearest
integer value (via the Fortran nint() intrinsic function) before substituting it on the command
line.

71

	Table of Contents
	Introduction
	Overview
	How to use this manual

	Procedure Script Basics
	The Startup Script File
	Procedure Files and Directories
	Procedure Commands
	PEDIT: edit the procedure buffer
	SHOW: list the contents of the procedure buffer
	WP: write the contents of the procedure buffer to disk
	RP: read a procedure file from disk
	RUN: Execute the procedure in the procedure buffer
	VERIFY: verify execution of a procedure (trace-mode)

	Procedure Execution Control
	CALL: call and execute a procedure file as a subroutine
	END: end a procedure
	STOP: stop procedure execution
	RETURN: return from a procedure subroutine
	PARAMETER: evaluate command-line parameters
	“#” Insert a comment line into a script

	Flow Control in Procedures (Loops, Conditional Tests, & Branching)
	PAUSE: pausing during procedure execution
	CONTINUE: resume a PAUSEd procedure
	SLEEP: Put a procedure to sleep for a given time interval
	WAIT: Suspend a procedure and wait for the RETURN key
	ALERT: Print an alert message to the screen then continue
	GOTO: jump to a labeled place in a procedure
	“:” label a line as a GOTO jump-point
	DO Loops
	IF/THEN Logical Flow Control
	ERROR: execute on error
	EOF: execute on End-of-File (EOF)

	Prospero Variables
	Arithmetic Expressions
	SET: define a Prospero variable and give it a value
	TYPE: evaluate an expression and print it
	ASK: prompt for a variable on the console
	YORN: Ask a “Yes or No” question.
	Using variables to substitute for numerical command-line arguments
	PRINTF: formatted output of strings & arithmetic expressions

	String Variables in Prospero
	STRING: define a string variable
	Substituting String Variables into a Command Line
	Printing string variables
	Getting values out of the FITS headers
	Advanced Examples of String Substitution

	External ASCII Files
	OPEN: open an ASCII data file for reading
	CLOSE: closing an opened ASCII data file
	READ: read the next line of an ASCII data file
	SKIP: skip over lines in an ASCII data file
	REWIND: position an open file to the beginning of the file
	STAT: find the properties of a file
	Implicit Reading: substituting a file line onto the command line
	Writing to Files using Output Redirection

	Sample Procedure Scripts
	An Image Sequence (Part I)
	An Image Sequence (Part II)
	Simple Camera Focus Script
	More Complex Camera Focus Script
	IR Image Mosaic Script (Part I)
	IR Image Mosaic Script (Part II)
	IR Image Mosaic Script (Part III)

	Command Summary
	Editing, Reading, Writing, and Executing Procedures
	Numerical Variables and Arithmetic Expressions
	String Variables
	Printing & Prompting for Input
	Flow Control in Procedures
	DO Loops:
	Conditional (IF) Branching:
	External ASCII Data Files

	Differences from XVista
	No GO
	Comments
	Integer and Floating-Point variables as command-line arguments

