Adaptive Optics Lectures

1. Atmospheric turbulence

Andrei Tokovinin

Resources

CTIO:

www.ctio.noao.edu/~atokovin/tutorial/index.html

CFHT AO tutorial:

http://www.cfht.hawaii.edu/Instruments/Imaging/AOB/other-aosystems.html

Wikipedia: https://en.wikipedia.org/wiki/Adaptive_optics

Plan

- Physics of OPTICAL turbulence
- Local parameters & Kolmogorov law
- Wavefront statistics
- Imaging as interference: PSF, OTF
- Imaging through turbulence
- Tip, tilt and beyond (Zernike modes)

Turbulence

- Hydrodynamics: unstable flow breaks up into eddies. The kinetic energy is transferred from large to small scales in a cascade, dissipates eventually by viscosity.
- Dynamical" turbulence has no optical effect.
 Fluctuations of the air refractive index are caused primarily by the temperature differences. Turbulence defines the statistics of ΔT .

$\Delta T \rightarrow refr.index \rightarrow wavefront \rightarrow image$

Kolmogorov's law

$$<\Delta n(r)^{2} > = C_{n}^{2} r^{2/3}$$

This is the $\underline{\textit{definition}}$ of $C_n^{\ 2}$ and $C_T^{\ 2}$.

$$<\Delta T(r)^{2} > = C_{T}^{2} r^{2/3}$$

Local turbulence strength

5

Typical values: 10⁻¹⁶ m^{-2/3} and 10⁻⁶ K² m^{-2/3} (1 mK/m)

$$C_n^2 = (80.10^{-6} P/T^2)^2 C_T^2 \Delta n \sim 7.8 \ 10^{-7} \Delta T$$

n~1.0003 at sea level P:millibars, T: K USP, Aug. 2017

Limits of the Kolmogorov law

- Saturates at large scale $r>L_0$, $L_0 \sim 10m$ (outer scale).
- Otherwise infinite fluctuations!
- Break at small scale I_0 (inner scale <1cm)</p>
- Implies random stationary process, in fact turbulence is not stationary
- Does not work if no energy cascade (in the dome, gravity waves, etc.)

Propagation through turbulence

- Fresnel diffraction: $r_{Fresnel} = \sqrt{\lambda z}$ (~10cm for 500nm @ 10km)
- At r>>r_{Fresnel} : geometric optics (sum phase lags on the path)
- At r<r_{Fresnel} : diffraction, intensity fluctuations (scintillation)

Phase structure function

$$D_{\phi}(r) = \langle [\Delta \phi(x+r) - \Delta \phi(x)]^2 \rangle = 6.88(r/r_0)^{5/3}$$

Fried parameter (coherence length) r₀

$$r_0^{-5/3} = 0.423(2\pi/\lambda)^2 J$$

$$J = \int C_n^2(z) dz$$

J = turbulence integral USP, Aug. 2017 8

Point Spread Function (PSF) & Optical Transfer Function (OTF)

PSF $P(\alpha)$ = image of the point source (real) OTF = Fourier Transform (PSF), $O^{\sim}(f)$ complex

 $I(\alpha) = \int O(\beta) P(\alpha - \beta) d\beta$ $I^{\sim}(f) = O^{\sim}(f) \cdot P^{\sim}(f)$

Convolution in image space Product in Fourier space

USP, Aug. 2017

OTF with and without turbulence

Atmospheric OTF

At long exposures, the OTF and PSF are averaged. 1. at $d < < r_0$, phase fluctuations $< < \lambda$, coherent 2. at $d >> r_0$, phase fluctuations $> \lambda$, incoherent

Coherence = exp[- $<\Delta \phi^2 > /2$]

 $P^{-}(f) = \exp[-D_{\phi}(\lambda f)/2] = \exp[-3.44 (\lambda f/r_{0})^{5/3}]$

This is atmospheric OTF for long exposures.

"Seeing"

Atmospheric PSF has FWHM $\epsilon=0.98\lambda/r_0$ [rad]

The PSF is not Gaussian, but similar "Seeing" β is the FWHM at 500nm at zenith:

 $\beta = 0.101/r_0[m] = (J/6.8 \ 10^{-13})^{3/5} [arcsec]$

Dependence on zenith angle: $\beta \sim (\sec z)^{3/5}$ Dependence on wavelength: $\beta \sim \lambda^{-1/5}$

Numerical example

Seeing 1" \rightarrow r₀ (0.5µm)=10.1cm, J=6.8 10⁻¹³ m^{1/3}.

USP, Aug. 2017

Turbulence profile

C²_n(h) and wind speed V(h) describe the turbulence:

- 1. Surface layer (h<100m, includes dome)
- 2. Boundary layer (h<1km)
- 3. Free atmosphere (1km < h < 20km)

Optical turbulence is produced by mixing air with different

temperatures. "Layers" arise in wind-shear zones.

Isoplanatic angle

Wavefronts from two stars are similar if $\theta < \theta_0$

$$\theta_0 = 0.31 r_0/H$$

H = average height

H=5km, r_0 =0.1m → $θ_0$ = 1.2"

Also: cone effect with LGS!

Atmospheric time constant

Each turbulent layer is "dragged" by the wind.

$$\tau_0 = 0.31 r_0/V$$

V = average wind speed

17

V=20m/s, $r_0 = 0.1m$ → $T_0 = 1.6ms$

When one layer dominates, the wavefront "moves", otherwise it "boils".

Zernike aberrations

Wavefront on a circular pupil can be represented by the sum of basis functions. Zernike basis is the most popular.

Num.	Aberration
1	Piston Z=1
2	Tip Z=2ρ cos θ
3	Tilt Z=2ρ sin θ
4	Defocus Z= $\sqrt{3(2\rho^2-1)}$
5	45-astig. Z= $\sqrt{6} \rho^2 \sin(2\theta)$

$$\phi(\vec{r}) = \sum_{j=1}^{\infty} a_j \ Z_j(\vec{r}),$$

The Zernike polynomials are defined in polar coord. $Z(\rho,\theta) (0 < \rho < 1)$. Variance=1 (Noll), Cov=0 (ortho-normal basis)

Atmospheric Zernike modes

Zernike coefficients are random variables. The Kolmogorov turbulence model relates variances and covariances to the seeing.

$$\langle a_i a_j \rangle = c_{ij} \left(\frac{D}{r_0}\right)^{5/3},$$

Noll's coefficients $c_{i,j}$: 0.449 for tip & tilt, 0.0232 for defocus Total phase variance (without piston) 1.03(D/r₀)^{5/3}.

How many modes to correct?

Residual rms phase error [rad²] after correcting the first J Zernike modes (J>20):

 $\sigma^2 \sim 0.29 (D/r_0)^{5/3} J^{-0.87}$

Tip-tilt only: 0.134 Order 2 (J=6): 0.065 Max. gain for \sim 1rad² residual (Strehl \sim 0.3)

Measurements of turbulence

- Temperature: C_{T²} with micro-thermals or acoustic sounders (sonars)
- Image motion: affected by telescope shake/tracking
- Defocus (DIMM, any WFS)
- Scintillation (MASS)
- Optical profilers (SCIDAR, SODAR) need binary stars
- LGS profilers (on working multi-LGS AO systems)