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Andrei Tokovinin

1. Atmospheric turbulence
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Resources

CTIO: 

www.ctio.noao.edu/~atokovin/tutorial/index.html

    CFHT AO tutorial: 
http://www.cfht.hawaii.edu/Instruments/Imaging/AOB/other-aosystems.html

Wikipedia: 

https://en.wikipedia.org/wiki/Adaptive_optics

http://www.ctio.noao.edu/~atokovin/tutorial/index.html
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Plan

Physics of OPTICAL turbulence

Local parameters & Kolmogorov law

Wavefront statistics

Imaging as interference: PSF, OTF

Imaging through turbulence

Tip, tilt and beyond (Zernike modes)
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Turbulence

Hydrodynamics: unstable flow breaks up into eddies. The 

kinetic energy is transferred from large to small scales in 

a cascade, dissipates eventually by viscosity.

“Dynamical” turbulence has no optical effect. 

Fluctuations of the air refractive index are caused 

primarily by the temperature differences. Turbulence 

defines the statistics of ΔT. 

ΔT → refr.index → wavefront → image
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Kolmogorov's law

<Δn(r)2> = Cn
2 r2/3 This is the definition of 

Cn
2  and CT

2 .

<ΔT(r)2> = CT
2 r2/3 

Typical values: 10-16 m-2/3 and 10-6 K2 m-2/3 (1 mK/m)

Cn
2 = (80.10-6 P/T2)2 CT

2 Δn ~7.8 10-7ΔT 

Local turbulence strength

P:millibars, T: K
n~1.0003 at sea level
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Limits of the Kolmogorov law

Saturates at large scale r>L0, L0~10m (outer scale).

Otherwise infinite fluctuations!

Break at small scale l0 (inner scale <1cm)

Implies random stationary process, in fact 

turbulence is not stationary

Does not work if no energy cascade (in the dome, 

gravity waves, etc.)
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Propagation through turbulence

Fresnel diffraction: rFresnel = √λz  (~10cm for 500nm @ 

10km)

At r>>rFresnel  : geometric optics (sum phase lags on the path)

At  r<rFresnel  : diffraction, intensity fluctuations (scintillation)

 

∆l = ∫∆n(z) dz ∆ϕ = ∆l*(2π/λ )
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Phase structure function

Dϕ(r) = <[∆ (x+r) - ϕ ∆ (x)]ϕ 2> = 6.88(r/r
0
)5/3 rFresnel<r<L0 

Fried parameter
(coherence length) r0

r0
-5/3 = 0.423(2π/λ)2 J

J=  ∫Cn
2(z) dz

J = turbulence integral
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Point Spread Function (PSF) &
Optical Transfer Function (OTF)

PSF P(α) = image of the point source (real)
OTF = Fourier Transform (PSF), O~(f) complex 

I(α) = ∫O(β) P(α-β) dβ
I~(f) = O~(f) . P~(f)

Convolution in image space
Product in Fourier space
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Imaging as interference

p = λ/d [radian]
f = d/λ [radian-1]
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OTF with and without turbulence
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Atmospheric OTF

At long exposures, the OTF and PSF are averaged.
1. at d<<r0, phase fluctuations <<λ, coherent

2. at d>>r
0
, phase fluctuations >λ, incoherent

Coherence = exp[- <∆ϕ2>/2]

P~(f) = exp[- Dϕ(λf)/2] = exp[-3.44 (λf/r0)
5/3]

This is atmospheric OTF for long exposures.
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“Seeing”

Atmospheric PSF has FWHM   ε=0.98λ/r0 [rad]

“Seeing” β  is the FWHM at 500nm at zenith:

β = 0.101/r
0
[m] = (J/6.8 10-13)3/5 [arcsec]

The PSF is not Gaussian, but similar

Dependence on zenith angle: β ~ (sec z)3/5 
Dependence on wavelength: β ~ λ-1/5
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Numerical example

r0(2.2 μm)=0.60m

ε (2.2 μm)= 0.74”

Seeing 1” → r0 (0.5μm)=10.1cm, J=6.8 10-13 m1/3 .

Finite outer scale
improves resolution
(~10% in the visible,
~2x in the IR)
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Turbulence profile

Cn
2(h) and wind speed V(h) describe the 

turbulence:
1. Surface layer (h<100m, includes dome)
2. Boundary layer (h<1km)
3. Free atmosphere (1km < h <20km) 

Optical turbulence is 
produced by mixing air with 
different
 temperatures. “Layers” 
arise in wind-shear zones.  
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Isoplanatic angle

Wavefronts from two stars are similar if θ<θ0

θ0  = 0.31 r0/H  

H=5km, r0=0.1m

→ θ0 = 1.2”

Also: cone effect with LGS!

H = average height
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Atmospheric time constant

Each turbulent layer is “dragged” by the wind.

V = average wind
speed

V=20m/s, r
0
=0.1m

→  τ0 =  1.6ms 

When one layer dominates,
the wavefront “moves”,
otherwise it “boils”.
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Zernike aberrations

Wavefront on a circular pupil can be represented by the
sum of basis functions. Zernike basis is the most popular.

Num. Aberration

1 Piston Z=1

2 Tip Z=2ρ cos θ

3 Tilt Z=2ρ sin θ

4 Defocus Z=√3(2ρ2-1)

5 45-astig. Z= √6 ρ2 sin(2θ)

The Zernike polynomials
are defined in polar coord.
 Z(ρ,θ) (0 < ρ <1).
Variance=1 (Noll), Cov=0
(ortho-normal basis)
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Atmospheric Zernike modes

Zernike coefficients are random variables. The Kolmogorov 
turbulence model relates variances and covariances 
to the seeing.

Noll's coefficients ci,j: 0.449 for tip & tilt, 0.0232 for defocus

Total phase variance (without piston) 1.03(D/r0)
5/3.  
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How many modes to correct?

Residual rms phase error
[rad2] after correcting the first
J Zernike modes (J>20):

σ2 ~ 0.29 (D/r0)
5/3 J -0.87

Tip-tilt only: 0.134
Order 2 (J=6):  0.065
Max. gain for ~1rad2 residual
(Strehl ~0.3)
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Measurements of turbulence

Temperature: CT
2 with micro-thermals or acoustic 

sounders (sonars)

Image motion: affected by telescope shake/tracking

Defocus (DIMM, any WFS)

Scintillation (MASS)

Optical profilers (SCIDAR, SODAR) need binary stars

LGS profilers (on working multi-LGS AO systems)
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